上海市卢湾区2011届高三数学上学期期末考试 理
- 格式:doc
- 大小:401.50 KB
- 文档页数:7
卢湾区2010学年第一学期高三年级期末考试 数学参考答案及评分标准 2011.1一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分.1.{} 2 2.(0, 1) 3.5, 44ππ⎧⎫⎨⎬⎩⎭4 5.12 6.57.1320 8.5 9.6 10.0.7 11.(理)6(文)2 12.1513.14 14.1()2n a b -+二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.A 16.C 17.D 18.B三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分12分)本题共2个小题,第1小题满分6分,第2小题满分6分. (1)由2i z +是实数,可设2iz+= a ,R a ∈, 故(2i)2i z a a a =+=+, ………………3分 所以2i z z a -=,又4i z z -=,可得24a =,即2a =,所以42i z =+. ………………6分 (2)由|i |5z m -<,可得|4(2)i |5m +-<,又R m ∈5< ………………9分 即216(2)25m +-<,解得15m -<<, 所以实数m 的取值范围是(1,5) -. ………………12分 20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.(1)由(2)q p q -⊥,可得(2)q p -·q =0, ………………2分 即2||2q p -·0q =,又(cos ,sin )p B B =- ,(cos ,sin )q C C = 所以22cos sin 2(cos cos sin sin )0C C B C B C +--=,即1cos()2B C +=,又0B C π<+<, ………………6分∴3B C π+=,故2π()3A B C π=-+=. ………………8分(2)在△ABC 中,由2222cos BC AB AC AB AC A =+-⋅,可得22()2(1cos )BC AB AC AB AC A =+-⋅+, ………………10分即22142(1)2AB AC =-⋅⋅-,故4AB AC ⋅=, ………………12分∴11sin 422S AB AC A =⋅=⨯= ………………14分21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)延长RP 交AB 于E ,延长QP 交AD 于F ,由ABCD 是正方形,PRCQ 是矩形,可知,PE AB PF AD ⊥⊥, 由TAP θ∠=,可得6cos EP θ=,6sin FP θ=,∴76sin PR θ=-,76cos PQ θ=-, ………………4分 ∴(76sin )(76cos )S PR PQ θθ=⋅=--4942(sin cos )36sin cos θθθθ=-++故S 关于θ的函数解析式为4942(sin cos )36sin cos =-++S θθθθπ(0)2θ≤≤.……6分(2)由sin cos t θθ+=,可得22(sin cos )t θθ=+12sin cos θθ=+,即21sin cos 2t θθ-=, ∴22494218(1)184231S t t t t =-+-=-+. ……………9分又由π02θ≤≤,可得3π444ππθ≤+≤,故πsin cos )4t θθθ=+=+∈,∴S 关于t 的表达式为2184231S t t =-+(∈t ). ……………11分又由271318()62S t =-+,t ∈可知当t =时,S 取最大值,故S的最大值为67-. ………………14分 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)由1,()4a f x =-=,可得224x x --=,设2x t =,则有14t t --=,即2410t t --=,解得2t =± ………………2分当2t =22x =2log (2x =+.当2t =22x =故所求x的值为2log (2+. ………………4分 (2)设12,[1,),x x ∈+∞且12x x >,则112212()()(22)(22)x x x x f x f x a a ---=+-+21121222(22)2x x x x x x a +-=-+12121222(2)2x x x x x x a ++-=- ………………7分由12x x >,可得1222x x >,即12220x x ->由12,[1,),x x ∈+∞12x x >,可得122x x +>,故12240x x +>>, 又4a ≤,故122x x a +>,即1220x x a +->TNFE RQθPD CBA所以12()()0f x f x ->,即12()()f x f x >,故函数()f x 在[1,)+∞上是增函数. ………………10分 (3)由2(2)[()]f x f x >2222222222x x x x a a --⇔+>++222()20x a a a -⇔-+< ………………12分设22x t -=,由[0,1]x ∈,可得1[,1]4t ∈,由存在[0,1]x ∈使得2(2)[()]f x f x >,可得存在1[,1]4t ∈,使得2()20a a t a -+<, ………………14分 令2()()20g t a a t a =-+<,故有211()()2044g a a a =-+<或2(1)()20g a a a =-+<,可得70a -<<.即所求a 的取值范围是(7,0)-. ………………16分 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.(1)当a n +b n 2≥0时,b n +1-a n+1= a n +b n 2 -a n = b n -a n2;当a n +b n 2<0, b n +1-a n +1 = b n - a n +b n 2 = b n -a n 2.