概率论与数理统计自考题-12
- 格式:doc
- 大小:54.29 KB
- 文档页数:12
全国2007年4月代码:0418 3一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=AB D.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( )A.P (AB )B.P (A )C.P (B )D.13.下列各函数可作为随机变量分布函数的是( )A.⎩⎨⎧≤≤=.,x ,x )x (F 其他01021;B.⎪⎩⎪⎨⎧≥<≤<=.x x ,,x ;x ,)x (F 1101002;C.⎪⎩⎪⎨⎧≥<≤--<-=.x x ,x ;x ,)x (F 1111113; D.⎪⎩⎪⎨⎧≥<≤<=.x x ,x ;x ,)x (F 11022004;4.设随机变量X 的概率密度为则P {-1<X <1}=( ) A.41 B.21 C.43 D.1 5., 则P {X +Y =0}=( ) A.0.2 B.0.3 C.0.5 D.0.7 6.设二维随机变量(X ,Y )的概率密度为则常数c=( )A.41B.21 C.2 D.4 7.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( )A.E (X )=0.5,D (X )=0.5B.E (X )=0.5,D (X )=0.25C.E (X )=2,D (X )=4D.E (X )=2,D (X )=28.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则D (Z )=( )A.1B.3C.5D.69.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =( )B.0.04C.0.4D.410.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( )A.n /s x 0μ- B.)(0μ-x n C.10-μ-n /s x D.)(10μ--x n二、填空题(本大题共15小题,每空2分,共30分)11.设事件A ,B 相互独立,且P (A )=0.2,P (B )=0.4,则P (A ∪B )=___________。
概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。
2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。
A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。
故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。
A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。
6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。
选择A。
7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。
计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。
8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)xx年4月份全国自考概率论与数理统计真题参考答案一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D 答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0 P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2. 设A,B为两个随机事件,且P>0,则P= A. P B. PC. PD. 1 答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3. 下列各函数可作为随机变量分布函数的是 A. A B. BC. CD. D 答案:B解析:分布函数须满足如下性质:F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选第 1 页项A、C、D中F(x)都不是随机变量的分布函数,排除法知B正确,事实上B满足随机变量分布函数的所有性质.第 2 页4. 设随机变量X的概率密度为A. AB. BC. CD. D答案:A5. 设二维随机变量的分布律为(如下图)则P{X+Y=0}=第 3 页A. B. C. D.答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=+=6. 设二维随机变量的概率密度为A. AB. BC. CD. D 答案:A7. 设随机变量X服从参数为2的泊松分布,则下列结论中正确的是 A. E=,D= B. E=,D= C. E=2,D=4 D. E=2,D=2 答案:D解析:X~P(2),故E=2,D=2.8. 设随机变量X与Y相互独立,且X~N,Y~N,令Z=X-Y,则D= A. 1 B. 3 C. 5 D. 6第 4 页答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.第 5 页9.A. B. C. D. 4二、填空题请在每小题的空格中填上正确答案。
1【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).2.【答案】C【解析】根据分布函数的性质,选择C。
【提示】分布函数的性质:① 0≤F(x)≤1;② 对任意x1,x2(x1<x2),都有P{x1<X≤x2}=F(x2)-F(x1);③ F(x)是单调非减函数;④ ,;⑤ F(x)右连续;⑥ 设x为f(x)的连续点,则F‘(x)存在,且F’(x)=f(x).3【答案】D【解析】由课本p68,定义3-6:设D为平面上的有界区域,其面积为S且S>0. 如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。
