交大运筹学2套往年试卷及答案(包含各题型,期末考试绝对有用)
- 格式:doc
- 大小:370.50 KB
- 文档页数:14
《运筹学试题与答案》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( )4. 满足线性规划问题所有约束条件的解称为可行解。
( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( )6. 对偶问题的对偶是原问题。
( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )二、单项选择题1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。
A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。
A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。
运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中对偶问题的最优解: Y =(4,0,9,0,0,0) (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分) MaxZ=3X 1+4X 2X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8X 1,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
一、判断题(共计 分,每小题 分,对的打√,错的打 ) 无孤立点的图一定是连通图。
对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定有最优解。
如果一个线性规划问题有可行解,那么它必有最优解。
.对偶问题的对偶问题一定是原问题。
.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。
度为 的点称为悬挂点。
表上作业法实质上就是求解运输问题的单纯形法。
一个图 是树的充分必要条件是边数最少的无孤立点的图。
二、建立下面问题的线性规划模型( 分)某农场有 公顷土地及 元资金可用于发展生产。
农场劳动力情况为秋冬季 人日;春夏季 人日。
如劳动力本身用不了时可外出打工,春秋季收入为 元 人日,秋冬季收入为 元 人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养每头奶牛需投资 元,每只鸡投资 元。
养奶牛时每头需拨出 公顷土地种饲料,并占用人工秋冬季为 人日,春夏季为 人日,年净收入 元 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季 人日,春夏季为 人日,年净收入 元 每只鸡。
农场现有鸡舍允许最多养 只鸡,牛栏允许最多养 头。
三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。
三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为松弛变量,问题的约束为 形式(共 分)写出原线性规划问题;( 分) 写出原问题的对偶问题;( 分)直接由上表写出对偶问题的最优解。
( 分)四、用单纯形法解下列线性规划问题( 分)3212max x x x Z +-=五、求解下面运输问题。
( 分)某公司从三个产地 、 、 将物品运往四个销地 、 、 、 ,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小六、灵敏度分析(共 分)线性规划的最优单纯形表如下:在何范围内变化,最优计划不变? 分在什么范围内变化,最优基不变? 分七、试建立一个动态规划模型。
北京交通大学2010-2011学年第一学期《运筹学基础》期末考试试卷(A)考试方式:闭卷任课教师:李岷珊学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________请注意:本卷共六大题,如有不对,请与监考老师调换试卷!一、1、找出下列变量组中的闭回路并排成标准次序:A. X12X23X34X41B.X12X53X46X52X16X43C.X12X24X22X14D. X12X14X24X32X34X222、已知线性规划问题MAX Z = X1+2X2+3X3+4X4X1+2X2+2X3+3X4≤20 2X1+X2+3X3+2X4≤20 X i≥0 求其对偶问题3、已知线性规划问题MAX Z =CX, 约束条件AX=b, X i≥0。
证明其可行域是凸集;并证明该问题若有不同的最优解,则有无穷多最优解。
4、(1,1,1,0,0,0),(1,0,0,0,1,0),(0,0,1,1,1,0)(0,1,0,1,0,0),(0,0,0,0,0,1),(0,0,0,0,0,1)是无向简单图的关联矩阵。
画出该图,并回答该图是否连通。
