2011年全国各地中考数学真题分类汇编—三角形的边与角
- 格式:doc
- 大小:424.00 KB
- 文档页数:13
2011 年全国各地 100 份中考数学试卷分类汇编第 21章三角形的边与角一、选择题1. (2011福建福州,10,4 分)如图3, 在长方形网格中, 每个小长方形的长为2,宽为1, A 、B 两点在网格格点上,若点则知足条件的点C 个数是(C 也在网格格点上), 以A、B、C 为极点的三角形面积为 2 ,A.2 B.3 C.4 D. 5BA图 3【答案】 C2. (2011山东滨州,5,3 分)若某三角形的两边长分别为 3 和4,则以下长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9【答案】 B3.( 2011 山东菏泽, 3,3 分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠等于A. 30°B.45°C. 60°D. 75°45°30°【答案】 D4. (2011山东济宁,形是()A.直角三角形C.钝角三角形3,3 分)若一个三角形三个内角度数的比为B.锐角三角形D.等边三角形2︰ 7︰ 4,那么这个三角【答案】 B5.(2011 浙江义乌, 2,3 分)如图, DE 是△ ABC 的中位线,若 BC 的长是 3cm,则 DE 的长是()AD EB CA. 2cm B. 1.5cm C. 1.2cm D.1cm【答案】 B6. ( 2011 台湾台北,23)如图 (八 ),三边均不等长的ABC ,若在此三角形内找一点O,使得OAB 、OBC 、OCA 的面积均相等。
判断以下作法何者正确?A.作中线AD ,再取AD 的中点OB.分别作中线AD 、BE ,再取此两中线的交点OC.分别作AB 、BC 的中垂线,再取此两中垂线的交点OD.分别作 A 、 B 的角均分线,再取此两角均分线的交点O【答案】 B7.( 2011 台湾全区, 20)图 (五 )为一张方格纸,纸上有一灰色三角形,其极点均位于某两网格线的交点上,若灰色三角形面积为21平方公分,则此方格纸的面积为多少平方公分?4A .11B. 12C. 13D. 14【答案】B8. (2011 江苏连云港,5,3 分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,怎样求这个三角形的面积?小明提示说:“可经过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的选项是()【答案】 C9.( 2011 江苏苏州, 2,3 分)△ ABC的内角和为A.180 °B.360 °C.540 °D.720 °【答案】 A10.(2011 四川内江, 2,3 分)如图,把一块直角三角板的直角极点放在直尺的一边上,如果∠ 1=32°,那么∠ 2 的度数是A. 32°B. 58°C. 68°D. 60°21【答案】 C11.(2011 湖南怀化, 2, 3 分)如图 1 所示,∠ A、∠ 1、∠ 2 的大小关系是A. ∠ A>∠ 1>∠ 2 C. ∠ A>∠ 2>∠1B. ∠ 2>∠ 1>∠ A D. ∠ 2>∠A>∠ 1【答案】 B12.( 2011 江苏南通, 4, 3 分)以下长度的三条线段,不可以构成三角形的是A. 3,8,4B. 4, 9,6C. 15, 20, 8 D . 9, 15, 8【答案】 A13. (2011 四川绵阳5, 3)将一副惯例的三角尺按如图方式搁置,则图中∠AOB的度数为BOAA.75°B. 95°C. 105 °D. 120 °【答案】 C14.(2011 四川绵阳 6, 3)王师傅用 4 根木条钉成一个四边形木架,如图 .要使这个木架不变形,他起码要再钉上几根木条 ?A.0 根 B.1 根 C.2 根 D.3 根【答案】 B15.( 2011 广东茂名, 2, 3 分)如图,在△ ABC 中, D、E分别是 AB、 AC的中点,若 DE=5,则 BC=A.6 B. 8 C. 10 D. 12【答案】 C16. (2011山东东营,5,3分)一副三角板,以下图叠放在一同,则图中∠的度数是()A.75B.60C.65D.55【答案】 A17. (2011河北,10,3分)已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A. 2 B.3 C. 5 D. 13【答案】 B18.( 2010 湖北孝感, 8,3 分)如图,在△ ABC中, BD、 CE是△ ABC的中线, BD与 CE订交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是( )A.14cmB.18cmC.24cmD.28cm【答案】 A19.20.21.22.23.24.25.二、填空题1.(2011浙江金华,12,4分)已知三角形的两边长为4,8,则第三边的长度能够是(写出一个即可) .【答案】答案不独一,如2. (2011浙江省舟山,5、6 等14, 4 分)如图,在△ABC 中, AB=AC, A 40 ,则△ ABC的外角∠ BCD=度.BA C D(第 14 题)【答案】 1103.(2011 湖北鄂州, 8, 3 分)如图,△ ABC 的外角∠ ACD 的均分线 CP 的内角∠ ABC 均分线BP 交于点 P,若∠ BPC=40°,则∠ CAP=_______________.A PB C D第 8 题图【答案】 50°4. (2011宁波市,17,3分)如图,在ABC 中, AB= AC, D、E 是分∠ BAC,∠ EBC=∠ E= 60°,若 BE= 6cm, DE= 2cm,则 BC=ABC 内两点,cmAD 平【答案】 85. (2011浙江丽水,12,4分)已知三角形的两边长为4,8,则第三边的长度能够是(写出一个即可 ).【答案】答案不唯一,在4<x<12 之间的数都可6.(2011 江西, 13,3 分)如图,在△ ABC中,点 P 是△ ABC的心里,则∠ PBC+∠ PCA+∠ PAB =度 .第 13题图【答案】 907.( 2011 福建泉州, 15,4 分)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是 AB, CD 的中点 AD BC,PEF 18 ,则PFE 的度数是.FDCPBA E(第 15 题)【答案】 188.( 2011 四川成都, 13,4 分)如图,在△ ABC中,D、E 分别是边 AC、BC 的中点,若 DE=4,则AB= .CD EA B【答案】 8.9.(2011 四川内江,加试 2,6 分)如图,在△ ABC中,点 D、 E 分别是边 AB、 AC的中点DF 过 EC的中点 G 并与 BC的延伸线交于点F,BE 与 DF 交于点 O。
