12-13概率论与数理统计
- 格式:doc
- 大小:210.00 KB
- 文档页数:4
概率论与数理统计答案(汇总版)篇一:概率论与数理统计教程答案(徐建豪版)习题1、写出下列随机试验的样本空间.(1)生产产品直到有4件正品为正,记录生产产品的总件数.(2)在单位园中任取一点记录其坐标.(3)同时掷三颗骰子,记录出现的点数之和.解:(1)??{4,5,6,7,8?}(2)??{()x2?y2?1}(3)??{3,4,5,6,7,8,9,10,?,18}2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.解:B?A?{(),(),(),(),(),()}BC?{(),(),(),()}B?C?{(),(),(),(),(),(),(),(),(),()}3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2解:(1)第1,2次都没有中靶(2)第三次中靶且第1,2中至少有一次中靶(3)第二次中靶4.设某人向一把子射击三次,用Ai表示“第i次射击击中靶子”(i=1,2,3),使用符号及其运算的形式表示以下事件:(1)“至少有一次击中靶子”可表示为;(2)“恰有一次击中靶子”可表示为;(3)“至少有两次击中靶子”可表示为;(4)“三次全部击中靶子”可表示为;(5)“三次均未击中靶子”可表示为;(6)“只在最后一次击中靶子”可表示为 . 解:(1)A1?A2?A3;(2) A123?1A23?12A3;(3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) 123(6) 12A35.证明下列各题(1)A?B?A (2)A?B?(A?B)?(AB)?(B?A)证明:(1)右边=A(??B)?A?AB=A且??B??A?B=左边(2)右边=(AB)?(AB)?(BA)=A或??B??A?B习题1.设A、B、C三事件,P(A)?P(B)?P(C)?14P(AC)?P(BC)?18,P(AB)?0,求A、B、C至少有一个发生的概率.解:?P(AB)?0?P(ABC)?0P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?11 4?2?8?122.已知p()? ,P(B)? , P(B)?,求(1)P(AB)(2)P(A?B),(3)P(A?B), (4)P(AB).解:(1)?A?B,?AB?A?P(AB)?P(A)?(2)?A?B,?A?B?B?P(A?B)?P(B)?3.设P(A)=(A?B)= 互斥,求P(B).解:?A,B互斥,P(A?B)?P(A)?P(B), ,故P(B)?P(A?B)?P(A)4.设A、B是两事件且P(A)=,P(B)?(1)在什么条件下P(AB)取到最大值,最大值是多少?(2)在什么条件下P(AB)取到最小值,最小值是多少?解:由加法公式P(AB)?P(A)?P(B)?P(A?B)=?P(A?B)(1)由于当A?B时A?B?B,P(A?B)达到最小,即P(A?B)?P(B)?,则此时P(AB)取到最大值,最大值为(2)当P(A?B)达到最大,即P(A?B)?P(?)?1,则此时P(AB)取到最小值,最小值为5.设P(A)?P(B)?P(C)?1115,P(AB)?P(BC)?P(AC)?,P(??)?, 4816求P(A?B?C). 解:P(ABC)?1?P(ABC)?1?P(??)?1?151?, 1616P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?1117?3 481616习题1.从一副扑克牌(52张)中任取3张(不重复)求取出的3张牌中至少有2张花色相同的概率.解:设事件A={3张中至少有2张花色相同} 则A={3张中花色各不相同}3111C4C13C13C13P(A)?1?P(A)?1?? 3C52只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率.3解法一随机试验是从50只铆钉随机地取3个,共有C50种取法,而发生“某3C31一个部件强度太弱”这一事件只有C这一种取法,其概率为3?,而10C501960033个部件发生“强度太弱”这一事件是等可能的,故所求的概率为p??pi?i?110101 ?1960019603解法二样本空间的样本点的总数为C50,而发生“一个部件强度太弱”这13一事件必须将3只强度太弱的铆钉同时取来,并都装在一个部件上,共有C10C3种情况,故发生“一个部件强度太弱”的概率为13C10C31 p??31960C503.从1至9的9个整数中有放回地随机取3次,每次取一个数,求取出的3个数之积能被10整除的概率.解法一设A表示“取出的3个数之积能被10整除”,, A1表示“取出的3个数中含有数字5”, A2表示“取出的3个数中含有数字偶数”P(A)?P(A1A2)?1?P(A1A2)?1?P(A1?A2)?1?P(A1)?P(A2)?P(A1A2)?8??5??4??11???9??9??9?解法二设Ak为“第k次取得数字,Bk为“第k次取得偶数”,5”k?1,2,3。
《概率论》课程标准一.课程名称:概率论二.课时安排:本课程总学时计48,其中讲课48学时,具体学时分配如下表:《概率论》讲课学时分配表1三.预修课程:高等数学四.课程性质、课程目标与教学要求:《概率论》是经济类和管理类本科各专业的一门重要基础理论课,属必修课程。
《概率论》是研究随机现象客观规律性的数学学科。
通过本课程的教学,应使学生掌握概率论与数理统计的基本概念、基本理论和基本方法,从而使学生初步掌握处理随机现象的基本统计思想,培养学生分析和解决社会、经济和管理等方面实际问题的能力。
《概率论》是经济类和管理类本科各专业学习后续相关专业课程的数学基础。
五.课程教学内容纲要:第一章随机事件及其概率(12学时)1. 内容要点随机事件概念,事件间的关系及其运算,概率的统计定义,古典概型,概率的基本性质,加法公式,条件概率与乘法公式、全概率公式,贝叶斯公式,事件的独立性,伯努利概型。
2.目的要求(1)理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系与运算。