5、分别利用优超关系和求鞍点方法求解如下矩阵对策。
其赢得矩阵的三行分别为(2,6,8),(5,4,10),(7,7,9)二、解下列线性规划问题,并写出最优基矩阵B及其逆矩阵;若第二种资源发生变化,在什么范围内变化原最优基不变?MAX Z = 2X1+3X23X1 + 6X2≤36 2X1 ≤12 4X2≤20 X1≥0,X2≥02三、在下图中,除已经标明方向的弧其方向均为从左至右,仅四条上下方向的弧为从下至上。
以上各弧对应数对左边数字即是该弧的容量,求该网络(A是源,F是汇)的最大流。
G 7-3 H第 3 页共5 页四、在上图中,各弧对应数对左边数字是该弧的长度,求(A到F的)最短路。
运筹学概念部分一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束(subject to 的缩写)。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题19.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量B.销售价格C.顾客的需求 D.竞争价格20.我们可以通过( C)来验证模型最优解。
A.观察B.应用C.实验D.调查21.建立运筹学模型的过程不包括( A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施22.建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量B变量C约束条件 D 目标函数23.模型中要求变量取值( D )A可正 B可负 C非正 D非负24.运筹学研究和解决问题的效果具有(A )A 连续性 B整体性 C 阶段性D再生性25.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。
答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。
答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。
答案:非线性4. 动态规划适用于解决________决策问题。
答案:多阶段5. 排队论中的基本参数包括________、________和________。
答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。
答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。
线性规划问题通常包括目标函数、约束条件和非负约束。
目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。
2. 请简要阐述整数规划的特点。
答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。
北京交通大学考试试题答案(A卷)——运筹学A一、单选题5分,每题1分。
二1.设甲、乙产品的产量分别为x1,x2件,线性规划模型为:max z=3x1+2x2s.t. 2x1+4x2≤1603x1+2x2≤180x1 , x2≥0标准型及单纯形计算如下:max z=3x1+2x2s.t. 2x1+4x2+x3=1603x1+2x2+x4=180x1 , x2, x3, x4≥60最优方案为甲生产50件,乙生产15件,或甲生产60件,乙生产0件,或上述两种方式的凸组合。
最大利润为180。
15分,模型5分,标准型与初始表5分,计算3分,结论2分。
2.影子价格分别为0和14分,各2分,计算错误扣1分。
3.产品丙的检验数为-1,不值得生产。
5分,公式2分,计算2分,结论1分。
4.原料B 的灵敏度范围0-240,最多应购买60千克。
6分,公式2分,计算3分,结论1分。
三、(15分)①正确列出运价表如右:7分 ②最小元素法方案3分 ③位势法求检验数4分 ④给出正确的调运方案1分四、(10分)分配甲、乙、丙三个人去完成A 、B 、C 、D 四项任务,每个人完成各项任务的时间如表所示。
其中任务D 必须完成,且每个人只能完成一项任务,每项任务只能由一个人完成。
试确定最优分配方案,使完成任务的总时间最少。
①正确列出效益表如右:5分 ②匈牙利法计算结果3分 ③给出正确的分配方案2分第五题定义状态:s1=x1+s2 s2=x2+s3 s3=x3 故 s1<=8(3分) k=3时f3(s3)=Max {4*x3} ,此时 0<=x3<=s3即x3=s3时f3(s3)=4*s3(3分)k=2时f2(s2)=Max {3*x2+f3(s3)}= Max {3*x2+4*(s2-x2)} 0<=x2<=s2即x2=0时f2(s2)=4*s2(3分)k=3时f1(s1)=Max {x1*x1+ f2(s2)}=Max{x1*x1-4*x1+4*s1} ,此时0<=x1<=s1 由于s1<=8,故x1=s1=8时f1(s1)=64(3分)因此,x1=8, x2=0, x3=0时z取得最大值,最大值为64。