某某2011年中考数学试题分类解析汇编专题9:三角形一、选择题1.(某某某某3分)将一个有45°角的三角板的直角顶点放在一X宽为3c的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为A.3cmB.6cmC.32cmD.62cm【答案】D。
【考点】含300角的直角三角形的性质,等腰直角三角形的判定,勾股定理。
【分析】过点C作CD⊥AD,∴CD=3。
在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6。
又三角板是有45°角的三角板,∴AB=AC=6。
∴BC2=AB2+AC2=62+62=72,∴BC=62。
故选D。
2.(某某某某3分)工人师傅常用角尺平分一个任意角。
做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合。
过角尺顶点C作射线OC。
由做法得△MOC≌△NOC的依据是【答案】D。
【考点】全等三角形的判定。
【分析】∵OM=ON,CM=,OC为公共边,∴△MOC≌△NOC(SSS)。
故选D。
3.(某某某某3分)如图,在网格中有一个直角三角形(网格中的每个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有A.4个 B.6个 C.7个 D.9个【答案】C。
【考点】等腰三角形的判定【分析】根据题意进行分析可知:以原三角形的边长4,5为腰画出即可与新三角形一起组成一个等腰三角形即有6个。
作原来斜边的中垂线,并与边长为3的直角边的延长线交于一点,此点与原三角形斜边两点构成的三角形也符合要求,从而得出结论共有7个符合要求的三角形。
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33 (C )34 (D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MEDCBA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有ABCDEF G (第7题)AB CDEA.1个B.2个C.3个D.4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=30∘,AB=AC,则∠BDE的度数为何?A.45 B.52.5 C.67.5 D.75【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A.2:1 B.3:2 C.4:3 D.5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm【答案】D7. (2011四川凉山州,8,4分)如图,在ABC△中,13AB AC==,10BC=,点D 为BC的中点,D E D E AB⊥,垂足为点E,则D E等于()A.1013B.1513C.6013D.7513【答案】C 8.二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .224. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
山东17市2011年中考数学试题分类解析汇编专题9:三角形一、选择题1. (日照4分)在Rt△ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA =b a.则下列关系式中不成立的是A 、tanA·cotA=1B 、sinA =tanA·cosAC 、cosA =cotA·sinAD 、tan 2A +cot 2A =1【答案】D 。
【考点】三角函数的定义,代数式变换。
【分析】根据三角函数的定义和已知cotA =b a ,逐一计算进行判断;A 、tanA·cotA=a bb a⋅=1,关系式成立;B 、∵左边=sinA =a c ,右边=tanA·cosA=a b b c ⋅=ac,∴左边=右边,关系式成立;C 、∵左边=cosA =b c ,右边=cotA·sinA=b a a c⋅=b c ,∴左边=右边,关系式成立; D 、tan 2A +cot 2A =22a b b a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≠1,关系式不成立。
故选D 。
2.(滨州3分)在△ABC 中,∠C=90°,∠A=72°,AB =10,则边AC 的长约为(精确到0.1)A 、9.1B 、9.5C 、3.1D 、3.5【答案】C 。
【考点】解直角三角形。
【分析】在Rt△ABC 中,根据三角函数的定义有cosA =ACAB,∴ AC=AB•cosA=10·cos72°≈3.1。
故选C 。
3.(烟台4分)如果△ABC 中,,则下列最确切的结论是 A. △ABC 是直角三角形 B. △ABC 是等腰三角形 C. △ABC 是等腰直角三角形 D. △ABC 是锐角三角形 【答案】C【考点】特殊角的三角函数值,三角形分类。
【分析】∵,∴∠A=∠B=45°,∴△ABC 是等腰直角三角形。
故选C 。