若(X,Y)服从二维正态分布,表示为(X,Y)~.4.【答案】A【解析】因为随机变量X服从参数为2的指数分布,即λ=2,所以;又根据数学期望的性质有 E(2X-1)=2E(X)-1=1-1=0,故选择A.【提示】1.常用的六种分布(1)常用离散型随机变量的分布:A. 两点分布① 分布列② 数学期望:E(X)=P③ 方差:D(X)=pq。
第 1 页全国2010年4月概率论与数理统计(经)自考试题12课程代码:02197一、填空题(每空2分,共36分)1.进行5重贝努利试验,事件A 在每次试验中发生的概率P(A)=0.1,则在5次试验中A 恰发生2次的概率为____________,A 至少发生1次的概率为____________2.袋中装有3只白球、5只红球、2只黑球,在袋中任取4只球,则其中恰有2只白球,1只红球、1只黑球的概率为____________3.设A 、B 是两个互不相容的事件,已知P(A)=0.3,P(A ∪B)=0.7,则P(B)=____________。
设A 、B 是两个相互独立的事件,已知P(A)=0.1,P(B)=0.6,则P(A ∪B)=____________。
设P(A )=0.3,P(B|A)=0.2,则P(AB)=____________4.设随机变量X 服从参数λ=3的泊松分布,则P{X ≥2}=____________________, P{X>0|X<2}=____________5.设随机变量X 具有分布函数F(x)=⎪⎩⎪⎨⎧<≥+0,00,1x x x x 则P{X>4}=______________, P{1<X ≤2}=____________,概率密度f(x)=____________6.设(X,Y)的联合分布列为Y 2的概率分布列为____________,E(4X)=____________,D(Y)=____________ 7.设总体X ~N(μ,4),X 1,X 2,X 3,X 4,X 5是来自X 的样本,样本均值为x =∑=5151i iX,则X ~____________分布,COV(X 1,X 2)=____________8.设(X ,Y)在圆域x 2+y 2≤a 2服从均匀分布,则它的概率密度为____________ 9.已知F 0.1(7,20)=2.04,则F 0.9(20,7)=____________二、计算题及应用题(共64分)1.在一个肿瘤治疗中心,有大量可能患肺癌的可疑病人,这些病人中吸烟的占45%。
2012年10月全国自考概率论与数理统计(经管类)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题 5. 应用题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知事件A,B,A∪B的概率分别为0.5,0.4,0.6,则P(AB)=( ) A.0.1B.0.2C.0.3D.0.5正确答案:B2.设F(x)为随机变量X的分布函数,则有( )A.F(一∞)=0,F(+∞)=0B.F(一∞)=1,F(+∞)=0C.F(-∞)=0,F(+∞)=1D.F(-∞)=1,F(+∞)=1正确答案:C解析:本题是分布函数的基本性质,应牢记.答案为C3.设二维随机变量(X,Y)服从区域D:x2+y2≤1上的均匀分布,则(X,Y)的概率密度为( )A.B.C.D.正确答案:D解析:本题是典型的利用区域面积来求其概率密度的题,在历年考题中出现多次,F(x,y)=答案为D4.设随机变量X服从参数为2的指数分布,则E(2X-1)=( )A.0B.1C.3D.4正确答案:A解析:指数分布的期望E(X)=,再根据期望的性质易知E(2X一1)=2E(X)一1=2×一1=0.答案为A5.设二维随机变量(X,Y)的分布律则D(3X)=( )A.B.2C.4D.6正确答案:B解析:本题可先求出随机变量X的边缘分布,,故EX=,再根据方差性质可知D(3X)=9D(X)=2.答案为B.6.设X1,X2,…,Xn…为相互独立同分布的随机变量序列,且E(X1)=0,D(X1)=1,则=( )A.0B.0.25C.0.5D.1正确答案:C解析:本题可由中心极限定理得答案为C7.设x1,x2,…,xn为来自总体N(μ,σ2)的样本,μ,σ2是未知参数,则下列样本函数为统计量的是( )A.B.C.D.正确答案:D解析:统计量中要求不含任何未知参数,故含μ,σ两参数的选项均被排除.答案为D.8.对总体参数进行区间估计,则下列结论正确的是( )A.置信度越大,置信区间越长B.置信度越大,置信区间越短C.置信度越小,置信区间越长D.置信度大小与置信区间长度无关正确答案:A解析:当置信度1-α增大,又样本容置n固定时,置信区间长度增大,区间估计精度减低。
全国2011年4月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B ,C 为随机事件,则事件“A ,B ,C 都不发生”可表示为( ) A .B.BC C .ABC D.2.设随机事件A 与B 相互独立,且P(A)=,P(B)=,则P(A B)=( )A . B.C . D.3.设随机变量X ~B(3,0.4),则P{X≥1}=( ) A.0.352 B.0.432 C.0.784 D.0.9364.已知随机变量X 的分布律为 ,则P{-2<X≤4 }=( )A.0.2B.0.35C.0.55D.0.8 5.设随机变量X 的概率密度为f(x)=,则E(X),D(X)分别为 ( )A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=( )X -1 2 5 P 0.2 0.35 0.45A. B.C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY=( )A. B.C. D.9.设随机变量X~2(2),Y~2(3),且X与Y相互独立,则( )A.2(5)B.t(5)C.F(2,3)D.F(3,2)10.在假设检验中,H0为原假设,则显著性水平的意义是( )A.P{拒绝H0| H0为真}B. P {接受H0| H0为真}C.P {接受H0| H0不真}D. P {拒绝H0| H0不真}二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