北京交通大学考试试题答案(A卷)——运筹学A一、单选题5分,每题1分。
二1.设甲、乙产品的产量分别为x1,x2件,线性规划模型为:max z=3x1+2x2s.t. 2x1+4x2≤1603x1+2x2≤180x1 , x2≥0标准型及单纯形计算如下:max z=3x1+2x2s.t. 2x1+4x2+x3=1603x1+2x2+x4=180x1 , x2, x3, x4≥60最优方案为甲生产50件,乙生产15件,或甲生产60件,乙生产0件,或上述两种方式的凸组合。
最大利润为180。
15分,模型5分,标准型与初始表5分,计算3分,结论2分。
2.影子价格分别为0和14分,各2分,计算错误扣1分。
3.产品丙的检验数为-1,不值得生产。
5分,公式2分,计算2分,结论1分。
4.原料B 的灵敏度范围0-240,最多应购买60千克。
6分,公式2分,计算3分,结论1分。
三、(15分)①正确列出运价表如右:7分 ②最小元素法方案3分 ③位势法求检验数4分 ④给出正确的调运方案1分四、(10分)分配甲、乙、丙三个人去完成A 、B 、C 、D 四项任务,每个人完成各项任务的时间如表所示。
其中任务D 必须完成,且每个人只能完成一项任务,每项任务只能由一个人完成。
试确定最优分配方案,使完成任务的总时间最少。
①正确列出效益表如右:5分 ②匈牙利法计算结果3分 ③给出正确的分配方案2分第五题定义状态:s1=x1+s2 s2=x2+s3 s3=x3 故 s1<=8(3分) k=3时f3(s3)=Max {4*x3} ,此时 0<=x3<=s3即x3=s3时f3(s3)=4*s3(3分)k=2时f2(s2)=Max {3*x2+f3(s3)}= Max {3*x2+4*(s2-x2)} 0<=x2<=s2即x2=0时f2(s2)=4*s2(3分)k=3时f1(s1)=Max {x1*x1+ f2(s2)}=Max{x1*x1-4*x1+4*s1} ,此时0<=x1<=s1 由于s1<=8,故x1=s1=8时f1(s1)=64(3分)因此,x1=8, x2=0, x3=0时z取得最大值,最大值为64。
(3分)第六题用最小数问题求解(3分)。
理由:将各区域作为点,各区域间的连线作为边,不可以包含圈,目标位所修路纵长最短,最短路问题能解决这一种问题。
(2分)用避圈法求解可得1-5-4, 2-3-8-7-6为最佳修路方案,总长5.2. (5分)第七题北京交通大学考试试题(A卷)专业:班级:学号:姓名:课程名称:管理运筹学(A)2006—2007学年第2学期出题教师:丁静之一、单选题(每题2分,共10分,答案一律写在答题纸上,否则无效)。
1. 存贮论研究对象包括()。
AA.订货时间和订货数量B.订货数量和订货人员C.订货品种和订货数量D.订货人员和订货费用2. 下列有关图解评审法(GERT)说法正确的是()。
DA.GERT适用于确定型网络计划B.GERT中不包含回路C.GERT中各事项有严格的时间先后关系D.GERT只有一个总开工事项3. 经济订购批量=(2×单次订货费×单位时间需求量/单位时间单位数量物资存贮费)1/2,这一结论的产生基于一定的假设,这些假设不包括()。
C A.不允许缺货B.存储费率不变C.以特定的速度生产来补充库存D.需求是连续均匀的4. 存贮论模型可按不同方式进行分类,但一般不包括()。
BA.确定型存贮模型与随机型存贮模型B.简单存贮模型与复杂存贮模型C.单品种存贮模型与多品种存贮模型D.单周期存贮模型与多周期存贮模型5.下列说法正确的是()。
DA.动态规划求解的问题可以无后效性,也可以有后效性。
B.图论中,最大流问题实质是一种非线性规划问题。
C.割平面解法可以求解纯整数规划问题,也可以求解混合整数规划问题。
D.线性规划中,当约束条件系数矩阵中不含有单位矩阵时,可以采用大M法求解,也可以采用两阶段法求解,但求解结果一定是相同的。
二、(共30分)某厂用A、B两种原料生产甲、乙两种产品,生产消耗参数如下。
根据生产安排,甲产品每天至少生产3吨,乙产品每天至少生产1吨。
两种原料都需要采购,每吨A原料需2万元,每吨B原料需3万元。
每吨A原料可生产1吨甲产品和2吨乙产品,1吨B原料和1吨乙产品可生产2吨甲产品。
(1)如何安排两种原料采购(采购的材料都用于生产),使该厂采购总额最小?请建立线性规划模型并用图解法求解;(2)请用对偶单纯形法求解上述模型并指出最小采购总额时两种原料采购数量。
(3)假设市场上原料C的价格为4万元/吨,每吨C原料可生产2吨甲产品和2吨乙产品。
是否应采购C原料?请说明理由。
三、(共10分)已知某运输问题的产销平衡表如下。
产量和销量单位均为:件;运价单位为:元/件。
(1)用最小元素法求出初始调运方案?(2)位势法进行检验,并找到最优运输方案。
四、(共10分)派五人去做五项工作,各人做各项工作的能力评分见表。
如何分派,总的得分最大?五、(共15分)现有资金5百万元,可对三个项目进行投资,投资额均为整数(单位为百万元)。
其中2#项目的投资不得超过3百万元,1#和3#项目的投资均不得超过4百万元,3#项目至少要投资1百万元。
每个项目投资五年后,预计可获得的收益如下表所示。