(2)理解事件频率的概念,了解概率的统计定义。
(3)理解概率的古典定义,会计算简单的古典概率。
(4)了解概率的公理化定义。
(5)掌握概率的基本性质及概率加法定理。
(6)理解条件概率的概念,掌握概率的乘法定理,了解全概率公式和贝叶斯公式。
(7)理解事件的独立性概念,掌握伯努利概型和二项概率公式。
第二章随机变量及其分布(12学时)1.内容要点随机变量概念,随机变量的分布函数,离散型随机变量及其概率函数(0-1分布,二项分布,泊松分布,几何分布,超几何分布),连续型随机变量及其密度函数(均匀分布,指数分布,正态分布),随机变量的函数的分布。
2.目的要求(1)理解随机变量的概念,离散型随机变量及其概率函数的概念和性质,连续型随机变量及其概率密度的概念和性质。
(2)理解分布函数的概念和性质,会利用概率分布计算有关事件的概率。
(3) 掌握二项分布,泊松分布、正态分布,了解均匀分布与指数分布。
概率论与数理统计第三版课后习题答案概率论与数理统计是一门应用广泛的数学学科,它研究了随机事件的发生规律和数据的统计分析方法。
而《概率论与数理统计》第三版是一本经典的教材,它系统地介绍了概率论和数理统计的基本理论和方法。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
下面将为大家提供一些《概率论与数理统计》第三版课后习题的答案,希望能对大家的学习有所帮助。
第一章概率论的基本概念1. 掷一颗骰子,问出现奇数的概率是多少?答:骰子一共有6个面,其中3个面是奇数(1、3、5),所以出现奇数的概率是3/6=1/2。
2. 从一副扑克牌中随机抽取一张牌,问抽到红心的概率是多少?答:一副扑克牌有52张牌,其中有13张红心牌,所以抽到红心的概率是13/52=1/4。
第二章随机变量及其分布1. 设随机变量X的概率密度函数为f(x)=kx,其中0<x<1,求k的值。
答:由概率密度函数的性质可知,对于0<x<1,有∫f(x)dx=∫kxdx=1,解得k=2。
2. 设随机变量X的概率密度函数为f(x)=ce^(-x),其中x>0,求c的值。
答:由概率密度函数的性质可知,对于x>0,有∫f(x)dx=∫ce^(-x)dx=1,解得c=1。
第三章多维随机变量及其分布1. 设随机变量(X,Y)服从二维正态分布,其概率密度函数为f(x,y)=1/(2πσ1σ2√(1-ρ^2))e^(-(1/(2(1-ρ^2)))(x^2/σ1^2-2ρxy/(σ1σ2)+y^2/σ2^2)),其中-∞<x,y<∞,求常数σ1、σ2和相关系数ρ之间的关系。
答:由二维正态分布的性质可知,对于-∞<x,y<∞,有∫∫f(x,y)dxdy=1,解得σ1σ2√(1-ρ^2)=1。
2. 设随机变量(X,Y)服从二维均匀分布,其概率密度函数为f(x,y)=1/(b-a)(d-c),其中a<x<b,c<y<d,求常数a、b、c、d之间的关系。
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
《概率论与数理统计》试题库陇南师范⾼等专科学校数信学院《概率论与数理统计》试题库⼆〇⼀四年⼋⽉⼗⼆⽇整理题库⽬录《概率论与数理统计》题库(⼀) (3)《概率论与数理统计》题库(⼆) (5)《概率论与数理统计》题库(三) (6)《概率论与数理统计》题库(四) (8)《概率论与数理统计》题库(五) (10)《概率论与数理统计》题库(六) (11)《概率论与数理统计》题库(七) (13)《概率论与数理统计》题库(⼋) (15)《概率论与数理统计》题库(九) (17)《概率论与数理统计》题库(⼗) (19)《概率论与数理统计》题库(⼗⼀) (21)《概率论与数理统计》题库(⼗⼆) (23)《概率论与数理统计》题库(⼗三) (25)《概率论与数理统计》题库(⼗四) (27)概率论与数理统计模拟试题1 (29)概率论与数理统计模拟试题2 (31)《概率论与数理统计》题库(⼀)⼀、填空题(10×3=30分)1、随机变量相互独⽴,且~P(2.3),~P(2.7),,则,。
2、随机变量ξ~N(0,4),则ξ的密度函数f(x)=,D(2ξ+1)= 。
3、随机变量~N(0,4;2,9;0),则,。
4、随机变量ξ~b(10,0.5),则E(ξ)= ,D(ξ)= 。
5、随机变量ξ的密度函数是,则C= ,。
⼆、设事件,P(A)=0.5,P(B)=0.3,P(AB)=0.2,试计算的值。
三、已知离散型随机变量的分布列为:求的分布列。
四、设随机变量相互独⽴,且~U[0,2],~,求的联合密度函数五、掷20个骰⼦,求这20个骰⼦出现的点数之和的数学期望。
六、设相互独⽴,且,,试求:的数学期望和⽅差。
七、两名⼤学⽣约定在时间12时和13时之间于预定地点见⾯,先到者等⼀刻钟后离去,假定每个⼤学⽣可以在12时到13时之间的任意时刻到达,求他们相遇的概率。
⼋、设与的分布列为试问:为何值时,与相互独⽴?《概率论与数理统计》题库(⼆)⼀、填空题1、随机变量相互独⽴,且~P(0.27),~P(1.73),,则,。
概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.现习题91.2 随机事件的概率1.3 古典概型现习题3现习题5现习题6现习题8现习题9现习题101.4 条件概率习题3 空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题7习题9习题11现习题12习题14习题15习题17习题18习题19习题20习题21习题22现习题23现习题24第二章 随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.习题4 (空)求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布; (2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10 纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布 习题1习题2习题3习题4习题5习题6总习题二 1、2、4、6、7、9、11、12、14、16、17、19、20、第三章 多维随机变量及其分布 3.1 二维随机变量及其分布1、2、⑴⑵⑶3、⑴⑵⑶5、6、8、9、3.2 条件分布与随机变量的独立性 1、2、3、5、7、3.3 二维随机变量函数的分布 1、7、4、复习总结与总习题解答 1、。