Ⅱ、综合测试题概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).A.P (A -B )=P (A )-P (B )B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 12 5.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12 B. 13 C. 15D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ:是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。
引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。
从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。
(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。
由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。
虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。
必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。
例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。
不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。
例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。
(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。
例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。
全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。
(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。
例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。
∴A={1,2},B={1,2,3}。
所以A发生则必然导致B 发生。
显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题5.习题6.习题7习题8习题9习题10习题11习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22习题23习题24习题25习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 351203612021120112 0习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28, 即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.Y -101P 21513815习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答: fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y 在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2,P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx =(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即 K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002, P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\123Y1 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732. (4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为故(1)在Y=1条件下,X的条件分布律为。
概率论与数理统计自考题-12(总分:100.00,做题时间:90分钟)一、单项选择题(总题数:39,分数:85.00)1.对掷一颗骰子的试验,在试验中将“出现偶数点”称为______(分数:2.00)A.样本空间B.必然事件C.不可能事件D.随机事件√解析:[解析] “出现偶数点”可能发生,也可能不发生,这种事件叫随机事件,所以选D.样本空间是全部事件,必然事件是必然发生的事件,应该是出现点数为:1,2,3,4,5,6.不可能事件是不可能出现的事件,如出现点数7.所以A、B、C皆错.答案为D.2.在某年级的学生中任选一名学生,事件A表示“被选学生是男生”,B表示“被选学生是丙班的学生”,C表示“被选学生是运动员”,下面结论中错误的是______A.表示“被选学生是丙班的男生,不是运动员”B.该年级运动员都是丙班男生时,ABC=C成立C.该年级运动员全是丙班男生时,成立D.该年级丙班全是女生时,成立(分数:2.00)A.B.C.D. √解析:[解析D.3.