如何投资可望获得最大收益?请用动态规划方法求解。
六、(共15分)某高校在某地区有五个不同的校区,包括一个主校区和四个分校区。
学校决定在各校区之间铺设光缆以形成校园网。
主校区与各分校区之间都要保持光缆连接畅通。
四个分校区之间距离较近,可以直接铺设光缆。
但主校区与四个分校区距离较远。
学校请示相关主管部门后得知,主校区可通过四个中转点铺设光缆然后与分校区2相连接,进而再与其它三个分校区保持连接。
各校区、各中转点之间的距离如下图所示,单位为公里。
没有线条相连接的节点之间不能铺设光缆。
为使所消耗的光缆总长度最小,请用图论的知识指出最优铺设方案并说明理由。
至少需要多少公里长度的光缆?七、(1(2)计算工序的最早可能开始时间和最迟必须完成时间;(3)指出关键工序和总工期。
(4)要将总工期压缩2天,应该如何做?2007年本科试题(A)——64学时A卷一、选择题。
每题2分,共10分。
ADCBD二、(1)设A原料采购量为x1, B原料采购量为x2。
模型如下(8分):Min Z= 2 X1+3X2X1+2X2≥32X1- X2≥1X1,X2≥0图解法(7分)可知:X1=1,X2=2,此时Z取得最小值,最小值为5。
即采购A、B原料各1套,最小采购额为5万元。
(2)(10分)上述模型可化为:Max W= -2 X1-3X2-X1-2X2+X3 =-3-2X1+X2 +X4=-1最优解为X1=1,X2=2,此时 Z 取得最小值,最小值为5。
(3)(5分)设C 原料的采购量为X5,则P 5=(-2,-2)T C 5=-4C B =(-3,-2) B -1=⎥⎦⎤⎢⎣⎡52515152/-/-//-Ô5 = C 5-C B B -1 P 5=-2/5 <0 故不应该采购C 原料。
加入一个虚设的产地,转化为供需平衡的运输问题,有虚设的产地到销地的运由检验数可知,上述方案是最优运输方案。
(2分)即由A1运往B1: 7件,运往B2:15件;A2运往B1: 10件,运往B3:20件;B1有8件的需求尚未满足,需要在当地寻找货源。
总运费56+70+60+100=286元四、原效益矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1.106.09.014.12.001.1002.100103.13.12.101008.03.1 转化成最小问题(2分)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1.106.09.014.12.001.1002.100103.13.12.10108.03.1划线覆盖全部的零元素(2分)⎥⎥⎥⎥⎥⎥⎦⎤调整(2分)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡01.14.01.0001.13.12.03.12.101.11.11.04.11.001.03.14.04.13.15.00⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡01.14.00001.13.11.03.12.101.10.11.04.11.0003.14.04.13.14.00(2分)最优分配方案:A1-B1,A2-B3,A3-B4A4-B5,A5-B2, 最大的得分:1.3+1.3+1.2+1.5+0.9=6.2五、(6分)按投资项目划分3个阶段,s k 表示从k 阶段到第三阶段可以用于投资的资金,x k 为第k 个项目的投资金额。
则状态转移方程为k k k x s s -=+1,基本方程为:⎪⎩⎪⎨⎧==+=++1,2,30)(}()(max{)(4411k s f s f x g s f k k k k k k(3分)最优方案两个:项目1不投资,项目投资2百万,项目3投资3百万;项目1投资1百万,项目投资2百万,项目3投资2百万;最大收益为21。
六、解题思路(5分):要保持主校区与各分校区之间光缆的畅通,必须使得这五个节点之间保持连通。
图中,主校区与分校区2之间距离较远,其中可通过几个中转点进行连接,但这些中转点不是必须都纳入保持连通。
因此,可将四个分校区作为一部分(四个分校区作为四个点,它们相互间的连线作为边,各边的距离作为该边的权),求它们的最小树。
然后将主校区、分校区2和四个中转点作为一部分(主校区、分校区2和四个中转点作为六个点,它们相互间的连线作为边,各边的距离作为该边的权),求主校区到分校区2的最短路。
最小树、最短路中所包含的边即为铺光缆的路径,最小树的权与最短路长之和为光缆的总长度。
5040502070153040V0V2V8V7V5V630(4分)V0至V2间的最短路为:V 0——V 6——V 8——V2,路长为85公里。
125739V4V3V1V2(4分)最小树为:V1V2,V2V3,V1V4,权为6公里。
(2分)所以光缆铺设路径为:主校区——中转站2——中转站4——分校区2——分校区1——分校区4和分校区2——分校区3,共需要光缆91公里。
七、(1)(5分)(2)(2分)(3)(2分)关键工序A 、D 、H 、I ,总工期是54天。
(4)(1分)应在关键工序上压缩2天。