第4章习题答案三、解答题1. 设随机变量X求)(X E ,)(2X E ,)53(+X E .解:E (X ) =∑∞=1i ixp= ()2-4.0⨯+03.0⨯+23.0⨯= -0.2E (X 2) =∑∞=12i i p x= 44.0⨯+ 03.0⨯+ 43.0⨯= 2.8E (3 X +5) =3 E (X ) +5 =3()2.0-⨯+5 = 4.42. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为6,,2,1,6/1}{ ===i i X P记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=283. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙图书的行为相互独立,读者之间的行为也是相互独立的. (1) 某天恰有n 个读者,求借阅甲种图书的人数的数学期望.(2) 某天恰有n 个读者,求甲乙两种图书至少借阅一种的人数的数学期望. 解:(1) 设借阅甲种图书的人数为X ,则X~B (n , p 1),所以E (X )= n p 1 (2) 设甲乙两种图书至少借阅一种的人数为Y , 则Y ~B (n , p ),记A ={借甲种图书}, B ={借乙种图书},则p ={A ∪ B }= p 1+ p 2 - p 1 p 2 所以E (Y )= n (p 1+ p 2 - p 1 p 2 )4. 将n 个考生的的录取通知书分别装入n 个信封,在每个信封上任意写上一个考生的姓名、地址发出,用X 表示n 个考生中收到自己通知书的人数,求E (X ).解:依题意,X~B (n ,1/n ),所以E (X ) =1.5. 设)(~λP X ,且}6{}5{===X P X P ,求E (X ).解:由题意知X ~P (λ),则X 的分布律P{}k X ==λλ-e k k!,k = 1,2,...又P {}5=X =P {}6=X , 所以λλλλ--=e e!6!565解得 6=λ,所以E (X ) = 6.6. 设随机变量X 的分布律为,,4,3,2,1,6}{22 --===k kk X P π问X 的数学期望是否存在?解:因为级数∑∑∑∞=+∞=+∞=+-=-=⨯-11212112211)1(6)6)1(()6)1((k k k k k k kk k k πππ, 而 ∑∞=11k k 发散,所以X 的数学期望不存在.7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为⎪⎩⎪⎨⎧>=-.0,0,91)(3/其它x xe x f x 求一天的平均耗电量.解:E (X ) =⎰⎰⎰∞-∞-∞∞-==03/203/9191)(dx e x dx xe xdx x f x x x =6.8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为⎪⎩⎪⎨⎧>-=.0,5,251)(2其它x x x F求这种家电的平均寿命E (X ).解:由题意知,随机变量X 的概率密度为)()(x F x f '=当x >5时,=)(x f 3350252xx =⨯--,当x ≤5时,=)(x f 0. E (X ) =10|5050)(5-53=-==∞++∞∞+∞⎰⎰xdx x x dx x xf 所以这种家电的平均寿命E (X )=10年.9. 在制作某种食品时,面粉所占的比例X 的概率密度为⎩⎨⎧<<-=.0,10,)1(42)(5其它x x x x f 求X 的数学期望E (X ).解:E (X ) =dx x x dx x xf ⎰⎰+∞∞-=-152)1(42)(=1/410. 设随机变量X 的概率密度如下,求E (X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤≤-+=.010,)1(2301)1(23)(22其它,,,,x x x x x f解:0)1(1023)1(0123)()(22=-++-=+∞∞-=⎰⎰⎰dx x x dx x x dx x xf X E .111. 设),4(~p B X ,求数学期望)2(sinX E π. 解:X 的分布律为k n kk n p p C k X P --==)1(}{, k = 0,1,2,3,4,X 取值为0,1,2,3,4时,2sinX π相应的取值为0,1,0,-1,0,所以)21)(1(4)1(1)1(1)2(sin13343114p p p p p C p p C XE --=-⨯--⨯=π12. 设风速V 在(0,a )上服从均匀分布,飞机机翼受到的正压力W 是V 的函数:2kV W =,(k > 0,常数),求W 的数学期望.解:V 的分布律为⎪⎩⎪⎨⎧<<=其它 ,00 ,1)(a v a v f ,所以 ===+∞∞-=⎰⎰aa v a k dv a kv dx v f kv W E 03022|)31(1)()(231ka13. 设随机变量(X ,求E (X ),E (Y ),E (X – Y ).解:E (X )=0×(3/28+9/28+3/28)+1×(3/14+3/14+0)+ 2×(1/28+0+0)= 7/14=1/2 E (Y )=0×(3/28+3/14+1/28)+1×(9/28+3/14+0)+ 2×(3/28+0+0)=21/28=3/4 E (X -Y ) = E (X )- E (Y )=1/2-3/4= -1/4.14. 设随机变量(X ,Y )具有概率密度⎩⎨⎧≤+≤≤≤≤=其它,01,10,10,24),(y x y x xy y x f ,求E (X ),E (Y ),E (XY )解:E (X )=⎰⎰⎰⎰-=⋅11022424xDydydx x xydxdy x dx x x ⎰-⋅=1022)1(2124dx x x x ⎰+-=10432)2412(52)51264(1543=+-=x x x.152)34524638()1(31242424)(5/22424)(1654311010322210102=-+-=-⋅==⋅===⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰--x x x x dx x x dydx y xxydxdy xy XY E xdxdy y xydxdy y Y E DxDy15.