设A与B是任意两个互不相容事件,则下列结论中正确的是______(分数:2.00)A.P(A)=1-P(B)B.P(A-B)=P(B)C.P(AB)=P(A)P(B)D.P(A-B)=P(A) √解析:[解析] 掌握互不相容事件的定义及性质,A、B事件互不包容,可得P(AB)=0,P(A-B)=P(A),P(B-A)=P(B)等性质.答案为D.4.设事件A、B同时发生必然导致事件C发生,则______(分数:2.00)A.P(C)≥P(AB) √B.P(C)=P(AB)C.P(C)=P(A+B)D.P(C)≤P(AB)解析:[解析由图可知A正确.答案为A.5.已知A,B互为逆事件,则下列结论中不正确的是______(分数:2.00)A.P(AB)=P(A)P(B) √B.P(A)=1-P(B)C.P(A+B)=P(A)+P(B)D.P(AB)=0且P(A+B)=1解析:[解析由图可知A正确.答案为A.6.设A、B是任意两个随机事件,则一定有______A.B.C.D.(分数:2.00)A.B. √C.D.解析:[解析] .选项D B.7.设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是______A.B.P(B|A)=0C.P(AB)=0D.P(A∪B)=1(分数:2.00)A. √B.C.D.解析:[解析] ∵A与B互为对立事件,∴;∴,故选项A B正确;根据对立事件与条件概率的定义,可知选项C、D正确.答案为A.8.设A为随机事件,则下列命题中错误的是______A.A与互为对立事件B.A与互不相容C.D.(分数:2.00)A.B.C. √D.解析:[解析C错误.答案为C.9.A、B______(分数:2.00)A.必然事件B.不可能事件C.A与B恰有一个发生√D.A与B不同时发生解析:[解析] A、B为随机事件,A∪B表示A发生或B发生,表示A,B示A与B恰有一个发生.答案为C.10.从一副52张的扑克牌中,任意抽出5张,其中没有K字牌的概率为______A.B.C.D.(分数:2.00)A.B. √C.D.解析:[解析] 52张牌从中任选5张的选法有种,没有K的牌共48张,从中选5张的选法有,.答案为B.11.掷两颗骰子,它们出现的点数之和等于7的概率为______A.B.C.D.(分数:2.00)A. √B.C.D.解析:[解析] A.12.同时抛3枚均匀硬币,则至多有1枚硬币正面向上的概率为______A.B.C.D.(分数:2.00)A.B.C.D. √解析:[解析] 只有1枚硬币正面向上的概率是,3枚硬币都朝下的概率是,则至多有1枚硬.答案为D.13.将10个球依次编号1至10放入袋中,从中任取两个,两球号码之和记作X,则P(X≤18)=______ A.B.C.D.(分数:2.00)A.B.C. √D.解析:[解析] 分析:两球号码之和大于18的只有9和10C.14.设有10个产品,其中3个次品,7个正品,现从中任取4个产品,则取到的4个产品都是正品的概率为______A.B.C.D.(分数:2.00)A.B.C. √D.解析:[解析] 由题意知:,根据公式C.15.设A,B为两个互不相容事件,则下列各式错误的是______(分数:2.00)A.P(AB)=0B.P(A∪B)=P(A)+P(B)C.P(AB)=P(A)P(B) √D.P(B-A)=P(B)解析:[解析] 本题考查概率的一些性质.∵A、B为两个互不相容事件,∴ ,∴ ,即A正确.P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B),即B正确.P(AB)≠P(A)P(B),即C错误.P(B-A)=P(B)-P(AB)=P(B),即D正确.答案为C.16.甲、乙、丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为______(分数:2.00)A.0 √B.0C.0D.0解析:[解析]P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=0.5+0.6+0.7-0.3-0.35-0.42+0.21=0.94.答案为A.17.A,B满足P(A)=0.5,P(B)=0.6,P(B|A)=0.8,则P(A∪B)=______(分数:2.00)A.0 √B.0C.0D.0解析:[解析] P(A∪B)=P(A)+P(B)-P(AB)=0.5+0.6-P(A)·P(B|A)=0.5+0.6-0.5×0.8=0.7.答案为A.18.A与B相互独立,P(A)>0,P(B)>0,则一定有P(A∪B)=______A.P(A)+P(B)B.P(A)P(B)C.D.(分数:2.00)A.B.C. √D.解析:[解析] P(A∪B)表示A和B至少有一个发生的概率,它等于1减去A和B均不发生的概率,又因为A和B.答案为C.19.设A、B是任意事件,则P(A-B)=______A.P(A)-P(B)B.P(A)-P(B)+P(AB)C.D.P(A)-P(AB)(分数:2.00)A.B.C.D. √解析:[解析D.20.事件A与B互斥,P(A)=0.4,P(B)=0.3(分数:2.00)A.0 √B.0C.0D.0解析:[解析A.21.A,B P(B)>0,则P(A|B)与P(A)比较应满足______(分数:2.00)A.P(A|B)≤P(A)B.P(A|B)=P(A)C.P(A|B)≥P(A)√D.无确定的大小关系解析:[解析] C.22.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=______(分数:2.00)A.P(AB)B.P(A)C.P(B)D.1 √解析:[解析D.23.已知P(A)=0.4,P(B)=0.5P(A|B)=______(分数:2.00)A.0B.0C.0 √D.1解析:[解析] 由题意知:P(AB)=P(A)=0.4C.24.事件A,B满足P(A)+P(B)>1,则A与B一定______(分数:2.00)A.不相互独立B.相互独立C.互不相容D.不互斥√解析:[解析] 此题用排除法,由相互独立,互不相容的定义知都与题干不合.答案为D.25.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为______(分数:2.00)A.0B.0C.0D.0 √解析:[解析] 由题知:P(A)=95% P(B/A)=60%P(B)=P(A)·P(B/A)=95%×60%=0.57.