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆相似三角形判定和性质一、选择题1.(2011湖北荆州,7,3分)如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,则图中相似三角形有()A、1对B、2对C、3对D、4对考点:相似三角形的判定.专题:证明题.分析:根据题目提供的相等的角和图形中隐含的相等的角,利用两对应角对应相等的两三角形相似找到相似三角形即可.解答:解:∵∠CPD=∠A=∠B,∴△PCF∽△BCP△APG∽△BFP△APD∽△GPD故选B.点评:本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.2.(2011江苏无锡,7,3分)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()A.①与②相似B.①与③相似 C.①与④相似D.②与③相似考点:相似三角形的判定。
分析:由OA:OC﹣=0B:OD,利用对顶角相等相等,两三角形相似,①与③相似,问题可求.解答:证明:∵OA:OC=0B:OD,∠AOB=∠COD(对顶角相等),∴①与③相似.故选B.点评:本题解答的关键是熟练记住所学的三角形相似的判定定理,此题难度不大,属于基础题.3.(2011山西,11,2分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2㎝,则AC的长为()A. B.4cm C. D.考点:三角形中位线,相似三角形的相似比专题:相似三角形分析:由题意知DE 是等腰△ABC 的中位线,所以DE ∥BC ,DE =12BC , 因为DE =2㎝,所以BC =4㎝.又DE ∥BC , 所以△ADE ∽△ABC ,且相似比为12.过点A 作AM ⊥BC 于点M .则MC =2㎝, 由点E 是边AC 的中点,EF ∥AM ,所以FC =1㎝.在△EFC 中, 因为正方形DEFG 的边长是2㎝,所以根据勾股定理得ECAC=)cm , 故选D .解答:D点评:此题是三角形中位线, 等腰三角形的性质,勾股定理,相似三角形的相似比等的综合应用.过点A 作AM ⊥BC 于点M ,构造等腰三角形的高学生不易想到.4. (2011陕西,9,3分)如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形共有( )A .2对B .3对C .4对D .5对考点:相似三角形的判定;平行四边形的性质。
某某某某2011年中考数学试题分类解析汇编专题9:三角形 一、选择题 1.(某某某某3分)如图,在Rt△ABC 中,∠ACB=90°,BC=3,AC=15,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则sin∠CAD=A 、14B 、13 C 、154 D 、1515【答案】A 。
【考点】锐角三角函数的定义,线段垂直平分线的性质,勾股定理。
【分析】设AD=x ,则CD=x -3,在直角△ACD 中,(x -3)2+ (15)2=x 2,解得,x=4。
∴CD=4-3=1,∴sin∠CAD=CD 1AD 4=。
故选A 。
2.(某某某某3分)如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A 、2.5B 、22C 、3D 、5【答案】D 。
【考点】勾股定理,实数与数轴。
【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可:由勾股定理可知,∵OB=22215+=,∴这个点表示的实数是5。
故选D 。
3.(某某某某3分)如图,已知AB =AC ,∠A=︒36,AB 的中垂线MD 交AC 于点D 、交AB 于点M 。
下列结论:①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD,正确的有( )个A 、4B 、3C 、2D 、1【答案】B 。
【考点】相似三角形的判定,全等三角形的判定,线段垂直平分线的性质,等腰三角形的判定和性质,三角形内角和定理。
【分析】首先由AB 的中垂线MD 交AC 于点D 、交AB 于点M ,求得△ABD 是等腰三角形,即可求得∠ABD 的度数,又由AB=AC ,即可求得∠ABC 与∠C 的度数,则可求得所有角的度数,可得△BCD 也是等腰三角形,则可证得△ABC∽△BCD:∵AB 的中垂线MD 交AC 于点D 、交AB 于点M ,∴AD=BD。
2011年中考数学试卷试题汇编解直角三角形一、选择题1. (2011湖北武汉市,10,3分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.【答案】B2. (2011湖南衡阳,9,3分)如图所示,河堤横断面迎水BC=5m,则坡面AB的长度是坡AB的坡比是1.15m D.A.10m B.【答案】A3. (2011山东东营,8,3分)河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1高度BC 与水平宽度AC 之比),则AC 的长是( )A .B .10米C .15米D .米【答案】A4. (2010湖北孝感,10,3分)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP=α,地球半径为R ,则航天飞船距离地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A. sin Rα,180R πα B. sin R R α-,()90180R απ- C. sin R R α-,()90180R απ+ D. cos R R α-,()90180R απ- 【答案】B5. (2011宁波市,9,3分)如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为a ,那么滑梯长l 为A.hsin aB.htan aC.hcos aD.h·sin a【答案】A6. (2011台湾台北,34)图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分。
如图(十七),若此钟面显示3点45分时,A点距桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?A.3322-B.+16C.18 D.19【答案】D7. (2011山东潍坊,10,3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m100m95m90m线与地面夹角30°45°45°60°A.甲B.乙C.丙D.丁【答案】D8. (2011四川绵阳10,3)周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米。
