3.4实际问题与一元一次方程(2)探究1:销售中的盈亏问题
- 格式:ppt
- 大小:1.10 MB
- 文档页数:17
3.4实际问题与一元一次方程------销售中的盈亏一、教学目标知识与技能1、理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系。
2、能根据商品销售中的数量关系找出等量关系列出方程3、能利用一元一次方程解决商品销售中的实际问题。
过程与方法通过探究和讨论活动培养学生分析问题、解决问题的能力情感态度与价值观让学生在实际生活中感受到数学的重要价值生学习数学的兴趣。
二、重点难点1.重点:让学生知道商品销售中盈亏的算法。
2.难点:弄清商品销售中的“进价”、“标价”、“售价”及“利润”的含义。
三、教学过程由一幅商场促销打折图片,创设问题情境提出问题, 3—5折是什么意思,对你有吸引力吗?打折是不是就亏了呢?引出本节课题——销售中的盈亏问题(二)有时也叫成本价)有时叫成交价、卖出价)标(称原价、定价),按照标价乘以十分之几或百分之几十。
=售价 - 进价。
利润率=利润÷进价×100% (答教师再进行总结,既可以让学生知道销售中的一些常用语,增长知识,又可以为新课的展开作好理论上的准备。
)①安踏运动鞋打八折后是220②进价为90120③某商场将进价为1980元的电视按标价的八折出售仍获利10%(设计目的:的形式分析、讨论、交流完成,充分发挥学生的主体作用,学生会有获得新知的喜悦感。
)问题①讨论原价、售价、打折之间的关系,②探求进价、售价、利润、利润率之间的关系,③探求标价、进价、打折、利润率之间的关系。
同时让学生回顾列方程解实际问题的一般步骤,为后面的学习做铺垫,三个问题层层递进。
近一步突出、强化本节的重点利润率的计算公式以及它的变形公式。
)=进价×(1+利润率)(设计目的:销售问题中的等量关系是本节学习的重点,是解决盈亏问题找相等关系的依据,要明确的提出来,并板书,有利于指导后面的学习。
)(三)探究新知、讲授新课6025%亏损25%。
卖这两件衣服总的是盈利还是亏损,还是不盈不亏?问题1问题2,哪些未知量,如何设未知数,如何列方程?(设计目的:引导学生突破难点,也是列方程解决实际问题一般的分析方法。
人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)这一节主要讲述了一元一次方程在实际销售问题中的应用。
通过本节课的学习,学生能够理解盈亏问题的实质,掌握用一元一次方程解决实际问题的方法,培养学生的数学应用能力。
二. 学情分析七年级的学生已经掌握了二元一次方程的知识,对于一元一次方程也有了一定的了解。
但是,将一元一次方程应用于实际问题的解决中,对于他们来说还是一个新的领域。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题能力。
三. 教学目标1.理解盈亏问题的实质,能够找出关键的等量关系。
2.掌握一元一次方程在解决实际问题中的应用方法。
3.培养学生的数学应用能力和解决实际问题的能力。
四. 教学重难点1.重点:理解盈亏问题的实质,掌握解决盈亏问题的方法。
2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程进行求解。
五. 教学方法1.情境教学法:通过创设生动的实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。
2.案例分析法:通过分析具体的盈亏问题案例,让学生理解并掌握解决盈亏问题的方法。
3.小组合作学习法:引导学生分组讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的盈亏问题案例,用于课堂分析和讨论。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的销售盈亏问题,如商品打折、农产品销售等,引导学生关注盈亏问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现一个具体的盈亏问题案例,如某商品原价为100元,打八折后售价为80元,问商家是否盈利?引导学生分析问题,找出关键的等量关系。
3.操练(10分钟)让学生分组讨论,尝试用一元一次方程来解决这个盈亏问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组不同的盈亏问题,让学生独立解决,巩固所学知识。
人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》这一节主要讲述了如何利用一元一次方程解决销售中的盈亏问题。
通过前面的学习,学生已经掌握了一元一次方程的定义、解法和应用。
本节内容将引导学生将理论知识应用于实际问题中,培养学生的实际问题解决能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于一元一次方程已经有了一定的了解。
但是,学生在解决实际问题时,可能会遇到不知道如何将实际问题转化为方程,或者在列方程时出现错误。
因此,在教学过程中,教师需要引导学生正确地将实际问题转化为方程,并加以解决。
三. 教学目标1.理解销售中的盈亏问题,并能够将其转化为一元一次方程。
2.掌握一元一次方程在解决销售盈亏问题中的应用。
3.培养学生的实际问题解决能力。
四. 教学重难点1.重点:如何将销售中的盈亏问题转化为一元一次方程。