答案为D.26.设A,B P(B)>0,则P(A|B)=______(分数:2.50)A.1 √B.P(A)C.P(B)D.P(AB)解析:[解析] ∵,有P(AB)=P(B)A.27.设A、B是两个随机事件,且0<P(A)<1,P(B)>0,,则必有______A.B.C.P(AB)=P(A)·P(B)D.P(AB)≠P(A)·P(B)(分数:2.50)A.B.C. √D.解析:[解析] 由有,即P(A)P(B)-P(A)P(AB)=P(AB)-P(A)·P(AB),故P(AB)=P(A)·P(B).答案为C.28.8件产品中有3件次品,从中不放回抽取产品,每次1件,则第2次抽到次品的概率为______A.B.C.D.(分数:2.50)A.B.C. √D.解析:[解析] ∵设A表示第一次抽到次品.B表示第二次抽到次品.则.答案为C.29.若A,B P(A)>0,P(B)>0,则______(分数:2.50)A.P(A∪B)=P(A)+P(B)B.P(AB)=P(A)·P(B)C.P(B|A)=1 √D.P(A-B)=P(A)-P(B)解析:[解析] P(A∪B)=P(A)+P(B)-P(AB)=P(B)(选项A不对);(选项B不对);(选项D不对);.答案为C.30.某种动物活20年的概率为0.8,活25年的概率为0.6,现在一只该种动物已经活了20年,它能活到25年的概率是______(分数:2.50)A.0B.0C.0D.0 √解析:[解析] 由题意知:P(A)=0.8,P(B)=0.6D.31.设事件A,B相互独立,且,P(B)>0,则P(A|B)=______A.B.C.D.(分数:2.50)A.B.C.D. √解析:[解析] 事件A、B相互独立,则P(AB)=P(A)P(B),又因为P(B)>0D.32.若P(A)=P(B)=P(C)=0.4,且A,B,C相互独立,则P(A∪B∪C)=______(分数:2.50)A.0B.0C.0D.0 √解析:[解析]P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=P(A)+P(B)+P(C)-P(A)·P(B)-P(A)·P(C)-P(B)·P(C)+P(A)·P(B)·P(C)=0.784.答案为D.33.设A,B,C是三个相互独立的随机事件,且0<P(C)<1,,则在下列给定的四对事件中不相互独立的是______A.B.C.D.(分数:2.50)A.B. √C.D.解析:[解析] 利用排除法,由多个事件相互独立的性质可知A、C、D项中的三对事件都是独立的,故选B.另外,利用独立的定义也可得到答案:由于,而.由0<P(C)<1,,有,于是,故与不相互独立.答案为B.34.设随机事件A与B相互独立,且,则P(A∪B)=______A.B.C.D.(分数:2.50)A.B. √C.D.解析:[解析B.35.有50个产品,其中46个正品,4个次品,现从中抽取5次,每次任取1个(取后放回)产品,则取到的5个产品都是正品的概率为______A.B.C.D.(分数:2.50)A.B.C.D. √解析:[解析] 方法一:因为有放回抽取,1次1件,所以可用重复排列方法计算.每次抽取皆正品,每次有46种选法,5次共465种选法.全部选法共50 5.根据古典概型.方法二:有放回抽取,每次互相独立,用独立事件概率乘法公式.答案为D.36.设A、B为相互独立事件,已知,则P(B)=______A.B.C.D.(分数:2.50)A.B.C. √D.解析:[解析] 分析:A、B相互独立,则P(AB)=P(A)P(B),即P(A+B)=P(A)+P(B)-P(A)P(B),可得,.答案为C.37.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为______(分数:2.50)A..p2B.(1-p)2C.1-2pD.p(1-p) √解析:[解析] 根据n重贝努利试验公式.p k (1-p) n-k得可知选D.答案为D.38.设n次重复独立试验(n重贝努利试验)中,每次试验A发生的概率为p,则n次重复独立试验中A至少发生一次的概率为______A.B.p(1-p) n-1C.D.1-(1-p) n(分数:2.50)A.B.C.D. √解析:[解析D.39.设电灯泡使用寿命在2000小时以上的概率为0.15,如果要求12个灯泡在使用2000小时以后只有一个不坏的概率,则只需用______即可算出.(分数:2.50)A.全概率公式B.古典概型计算公式C.贝叶斯公式D.贝努利概型计算公式√解析:[解析] 由题意知:本题考查,贝努利试验中,事件不发生的概率.答案为D.二、填空题(总题数:6,分数:15.00)40.设A,B为两个随机事件,若A发生必然导致B发生,且P(A)=0.6,则P(AB)= 1.(分数:2.50)解析:0.6[解析] ∵P(AB)=P(A)+P(B)-P(A∪B),则A∪B=B.即P(AB)=P(A)+P(B)-P(B)=P(A)=0.6.41.设事件A与B互不相容,P(A)=0.2,P(B)=0.3,则(分数:2.50)解析:0.5[解析42.从编号1到10的十张卡片中任取一张,若以A表示卡片编号为奇数,B表示卡片编号小于5,则表示 1.(分数:2.50)解析:{6,8,10}或编号为6,8,10 [解析] A={1,3,5,7,9}B={1,2,3,或填“编号为6,8或10”.43.A,B为两事件,若,则(分数:2.50)解析:Ω[解析] ,故AB=Φ(否则AB≠Φ,则至少有一个样本点a∈A且a∈B,此与即任一关系a∈B必有,也即矛盾).44.在n次独立重复试验中,设P(A)=p,q=1-p,0<p<1,则事件A发生k次的概率为 1.(分数:2.50)解析:[解析] 事件A满足二项分布B(n,p),故事件A发生k45.有甲、乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为 1.(分数:2.50)解析:[解析] 甲、乙二人扔硬币为相互独立事件,硬币出现正、反面的概率都是,则两人所.。