所得利润(以元计)为)12(1000X Y -=,求E (Y ),D (Y ).解: E (Y) = E [1000(12-X )]=1000E [(12-X )]=1000×[(12-10)×0.2+(12-11)]×0.3+(12-12)×0.3+(12-13)×0.1+(12-14)×0.1] = 400E (Y 2) = E [10002(12-X )2]=10002E [(12-X )2]=10002[(12-10)2×0.2+(12-11)2×0.3+(12-12)2×0.3+(12-13)2×0.1 +(12-14)2×0.1]=1.6×106D (Y )=E (Y 2)-[E (Y )]2=1.6×106- 4002=1.44×10616. 设随机变量X 服从几何分布 ,其分布律为,,2,1,)1(}{1 =-==-k p p k X P k 其中0 < p < 1是常数,求E (X ),D (X ).解:令q=1- p ,则∑∑∑∑∞=∞=-∞=-∞==⨯=⨯==⨯=111111)()}{()(k kk k k k k dqdq p qk p p qk k X P k X Ep q dq d p q dq d p k k /1)11(0∑∞==-==∑∑∑∑∞=-∞=-∞=-∞=⨯+⨯-=⨯==⨯=1111112122])1([)()}{()(k k k k k k k q k qk k p p qk k X P k X Ep qk k pq k k /1)1(12+⨯-=∑∞=-p qdq d pq p q dqd pq k k kk /1)(/1012222∑∑∞=∞=+=+=p p q p q pq p q dq d pq /1/2/1)1(2/1)11(2322+=+-=+-= D (X ) = E (X 2)- E (X ) =2q /p 2+1/p -1/p 2 = (1-p )/p 217. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<-=其它,01||,11)(2x x x f π,试求E (X ),D (X ).解:E (X )=011)(112=-=⎰⎰-∞∞-dx xxdx x f x πD (X )=E (X 2)=⎰⎰⎰--∈-∞∞-=-=2/2/2]2/,2/[11222cos sin sin 11)(ππππππdt tt tx dx xxdx x f x t2122cos 122/0=-=⎰ππdt t 18. 设随机变量(X ,Y )具有D (X ) = 9,D (Y ) = 4,6/1-=XY ρ,求)(Y X D +,)43(+-Y X D . 解:因为)()(),(Y D X D Y X Cov XY =ρ,所以)()(),(Y D X D Y X Cov XY ρ==-1/6×3×2=-1,11249),(2)()()(=-+=++=+Y X Cov Y D X D Y X D51)1(6369)3,(2)(9)()43(=--+=-++=+-Y X Cov Y D X D Y X D19. 在题13中求Cov (X ,Y ),ρXY . 解:E (X ) =1/2, E (Y ) =3/4, E (XY )=0×(3/28+9/28+3/28+3/14+1/28)+1×3/14+2×0+4×0=3/14, E (X 2)= 02×(3/28+9/28+3/28)+12×(3/14+3/14+0)+ 22×(1/28+0+0)=4/7, E (Y 2)= 02×(3/28+3/14+1/28)+12×(9/28+3/14+0)+ 22×(3/28+0+0)=27/28, D (X )= E (X 2) -[E (X )]2 = 4/7-(1/2)2= 9/28, D (Y )= E (Y 2)- [E (Y )]2=27/28-(3/4)2= 45/112, Cov (X ,Y )= E (XY )- E (X ) E (Y ) =3/14- (1/2) ×(3/4)= -9/56, ρXY = Cov (X ,Y ) /()(X D )(Y D )=-9/56 ÷ (28/9112/45)= -5/520. 在题14中求Cov (X ,Y ),ρXY ,D (X + Y ).解:52)()(==Y E X E ,,)(152=XY E 752)()()(),(-=-=Y E X E XY E Y X Cov )(5124)(2101032Y E dydx y x X E x ===⎰⎰-[])(25125451)()()(22Y D X E X E X D ==-=-= 752),(2)()()(32)()(),(=++=+-==Y X Cov Y D X D Y X D Y D X D Y X Cov XYρ21. 设二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤+=.0,1,1),(22其它y x y x f π试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:0/12/)(112111122=-==⎰⎰⎰-----dx x x dydx x X E x xππOx2x20/)(111122==⎰⎰----x x dydx y Y E π 0/)(111122==⎰⎰----x x dydx xy XY E π,所以Cov (X ,Y )=0,ρXY =0,即X 和Y 是不相关.⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122x x x dy dy y x f x f x x X ππ ⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122y y y dx dx y x f y f y y Y ππ 当x 2 + y 2≤1时,f ( x,y )≠f X ( x ) f Y (y ),所以X 和Y 不是相互独立的22. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=.010,2||,2/1),(其它x x y y x f 验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:由于f ( x,y )的非零区域为D : 0 < x < 1, | y |< 2x32221102212====⎰⎰⎰⎰⎰-dx x xdydx dxdy y x xf X E xx D ),()(,0211022⎰⎰⎰⎰-===xx Dydydx dxdy y x yf Y E ),()(,0211022⎰⎰⎰⎰-===xx Dxydydx dxdy y x xyf XY E ),()(,所以Cov (X ,Y )=0,从而0)()(),(==y D x D y x Cov xy ρ,因此X 与Y 不相关 .⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-其他,010,221),()(22Xx x dy dy y x f x x x f⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-=<<-+===⎰⎰⎰-∞+∞-其他,020,421202,42121),()(1212Y y y dx y y dx dx y x f y y y f所以,当0<x <1, -2<y<2时,)()(),(y f x f y x f Y X ≠,所以X 和Y 不是相互独立的 .⎪⎩⎪⎨⎧≤>>=⎩⎨⎧≥<<--==-0,00,0,1)(,0),()(y y e y f Y x Y mx xY Y x n mY Y Q Q y Y θθθ的密度函数为[]()()()取最大值时,当又则令)(n ln 0n m )(d n ln,n 0)(1)()(d )()()()(1.1.)()(.)()( 20000000Q E n m x e dx Q E n m x n m e n e n m n e n m dx Q E nxn m e n m m xenx nxe e n m xe n m m xe nxe dy n m e ye n m m xde de nx yde n m dye m x dy e y x n m y dy Yf Y Q Q E x xxx x x x x y x xyx y x y x y x y x y y x x y x y Y +-=∴<+-=+-=∴+==-+=-⎪⎭⎫ ⎝⎛-+-=-+++-=+-++-+-=-+⎥⎥⎦⎤⎢⎢⎣⎡+-+=-++-=+--==---------∞+----∞+---∞+--∞∞-⎰⎰⎰⎰⎰⎰⎰θθθθθθθθθθθθθθθθθθθθθθθθθθθ四、应用题.1. 某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产品可获利m 元,而积压一件产品导致n 元的损失,再者,他们预测销售量Y (件)服从参数θ的解:设生产x 件产品时,获利Q 为销售量Y 的函数2. 设卖报人每日的潜在卖报数为X 服从参数为λ的泊松分布,如果每日卖出一份报可获报酬m 元,卖不掉而退回则每日赔偿n 元,若每日卖报人买进r 份报,求其期望所得及最佳卖报数。
1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。
《概率论与数理统计》(韩旭里)课后习题答案概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)ABC (2)ABC (3)ABC(4)A∪B∪C=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC (5) ABC=A B C (6) ABC1(7) ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=ABC∪ABC∪ABC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A B)=0.3,求P(AB).【解】P(AB)=1P(AB)=1[P(A)P(A B)]=1[0.70.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC) =11114+4+312=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=C533213C13C13C13/C13528.对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;2(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=115 =()(亦可用独立性求解,下同)757(2)设A2={五个人生日都不在星期日},有利事件数为65,故6565P(A2)=5=() 77(3) 设A3={五个人的生日不都在星期日}P(A3)=1P(A1)=1(15) 79.略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n<N).试求其中恰有m件(m≤M)正品(记为A)的概率.如果:(1)n件是同时取出的;(2)n件是无放回逐件取出的;(3)n件是有放回逐件取出的.n mn【解】(1)P(A)=CmMCN M/CNn(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有PN种,n次抽取中有m次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取mn m次序,从M件正品中取m件的排列数有PM种,从N M件次品中取n m件的排列数为PN M种,故mn mCmnPMPN MP(A)= nPN由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成3n mCmMCN MP(A)= nCN可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n次抽取中有m次为正品的组合数为Cmn种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有Mm种取法,n m次取得次品,每次都有N M种取法,共有(N M)n m种取法,故mn mn P(A)CmM(N M)/Nn此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为M,则取得m件正品的概率为Nmn m M M P(A)C1N N mn11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A={发生一个部件强度太弱}10C3/C50 1 196013.