运筹学-2
- 格式:pdf
- 大小:301.12 KB
- 文档页数:1
《运筹学》在线作业二-标准答案
试卷总分:100 得分:100
一、单选题 (共 40 道试题,共 100 分)
1.无后效性是指动态规划各阶段状态变量之间无任何联系.
A.对
B.错
正确答案:B
2.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。
A.对
B.错
正确答案:B
3.对于风险型决策问题,可以用“最大可能法”求解问题,下列说法错误的是()
A.一个事件,其概率越大,发生的可能性就越大
B.对于风险型决策,若自然因素出现的概率为1,而其他自然因素出现的概率为0,则就是确定型决策问题
C.当所有自然因素出现的概率都很小,并且很接近时,可以用“最大可能法”求解
D.当在其所有的自然因素中,有一个自然因素出现的概率比其他自然因素出现的概率大很多,并且他们相应的损益值差别不很大,我们可以用“最大可能法”来处理这个问题
正确答案:C
4.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已作出的决策.
A.对
B.错
正确答案:A
5.若线性规划问题的,i,j值同时发生改变,反映到最终单纯形表中,不会出现原问题与对偶问题均为非可行基的情况。
A.对
B.错
正确答案:B
6.在网络图中,关键线路是指各条线路中作业总时间()的一条线路
A.最短
B.中间
C.成本最小
D.最长
正确答案:D。
第二章线性规划教学目的和要求:目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。
要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了解图解法。
重点:线性规划标准型,解的概念,单纯形法,人工变量法。
难点:线性规划基本定理,单纯形法。
教学方法:讲授法,习题法。
学时分配:12学时 作业安排:见教材P 38.线性规划是运筹学的一个重要分支。
1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。
1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。
此后,线性规划理论日趋成熟,应用也日益广泛和深入。
第一节线性规划问题一、问题的提出在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。
例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。
A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。
问如何安排生产计划,才能使所获总利润最大?解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800,X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3);以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦6504X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700X j ≧0 (j=1,2,3)例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。
运筹学2对偶问题运筹学教程运筹学Operations Research Chapter 2 对偶问题Dual Problem1. 线性规划的对偶模型Dual Model of LP2.对偶性质对偶性质3.对偶单纯形法对偶单纯形法4.灵敏度分析灵敏度分析Dual property Dual Simplex Method Sensitivity Analysis 运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dual model of LPCh2 Dual Problem2022年11月26日星期五Page 2 of 19在线性规划问题中,存在一个有趣的问题,即每一个线性规划问题都伴随有另一个线性规划问题,称它为对偶线性规划问题。
【例2.1】某企业用四种资源生产三种产品,工艺系数、例资源限量及价值系数如下表:产品资源Ⅰ Ⅱ Ⅲ Ⅳ 每件产品利润9 5 8 7 100 8 4 3 6 80 6 7 2 4 70 500 450 300 550 A B C 资源限量建立总收益最大的数学模型。
运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dualmodel of LPCh2 Dual Problem2022年11月26日星期五Page 3 of 19 设x1,x2,x3分别为产品A,B,C的产量,则线性规划数学模解型为:m Z = 100x + 80x + 70x ax1 2 39x1 + 8x2 + 6x3 ≤ 500 5x + 4x + 7x ≤ 450 2 3 1 8x1 + 3x2 + 2x3 ≤ 300 7x + 6x + 4x ≤ 550 2 3 1 x1, x2, x3 ≥ 0 现在从另一个角度来考虑企业的决策问题。
假如企业自己不生产产品,而将现有的资源转让或出租给其它企业,那么资源的转让价格是多少才合理?价格太高对方不愿意接受,价格太低本单位收益又太少。
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
运筹学习题课二---小组任务(解答) 要求:1、 以小组形式共同完成习题任务,每小组人数为3人,成员自定;2、 小组成员共同讨论任务解决方案,最后由一人撰写习题报告;3、 习题报告需给出完整的数学模型及求解过程;4、 习题报告中签署所有成员的班级、姓名及学号。
任务1:P152-6.4:某城市的消防总部将全市划分为11个防火区,设有4个消防(救火)站。
图6-8表示各防火区域与消防站的位置,其中①、②、③、④表示消防站,1, 2, 3, …, 11表示防火区域。
根据历史的资料证实,各消防站可在事先规定的允许时间内对所负责的地区的火灾予以消灭。
图中虚线即表示各地区由哪个消防站负责(没有虚线连接,就表示不负责)。
现在总部提出:可否减少消防站的数目,仍能同样负责各地区的防火任务?如果可以,应当关闭哪个?解答:使用0-1整数规划求解,可知规划只有两个可行解,比较后可知可以关闭第2个消防站。
任务2:P312-11.15-(2):已知矩阵对策A =(400008060)的解为x ∗=(613,313,413)T ,y ∗=(613,413,313)T ,对策值为 2413 . 求下列矩阵对策的解,其赢得矩阵A 分别为(1)(−2−226−2−2−24−2), (2)(322020202044203820).解答:使用矩阵对策基本定理的定理7-8进行求解,可得(1)及(2)的最优策略不变,最优对策值分别为:−213,33213. 其中矩阵(1)是在矩阵A 的基础上交换了1,3列后再减2而得,易知交换赢得矩阵的任意两行或两列不改变原矩阵对策的值,只需对局中人的最优策略的分量作相应的交换即可。
习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。
分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。
(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。
2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。
2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。
运筹学II 练习题1 试判定下述非线性规划是否为凸规划:(1)()2212212212128020,0Min f X x x x x x x x x ⎧ =++⎪-≥⎪⎨--+=⎪⎪≥⎩(2)()22212312221221312324510,,0Min f X x x x x x x x x x x x x ⎧ =++-⎪+≤⎪⎨+=⎪⎪≥⎩(3) max 12()f x x =+X2212121..,0≤≥⎧+⎨⎩x x s t x x解 (1)()()()221221122212128020,0Min f X x x g X x x g X x x x x ⎧ =++⎪=-≥⎪⎨=--+=⎪⎪≥⎩()()()12,,f X g X g X 的海赛矩阵的行列式:()()()()2221122222122002f X f X x x x H f X f X x x x ∂∂∂∂∂==>0∂∂∂∂∂ ()()()()2211211212211221220000g X g X x x x g g X g X x x x ∂∂∂∂∂==≥∂∂∂∂∂()()()()222221122222222120002g X g X x x x g g X g X x x x ∂∂∂∂∂==≤0-∂∂∂∂∂ 知()f X 为严格凸函数,()1,g X 为凸函数,()2g X 为凹函数,所以不是一个凸规划问题。
(2)()()()()()22212312'222211211222131232440510,,0Min f X x x x x x g X x x g X x x g X x x x x x ⎧ =++-⎪=+≤⇔=-++≥⎪⎨=+=⎪⎪≥⎩ 同上有()()()12,,f X g X g X 的海赛矩阵的行列式410120002H -=->0122,0g -=-是凹函数,21000g =是凸函数,不是凸规划问题。