广东2011年中考数学试题分类解析汇编专题9:三角形一、选择题1. (茂名3分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE=5,则BC=A 、6B 、8C 、10D 、12【答案】C 。
【考点】三角形中位线定理。
【分析】利用三角形的中位线定理求得BC 即可。
故选C 。
2.(茂名3分)如图,已知:45°<A <90°,则下列各式成立的是 A 、sinA=cosA B 、sinA >cosAC 、sinA >tanAD 、sinA <cosA【答案】B 。
【考点】锐角三角函数的定义,三角形的边角关系。
【分析】∵45°<A <90°,∴BC >AC 。
而sinA=BC AB ,cosA=ACAB ,∴sinA >cosA 。
又∵C=900,∴AB >BC >AC 。
而tanA=BCAC,∴sinA <tanA 。
故选B 。
3.(深圳3分)如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是【答案】B 。
【考点】相似三角形的判定。
【分析】如B图△EFG和△ABC中,∠EFG=∠ABC=1350,AB 2CB 22 , 2 EF 1GF 2====,AB CB EF GF∴=。
EFG ABC ∴∆∆∽。
实际上, A ,C ,D 三图中三角形最大角都小于∠ABC ,即可排它,选B 即可。
4.(深圳3分)如图,△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE的值为A.3:1 B. 2:1 C.5:3 D.不确定【答案】A 。
【考点】等边三角形的性质,相似三角形的判定和性质。
【分析】连接AO ,DO 。
设等边△ABC 的边长为a ,等边△ABC 的边长为b 。
∵O 为BC 、EF 的中点,∴AO 、DO 是BC 、EF 的中垂线。
∴∠AOC=∠DOC=900,∴∠AOD=1800—∠COE 。
2011年全国各地中考数学真题分类汇编—三角形的边与角一、选择题1. (2011福建福州,10,4分)如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2B .3C .4D . 5【答案】C2. (2011山东滨州,5,3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9 【答案】B3. (2011山东菏泽,3,3分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于A .30°B .45°C .60°D .75°【答案】D4. (2011山东济宁,3,3分)若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形 【答案】B5. (2011浙江义乌,2,3分)如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是( )30°45°α图3[来源:Z+xx+]A .2cmB .1.5cmC .1.2cmD .1cm[来源:Z*xx*] 【答案】B6. (2011台湾台北,23)如图(八),三边均不等长的ABC ∆,若在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA∆的面积均相等。
判断下列作法何者正确?A . 作中线AD ,再取AD 的中点OB . 分别作中线AD 、BE ,再取此两中线的交点OC . 分别作AB 、BC 的中垂线,再取此两中垂线的交点OD . 分别作A ∠、B ∠的角平分线,再取此两角平分线的交点O 【答案】B7. (2011台湾全区,20)图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分?A . 11B . 12C . 13D . 14 【答案】B8. (2011江苏连云港,5,3分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) E A BCD【答案】C9. (2011江苏苏州,2,3分)△ABC 的内角和为 A.180° B.360° C.540° D.720° 【答案】A10.(2011四川内江,2,3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是A .32°B .58°C .68°D .60°【答案】C11. (2011湖南怀化,2,3分)如图1所示,∠A、∠1、∠2的大小关系是[来源:学科网ZXXK]A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠1【答案】B12. (2011江苏南通,4,3分)下列长度的三条线段,不能组成三角形的是A. 3,8,4B. 4,9,6C. 15,20,8D. 9,15,8【答案】A13. (2011四川绵阳5,3)将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为 12B[来源:学+科+网Z+X+X+K]A.75° B.95° C.105° D.120°【答案】C14. (2011四川绵阳6,3)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少要再钉上几根木条?A.0根 B.1根 C.2根 D.3根【答案】B15. (2011广东茂名,2,3分)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC=A.6 B.8 C.10 D.12【答案】C16. (2011山东东营,5,3分)一副三角板,如图所示叠放在一起,则图中∠ 的度数是()A.75 B.60 C.65 D.55【答案】A17. (2011河北,10,3分)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【答案】B18. (2010湖北孝感,8,3分)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连结AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是( )[来源:学,科,网]A.14cmB.18cmC.24cmD.28cm【答案】A19.20.21.22.23.24.25.