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥.1C2184C3P(A2)3,C735C344P(A3)3 C7354故P(A2A3)P(A2)P(A3)223514.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.【解】设Ai={第i批种子中的一粒发芽},(i=1,2)(1) P(A1A2)P(A1)P(A2)0.70.80.56(2) P(A1A2)0.70.80.70.80.94 (3) P(A1A2A1A2)0.80.30.20.70.38 15.掷一枚均匀硬币直到出现3次正面才停止.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1)p2121315C111314()()1C5(2)(2)232 (2) p25/32 2516.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则P(3i0A212iBi3)(0.3)3(0.4)3C130.7(0.3)C30.6(0.4)C2223(0.7)0.3C3(0.6)20.4+(0.7)3(0.6)3=0.32076517.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】p1C411115C2CC2C2213C4102118.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.【解】设A={下雨},B={下雪}.(1)p(BA)P(AB)0.50.2(2)p(A B)P(A)P(B)P(AB)0.30.50.10.719.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故P(BA)P(AB)6/8P(A)7/8 67或在缩减样本空间中求,此时样本点总数为7.P(BA) 6720.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】设A={此人是男人},B={此人是色盲},则由贝叶斯公式P(AB)P(AB)P(A)P(BA)P(B)P(A)P(BA)P(A)P(BA)60.50.050.50.050.50.0025202121.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x y|>30.如图阴影部分所示.302P 1602 422.从(0,1)中随机地取两个数,求:76的概率;51(2)两个数之积小于的概率. 4(1)两个数之和小于【解】设两数为x,y,则0<x,y<1.(1)x+y<6. 514417 p110.68 1251(2) xy=<. 4p21111dxdy11ln2 4x442123.设P(A)=0.3,P(B)=0.4,P(AB)=0.5,求P(B|A∪B)【解】P(BA B)P(AB)PA()PAB() P(A B)P(A)P(B)P(AB)0.70.51 0.70.60.5424.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二次取出的3球均为新球}由全概率公式,有8P(B)P(BAi)P(Ai)i032321C3C3C1C8C9C6C3C3C3699C67960.08933333333C15C15C15C15C15C15C15C1525. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P (A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知P(A)P(BA)P(AB)(1)P(AB)P(B)P(A)P(BA)P(A)P(BA)0.20.110.02702 0.80.90.20.137即考试及格的学生中不努力学习的学生仅占2.702%P(A)P(BA)P(AB)(2) P(AB)P(B)P(A)P(BA)P(A)P(BA)0.80.140.3077 0.80.10.20.913即考试不及格的学生中努力学习的学生占30.77%.926. 将两信息分别编码为A和B传递出来,接收站收到时,A被误收作B的概率为0.02,而B被误收作A的概率为0.01.信息A与B传递的频繁程度为2∶1.若接收站收到的信息是A,试问原发信息是A的概率是多少?【解】设A={原发信息是A},则={原发信息是B}C={收到信息是A},则={收到信息是B}由贝叶斯公式,得P(AC)P(A)P(CA)P(A)P(CA)P(A)P(CA) 2/30.980.99492 2/30.981/30.0127.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设Ai={箱中原有i个白球}(i=0,1,2),由题设条件知P(Ai)=1,i=0,1,2.又设B={抽出一球为白球}.由贝叶斯公式知3P(A1B)P(BA1)P(A1)P(A1B) 2P(B)P(BAi)P(Ai)i02/31/31 1/31/32/31/311/3328.