直角坐标系下平面图形的面积和旋转体的体积
- 格式:ppt
- 大小:2.49 MB
- 文档页数:39
现将高等数学工(1)期末考试的有关内容统一如下:
考试内容: Ch1-Ch7
不作为考试内容(但上课应讲解)的为:
1、极限的分析定义
2、极限存在准则(夹逼定理、单调有界数列必有极限)
3、n阶导数
4、相关变化率
5、柯西中值定理
6、泰勒公式
7、斜渐近线、画图
8、曲率
9、有理函数的积分(只考分母是二次多项式的简单有理函数的
积分)
10、积分表的使用
11、利用定积分定义求极限
12、定积分的应用(只考直角坐标系下平面图形的面积和旋转体的体积,其它不考),定积分的几何应用中,曲线由参数方程形式给出的不考。
13、可降阶的高阶微分方程(只考第一、第二种类型,第三种不考)
14、常系数非齐次微分方程(只考第一种类型,会设特解的待
定形式即可,不需求解)
15、近似计算不考,带*的内容不考。
另:授课计划的作业占25%~30%,黄皮书比例没有限定,请出卷老师酌情参考。
旋转体体积与平面图形的形心和面积
倪华;田立新;曹子云;虞峥峥;蔡峰
【期刊名称】《高等数学研究》
【年(卷),期】2013(16)4
【摘要】分析平面图形旋转体体积计算公式,建立旋转体体积与平面图形的形心及面积之间的关系,并给出鲁金定理的一个新证明.
【总页数】3页(P50-52)
【作者】倪华;田立新;曹子云;虞峥峥;蔡峰
【作者单位】江苏大学理学院,江苏镇江212013;江苏大学理学院,江苏镇江212013;江苏大学理学院,江苏镇江212013;江苏大学理学院,江苏镇江212013;江苏大学理学院,江苏镇江212013
【正文语种】中文
【中图分类】O17
【相关文献】
1.讨论平面图形的形心与其绕坐标轴旋转的旋转体体积的关系 [J], 杨振;窦龚伟
2.平面图形绕斜轴旋转所成旋转体的体积与侧面积 [J], 吴旭亭
3.利用形心坐标公式计算旋转体的表面积和体积 [J], 吴雄华;裴永珍
4.平面图形的形心在旋转体体积计算中的应用 [J], 徐胜荣; 包西洋
5.利用形心坐标公式计算旋转体的表面积和体积 [J], 吴雄华;裴永珍
因版权原因,仅展示原文概要,查看原文内容请购买。
定积分的几何应用定积分的几何应用内容摘要自十七世纪下半叶牛顿和莱布尼茨确定了微积分的基础以来,微积分已经经历了近四百年的发展,微积分不仅在数学领域,在现代科学各个领域都发挥了巨大的作用,微积分的思想更是达到了哲学的高度。
可以预见,微积分在将来的应用会越来越广泛,越来越深入,但微积分由于其思想的复杂性、系统性,给使用者带来了不便,本文就微积分在数学几何领域的应用做了一些总结和创新,得出了在直角坐标系和极坐标系情况下,平面图形的面积、旋转体体积、光滑曲线的弧长和旋转曲面的面积的求解方法,以方便相关领域的人士在工作和学习中参考使用。
【关键词】定积分几何坐标系面积体积弧长The application of definite integral geometryAbstractSince the second half of the seventeenth Century the Newtonian and Leibniz to determine the basis of calculus, calculus has experienced nearly four hundred years of development, not only in the field of mathematics calculus, in modern scientific fields have played an important role, the calculus idea is to achieve a high degree of philosophy。
Can foreknow, calculus in the future will be more widely used, more and more deeply, but due to the complexity of ideas of calculus, system, users have inconvenience, the calculus in mathematics geometry application some summary and innovation, derived in Cartesian coordinate and polar coordinate conditions, planar graph area, the volume of body of rotation, smooth arc length of a curve and a rotating surface area method, so as to facilitate the related people in the working and learning reference。
第十章定积分的应用教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教学时数:10学时§ 1 平面图形的面积( 2 时)教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积一、组织教学:二、讲授新课:(一)直角坐标系下平面图形的面积:1.简单图形:型和型平面图形 .2.简单图形的面积 : 给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.例1求由曲线围成的平面图形的面积.例2求由抛物线与直线所围平面图形的面积.(二)参数方程下曲边梯形的面积公式:设区间上的曲边梯形的曲边由方程给出 . 又设, 就有↗↗, 于是存在反函数. 由此得曲边的显式方程.,亦即.具体计算时常利用图形的几何特征 .例3求由摆线的一拱与轴所围平面图形的面积.例4 极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式. (简介微元法,并用微元法推导公式 . 半径为, 顶角为的扇形面积为 . )例5求由双纽线所围平面图形的面积 .解或. ( 可见图形夹在过极点, 倾角为的两条直线之间 ) . 以代方程不变,图形关于轴对称 ; 以代, 方程不变,图形关于轴对称 . 参阅P242 图10-6因此.三、小结:§ 2 由平行截面面积求体积( 2 时)教学要求:熟练地应用本章给出的公式,用截面面积计算体积。
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
考研数学高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
平面几何中的旋转体和旋转体的表面积和体积在平面几何中,旋转体是一种常见的二维图形,它可以通过沿着一条固定的轴线旋转而生成。
旋转体的表面积和体积是我们研究旋转体的重要内容之一,在本文中,我们将详细探讨旋转体的表面积和体积以及它们的计算方法。
一、什么是旋转体旋转体是由一个平面图形沿着一条固定的轴线旋转而形成的一种三维图形。
常见的旋转体包括圆柱体、圆锥体和球体等。
例如,我们可以将一个直径为d的圆形绕着它的直径旋转一周,就可以形成一个圆柱体,其高度为d,底面积与初始的圆形相等。
二、旋转体的表面积1. 圆柱体的表面积圆柱体的表面积是由底面积、顶面积和侧面积三部分组成的。
底面积是一个圆形,其面积为πr^2,顶面积与底面积相同;侧面积是一个矩形,其宽度为圆柱体的高度h,长度为底面的周长2πr。
因此,圆柱体的表面积为:2πr^2 + 2πrh = 2πr(r + h)。
2. 圆锥体的表面积圆锥体的表面积是由底面积、侧面积和斜面积三部分组成的。
底面积是一个圆形,其面积为πr^2。
侧面积是一个三角形,由圆锥体的母线和斜面组成,母线的长度为l,斜面的长度为s,圆锥体的高为h。
根据勾股定理,有l^2 = h^2 + r^2,同时s = √(h^2 +r^2),因此侧面积为πrl。
斜面积是由圆锥体顶点到底面的距离所形成的圆,它的面积为πr^2。
因此,圆锥体的表面积为:πr^2 +πrl + πr^2 = πr(r + l)。
3. 球体的表面积球体的表面积是由无数个半径相等的圆圆心旋转而形成的,因此其表面积为4πr^2。
三、旋转体的体积1. 圆柱体的体积圆柱体的体积是底面积与高的乘积。
因此,圆柱体的体积为πr^2h。
2. 圆锥体的体积圆锥体的体积是底面积与高的乘积再除以三。
因此,圆锥体的体积为πr^2h/3。
3. 球体的体积球体的体积是由圆心到球面的距离为半径的圆旋转形成的,因此其体积为4/3πr^3。
四、旋转体的应用旋转体的应用非常广泛,例如,在工业制造中,圆柱体可以用作储存器或压缩机的部件,圆锥体可以用作灯罩或者烟囱的设计,球体则可以用来设计珠子或者风铃。