二、填空题1.(2011浙江金华,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是(写出一个即可).【答案】答案不唯一,如5、6等2. (2011浙江省舟山,14,4分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = 度.【答案】1103. (2011湖北鄂州,8,3分)如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.[来源:学#科#网]【答案】50°4. (2011宁波市,17,3分)如图,在∆ABC 中,AB =AC ,D 、E 是∆ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm,则BC = cm【答案】85. (2011浙江丽水,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).【答案】答案不惟一,在4<x <12之间的数都可6. (2011江西,13,3分)如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB = 度.第8题图(第14题)A BCD第13题图 【答案】907. (2011福建泉州,15,4分)如图,在四边形ABCD 中,P 是对角线BD 的中点,E F,分别是A B C D ,的中点18AD BC PEF =∠= ,,则PFE ∠的度数是 .[来源:学科网ZXXK]【答案】188. (2011四川成都,13,4分) 如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,若DE =4,则AB = .【答案】8.9. (2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O 。
若△ADE 的面积为S ,则四边形BOGC 的面积= .CFDBE AP(第15题)[来源:Z 。
xx 。
]【答案】74S 10.(2011江苏淮安,10,3分)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=8,则DE= .B【答案】411. (2011上海,16,4分)如图, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.【答案】54°12. (2011江苏无锡,17,2分)如图,在△ABC 中,AB = 5cm ,AC = 3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为______________cm .EDC BABCDE G FO【答案】813. (2011湖北黄冈,6,3分)如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.【答案】214. (2011湖北黄冈,8,3分)如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.【答案】50°15. (2011湖南衡阳,17,3分)如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC折叠,使点C 与点A 重合,折痕为DE ,则△ABE的周长为 .第8题图第6题图BCBCDE (第17题)【答案】 816. (2011江苏盐城,16,3分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5,则AB 的长为 ▲ .AB CD E【答案】1017. (2011重庆市潼南,13,4分)如图,在△ABC 中,∠A=80°,点D 是BC 延长线上一点,∠ACD=150°,则∠B= .【答案】70○18. (2011湖北鄂州,6,3分)如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.【答案】219. (2011江苏扬州,16,3分)如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,MN=6,则BC=第6题图BCABD13题图o150o80【答案】820.(2011湖南湘潭市,15,3分)如下图,已知:△ABC 中,DE ∥BC ,AD =3,DB =6,AE =2,则EC =_______.【答案】421.22.三、解答题1. (2011江苏连云港,28,12分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形的面积之比等于这条边上的对应高之比;(2)有一个角应相等的两个三角形的面积之比等于夹这个角的两边乘积之比; …现请你根据对下面问题进行探究,探究过程可直接应用上述结论.(S 表示面积) 问题1:如图1,现有一块三角形纸板ABC ,P 1,P 2三等分边AB ,R 1,R 2三等分AC.经探究S 四边形P1R1 R2R2=13S △ABC ,请证明. AE C BD问题2:若有另一块三角形纸板,可将其与问题1中的△ABC拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究S四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求S四边形P2Q2Q3P3.问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.2.[来源:学科网]。