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】设A={产品确为合格品},B={产品被认为是合格品}由贝叶斯公式得10P(AB)P(A)P(BA)P(AB) P(B)P(A)P(BA)P(A)P(BA)0.960.980.998 0.960.980.040.05 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年设A={该客户是“谨慎的”},B={该客户是“一般的”},C={该客户是“冒失的”},D={该客户在一年内出了事故}则由贝叶斯公式得P(A|D)P(AD)P(A)P(D|A)P(D)P(A)P(D|A)P(B)P(D|B)P(C)P(D|C)0.20.050.057 0.20.050.50.150.30.330.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设Ai={第i道工序出次品}(i=1,2,3,4).P(Ai)1P(A1A2A3A4) i141P(A1)P(A2)P(A3)P(A4)10.980.970.950.970.12431.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n次独立射击.1(0.8)n0.911即为(0.8)n0.1故n≥11至少必须进行11次独立射击.32.证明:若P(A|B)=P(A|B),则A,B相互独立.【证】P(A|B)即P(A|B)P(AB)P(AB) P(B)P(B)亦即P(AB)P(B)P(AB)P(B)P(AB)[1P(B)][P(A)P(AB)]P(B)因此P(AB)P(A)P(B)故A与B相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为【解】设Ai={第i人能破译}(i=1,2,3),则111,,,求将此密码破译出的概率. 534P(Ai)1P(A1A2A3)1P(A1)P(A2)P(A3) i1314230.6 53434.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A={飞机被击落},Bi={恰有i人击中飞机},i=0,1,2,312由全概率公式,得P(A)P(A|Bi)P(Bi)i03=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1)虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2)新药完全无效,但通过试验被认为有效的概率.【解】(1)p1 Ck0k103k10(0.35)k(0.65)10k0.5138 (2) p2 Ck410(0.25)k(0.75)10k0.224136.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1)A=“某指定的一层有两位乘客离开”;(2)B=“没有两位及两位以上的乘客在同一层离开”;(3)C=“恰有两位乘客在同一层离开”;(4)D=“至少有两位乘客在同一层离开”.【解】由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.24C69(1)P(A),也可由6重贝努里模型:6101321294P(A)C6()() 1010(2)6个人在十层中任意六层离开,故6P10P(B) 6 102(3)由于没有规定在哪一层离开,故可在十层中的任一层离开,有C110种可能结果,再从六人中选二人在该层离开,有C6种离开方式.其余4人中不能31再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有C19C4C8种可4能结果;②4人同时离开,有C19种可能结果;③4个人都不在同一层离开,有P9种可能结果,故2131146P(C)C110C6(C9C4C8C9P9)/10(4)D=B.故6P10P(D)1P(B)1 6 1037. n个朋友随机地围绕圆桌而坐,求下列事件的概率:(1)甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2)甲、乙、丙三人坐在一起的概率;(3)如果n个人并排坐在长桌的一边,求上述事件的概率.【解】(1)p1 1 n 114(2) p3!(n3)!2(n1)!,n 3 (3) p(n1)!11n!n;p3!(n2)!2n!,n 338.将线段[0,a]任意折成三折,试求这三折线段能构成三角形的概率【解】设这三段长分别为x,y,a x y.则基本事件集为由0<x<a,0<y<a,0<a x y<a所构成的图形,有利事件集为由x y a x yx(a x y)yy(a x y)x构成的图形,即0x a20y a 2a2x y a如图阴影部分所示,故所求概率为p 14.39. 某人有n把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k次(k=1,2,…,n)才能把门打开的概率与k无关.【证】p Pk 1n11Pk,k1,2,n ,nn1540.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i面涂有颜色的概率P(Ai)(i=0,1,2,3).【解】设Ai={小立方体有i面涂有颜色},i=0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个P(A)P[A(B C)]P(AB AC)P(AB)P(AC)P(ABC)P(AB)P(AC)P(BC)42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】设Ai={杯中球的最大个数为i},i=1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故P(AC33!31)4438而杯中球的最大个数为3,即三个球全放入一个杯中,故16C114P(A3)3 416因此P(A2)1P(A1)P(A3)131981616或P(AC1214C3C32)4391643.将一枚均匀硬币掷2n次,求出现正面次数多于反面次数的概率.【解】掷2n次硬币,可能出现:A={正面次数多于反面次数},B={正面次数少于反面次数},C={正面次数等于反面次数},A,B,C两两互斥.可用对称性来解决.由于硬币是均匀的,故P(A)=P(B).