2.难点:在列方程时,如何正确地找到等量关系,并解方程。
五. 教学方法1.讲授法:讲解销售盈亏问题的模型和列方程的方法。
2.案例分析法:分析具体的销售盈亏问题,引导学生自己列方程并解决问题。
3.小组讨论法:分组讨论,分享解题心得,互相学习。
六. 教学准备1.PPT课件:展示销售盈亏问题的案例和列方程的过程。
2.练习题:提供一些销售盈亏问题的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示一个销售盈亏的案例,引导学生思考如何解决这个问题。
例如,某商品的原价为100元,商家进行了8折优惠,求顾客实际支付的价格。
2.呈现(10分钟)讲解销售盈亏问题的模型,如何将其转化为一元一次方程。
以原价、折扣和实际支付价格为例,展示等量关系,并引导学生理解。
3.操练(10分钟)让学生分组讨论,分析具体的销售盈亏问题,并尝试自己列方程解决问题。
教师巡回指导,解答学生的疑问。
3.4实际问题与一元一次方程《销售中的盈亏》课堂教学实录双凤镇初级中学周庆昌一、复习导入1、上节课我们学习了一元一次方程的解,这节课我们继续来探究实际问题与一元一次方程2、随着社会进步和经济的发展,在现实生活中出现了广告,那么这些广告主要是吸引更多的顾客(课件显示清仓处理跳楼价5折大酬宾满200返160 )这些都是商家的一些手段,其中涉及到了我们数学销售中的问题。
那么今天一起学习《实际问题与一元一次方程的销售问题》——板书课题二、探究新知1、我们在探究销售问题之前,先来做一些小学里学过的简单的问题(课件显示)知识探究探究销售中的盈亏问题(想一想)(1)、商品原价200元,九折出售,则售价是元.(2)、商品进价是30元,售价是50元,则利润是元.(3)、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是元.(4)、某商品按定价的八折出售,售价是16元,则原定售价是元.①学生练习,教师巡视指导②汇报交流好,完成了没有,我们一起来看下。
商品原价200元,九折出售,则售价是()元.(个别回答:180元)我们再来看商品进价是30元,售价是50元,则利润是()元. (个别回答:利润=50-30=20元)对了吗?对了。
再看某商品原来每件零售价是a 元, 现在每件降价10%,降价后每件零售价是( )元. (个别回答:0.9a 或90% a 元),最后一题 看某商品按定价的八折出售,售价是16元,则原定售价是 元. (个别回答:20元)对了没有?(对了)刚才我们的同学对小学里这些问题掌握得较好。
2、那么,在上面商品销售中的盈亏问题里出现了下面的量 成本价(进价)、标价、 售价、利润、 盈利、 利润率,这些量之间有什么关系呢?(课件显示 )(1)售价、进价、利润的关系式:利润=(教师边问边板书)(2)进价、利润、利润率的关系:利润率=100% (教师边问边板书)(3)标价、折扣、商品售价关系 : 商品售价=标价×折扣 (教师边问边板书)(4)商品售价、进价、利润率的关系:商品售价=进价 +进价× 利润率 (教师边问边板书)教师边总结边让学生把这些等量关系写一写。
第一篇:3.4实际问题与一元一次方程——销售中的盈亏问题3.4实际问题与一元一次方程(第二课时)——销售中的盈亏问题主备人:复备人:【教学目标】(一)知识与技能借助生活中的实例,了解商品价格的组成及利润与进价、售价之间的关系,通过等量关系来列一元一次方程(二)过程与方法过程:通过实例找等量关系方法:分析各种量之间的关系(三)情感、态度与价值观乐于接触商品信息,愿意谈论数学话题,制造数学模式,找等量关系,提高解决问题的能力。
【教材分析】教学重难点【教学重点】:培养学生建立方程模型来分析、解决销售中盈亏问题的能力。
【教学难点】:分析问题背景,分析数量关系,找出可以作为列方程依据的相等关系,正确的列方程【教学方法】:合作交流、讨论、练习【教具准备】:多媒体。
教学过程一、创设情境,导入新课由一幅商场促销打折图片,创设问题情境提出问题:引出本节课题——销售中的盈亏问题你能根据自己的理解说出它的意思吗?进价:购进商品时的价格(有时也叫成本价)售价:在销售商品时的售出价(有时叫成交价、卖出价)标价:在销售时标出的价(称原价、定价)打折:卖货时,按照标价乘以十分之几或百分之几十。
利润:在销售过程中的纯收入。
利润=售价- 进价利润率:在销售过程中,利润占进价的百分比。
引例:1、商品原价200元,九折出售,卖价是元.2、商品进价是30元,售价是50元,则利润是元.2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是元.3、进价为80元的篮球,卖了120元,利润是,利润率是.4、某商品按定价的八折出售,售价是14.8元,则原定售价是.利润率=×100% = ×100% 售价=进价×(1+利润率)二、探究新知、讲授新课例:某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%。
卖这两件衣服总的是盈利还是亏损,还是不盈不亏? 问题1:①:你能从大体上估算卖这两件衣服的盈亏情况吗?②:如何说明你的估算是正确的呢?③:如何判断盈亏?问题2:这一问题情境中哪些是已知量?哪些未知量?如何设未知数?相等关系是什么?如何列方程? 问题3:盈利25%、亏损25%的意义?引导学生填空:设盈利25%的那件衣服的进价是x元,它的商品利润就是0.25x元,根据售价=进价×(1+利润率)这一相等关系列出方程x(1 + 0.25)= 60,解得x=48 。