所以P(A)1P(C)2由2n重贝努里试验中正面出现n次的概率为P(C)Cn1n1n2n(2)(2)故P(A) 12[1Cn12n22n]44.掷n次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A={出现正面次数多于反面次数},B={出现反面次数多于正面次数},由对称性知P(A)=P(B)(1)当n为奇数时,正、反面次数不会相等.由P(A)+P(B)=1得P(A)=P(B)=0.5 (2) 当n为偶数时,由上题知P(A)1n212[1Cn(2)n]45.设甲掷均匀硬币n+1次,乙掷n次,求甲掷出正面次数多于乙掷出正面次数的概率.17【解】令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有(甲正>乙正)=(甲正≤乙正)=(n+1甲反≤n乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P(甲正>乙正)=P(甲反>乙反)因此P(甲1正>乙正)=246.证明“确定的原则”(Sure thing):若P(A|C)≥P(B|C),P(A|C)≥P(B|C),则P(A)≥P(B).【证】由P(A|C)≥P(B|C),得P(AC)PP(C)(BC)P(C),即有P(AC)P(BC)同理由P(A|C)P(B|C),得P(AC)P(BC),故P(A)P(AC)P(AC)P(BC)P(BC)P(B)47.一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.求每一节车厢设Ai={第i节车厢是空的},(i=1,…,n),则18(n1)k1kP(Ai)(1)nkn2P(AiAj)(1)knP(AAn1ki1Ai2in1)(1n)其中i1,i2,…,in1是1,2,…,n中的任n1个. 显然n节车厢全空的概率是零,于是nS P(A)n(111k1ii1n)k C1n(1n)S P(AC222iAj)n(1)k1i j nnSn11i P(An1i1Aii1i2in1n2An1)Cn(1n1kn)Sn0P(ni1Ai)S1S2S3(1)n1SnC11k22knn1n 1n(1n)Cn(1n)(1)Cn(1n)k故所求概率为191k2in1k2n1n11P(Ai)1C1Cn(1) n(1)Cn(1)(1)i1nnnn48.设随机试验中,某一事件A出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1.【证】在前n次试验中,A至少出现一次的概率为1(1)n1(n)49.袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A={投掷硬币r次都得到国徽}B={这只硬币为正品}由题知P(B)mn,P(B) m nm nP(A|B)1,P(A|B) 1 r2则由贝叶斯公式知P(B|A)P(AB)P(B)P(A|B) P(A)P(B)P(A|B)P(B)P(A|B)m1rm rm1nr1m2nm n2m n50.巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又有多少?20【解】以B1、B2记火柴取自不同两盒的事件,则有P(B1)P(B2) 1.(1)发现一盒已空,另一盒恰剩r根,说明已取了2n r次,设n次取自B1盒(已2空),n r次取自B2盒,第2n r+1次拿起B1,发现已空。
2. 甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机地抽取一粒,那么至少有一粒种子能发芽的概率为___________.
3. 设随机变量ξ的分布律为{}23k
P k b ξ⎛⎫== ⎪⎝⎭
,1,2,3,.k = ,则b =_______. 4. 已知某电话交换台每分钟接到的呼唤次数ξ服从4λ=的泊松分布,则每分钟内恰好接到3次呼叫的概率为 .
5. 设ξ在[1,5]-上服从均匀分布,则方程2210x x ξ++=有实根的概率为 .
6.已知一批玉米种子的发芽率为75%,播种时每穴种3粒,则每穴发芽种子数ξ的数学期望为___________, 方差为 .
7.设总体X 为[0,]θ上的均匀分布,则参数θ的矩估计为 .
8.设129,,,ξξξ 相互独立,()1,()1i i E D ξξ==,(1,2,,9)i = ,由车贝晓夫不等式可知,对任意0ε>,有9
19i i P ξε=⎛⎫-<≥ ⎪⎝⎭∑ . 9、若~(12,6)X F ,且0.05(12,6)4F =,则0.95(6,12)F = .
三、计算题(每小题10分,共60分)
1、8支步枪中有5支已校准过,3支未校准,一名射手用校准过的枪射击时,中靶的概率为0.8;用未校准过的枪射击时,中靶的概率为0.3,现从8支枪中任取一支用于射击,结果中靶,求所用的枪是校准过的概率。
2、已知某台机器生产的螺栓长度X (单位:厘米)服从参数10.05μ=,0.06σ=的正态分布。
规定螺栓的长度在10.050.12±内为合格品,试求螺栓为合格品的概率。
(注:(2)0.9772Φ=)
3、已知随机变量X 概率密度为,02()240,ax x f x cx b x <≤⎧⎪=+<≤⎨⎪⎩
其它.,且()2E X =,3(13)4P X <≤=, 求:(1).,,a b c 的值;(2)若X
Y e =,计算()E Y .
4、设二维随机变量(,)ξη的概率密度函数为,01,0;(,)0,
kxy x y x f x y ≤≤≤≤⎧=⎨⎩其它. 求(1)常数k ;(2)ξ与η的边沿密度函数()()f x f y ξη和; (3)(1)P ξη+≥.
5、设总体X 的概率密度函数为10()0x e x f x θθ-⎧>⎪=⎨⎪⎩
,,其它,其中0,θ>求参数θ的极大似然估计。
6、从过去的资料知,某厂生产的干电池寿命服从正态分布,平均寿命为200h,标准差为5h ,现改变部分生产工艺后,抽查10个个体作为样本,得数据如下:
202, 209, 213, 198, 206, 210, 195, 208, 200, 207
假定标准差不变,问新工艺下干电池之平均寿命是否还是200h?
(0.01α=
3.16=,2
2.58U α=)。