所以,总有b n +1-a n +1 = 12(b n -a n ),又110,0b a ><,可得110b a ->,所以数列{b n -a n }是等比数列. ………………4分(2)①由111,2a b =-=,可得111022a b +=>,故有11221[,][,]2a ba b a +=,∴112122a b b +==,211a a ==-,从而222a b =-, 故当n =1时,222n n a b =-成立. ………………6分 ②假设当n k =时,222n n a b =-成立,即222k k a b =-, 由22230k k k b a b -=>,可得20k b >,2222220222k k k k k a b b b b +-+==-<, 故有2221212[,][,]2k k k k k a b a b b +++=, ∴22221212,22k k k k k k a b ba b b +++==-=, ………………9分222121220224k kk k k bb a b b ++-++==>,故有2121222221[,][,]2k k k k k a ba b a ++++++= ∴212122224k k k k a b bb ++++==, 222212k k k b a a ++==-,故2(1)2(1)2k k a b ++=-∴当1n k =+时,222n n a b =-成立.综合①②可得对一切正整数n ,都有222n n a b =-. ………………12分(3)假设存在11,a b ,使得数列{}n a 为常数数列,由(1)可得b n -a n =11()b a -(12)n -1,又1n a a =,故b n =111()a b a +-(12)n -1, ………………14分由1n n a a +=恒成立,可知a n +b n 2≥0,即111()a b a +-(12)n≥0恒成立,即2n ≤111a b a -对任意的正整数n 恒成立, ………………16分 又111a b a -是正数,故n ≤1121log a ba -对任意的正整数n 恒成立,因为1121log a b a -是常数,故n ≤1121log a ba -不可能对任意正整数n 恒成立.故不存在11,a b ,使得数列{}n a 为常数数列. ………………18分。
卢湾区2010学年第一学期高三年级期末考试历史参考答案及评分标准说明:下列答案为参照性示例,能够运用核心知识准确解答即可得分。
31.(13分)1)(3分)原因:秦汉以来,官员选拔主要通过推举制度,特别是魏晋南北朝以来,门阀士族凭借显赫的声望逐步把持选举大权,庶族地主遭排斥;推举制还使推举人与被推举人形成特殊的施恩和报恩关系,地方门阀往往凭借这根盘根错节的政治、社会势力扩展自己力量对统一王朝构成威胁。
为了加强对地方控制,采取了新的人才选拔制度。
2)(8分)举措:首先,在考试制度和规则方面做了较大的改革:考试分为解试、省试和殿试三级。
为保证科举考试的公正和公平,创设了“弥封”、“誊录”等制度规则;(3分)其次,考试内容发生了很大变化:宋朝中期后废除“帖经”,不再以诗赋优劣取士,增加策论考试,以考核士子对儒家典籍的理解和对社会事务的分析能力。
(3分)影响:通过改革而逐步完善、兴盛的科举制,不仅为宋朝选拔了大量的文官人才,进一步巩固了中央集权,也对普及教育和传播知识产生了积极影响。
(2分)3)(2分)举措:办学校、派游学。
32. (8分)1)孟德斯鸠:古代中国是一个专制的国家。
伏尔泰:古代中国是一个开明君主制的国家。
(2分)2)共同之处:都反对君主专制,主张民主、自由、平等、理性的启蒙思想。
(2分)相同目的:为自己所提出的启蒙思想的理论服务。
(1分)3)答案一:孟德斯鸠。
理由:明清时期从废丞相设内阁、军机处以及文字狱禁锢思想等措施,充分显示了君主君主专制空前加强,答案二:伏尔泰。
理由:①明清以儒家仁政、德政思想治国,强调道德伦理的教化;②明清时期农耕经济达到顶峰,从某种程度上说明了中国政治制度优越。
(3分)33.(9分)第一次:调整:19世纪末,产生垄断组织;(2分)影响:适应了生产力的发展,使美国经济在19世纪末跃居世界首位。
但是在自由竞争条件下形成的垄断资本,加剧了竞争的无序性,扩大了社会的两极分化,成为经济危机和社会冲突的重要原因。
上海市延安中学2010年度第一学期期终考试高三年级数学试卷(理科)一、 填空题(本大题满分56分)本大题共有14题,要求直接填写结果,每个空格填对得4分,否则一律得零分.1.若点(,)A x y 是240︒角终边上异于原点的一点, 则yx的值为 . 2.已知向量()()()2,1,,1,1,2-=-=-=c m b a ,若()a b +∥c ,则_________=m . 3.计算:222)1(2lim++-∞→n CC n n nn = .4. 62x ⎛- ⎝的展开式中,3x 的系数等于____________. 5.已知等比数列{}n a 各项均为正数,1235a a a =,78915a a a =,则456a a a = . 6.已知集合{}6|||3,|12A x x B x x ⎧⎫=≤=≥⎨⎬+⎩⎭,则A B = . 7.函数()lgsin 3f x x π⎛⎫=-⎪⎝⎭的单调递增区间是 . 8.已知函数()y g x =的图像与函数1ln(1)(2)2x y x +-=>的图像关于直线y x =对称,则函数()g x 的解析式为()g x = .9.已知圆C 过点()1,0,且圆心在x 轴的正半轴上,直线l :1y x =-被圆C所截得的弦长为则过圆心且与直线l 垂直的直线的方程为 .10.将标号为123456、、、、、的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为12、的卡片放入同一信封,则不同的放法共有 种. 11.已知空间中两点()()1,2,3,2,2,6A B -,若存在点P 满足3AB PB =,则点P 的坐标为 .12.某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过...的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.那么ξ的数学期望为_____小时. 13.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD 是平面α内边长为R 的正三角形,线段AC 、AD 分别与球面交于点M 、N ,那么M 、N 两点间的球面距离是 . (用R 表示)14.已知()f x 是定义在实数集R 上的不恒为零的函数,且对于任意,a b ∈R ,满足()22f =,()()()f ab af b bf a =+,记()()22,22n n n n nf f a b n==,其中*N n ∈.考察下列结论:①()()01f f =;②()f x 是R 上的偶函数;③数列{}n a 为等比数列;④数列{}n b 为等差数列.其中正确结论的序号有 .二、选择题(本大题满分20分)本大题共有4 题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得5 分,不选、选错或者选出的代号超过一个,一律得零分.15.已知函数2sin y x =的定义域为[],a b ,值域为[]2,1-,则b a -的值不可能是 ( )(A )65π(B )π(C )67π(D )π216. 曲线2y ax =与直线y kx b =+相交于两点,它们的横坐标为12x x 、,而3x 是直线与x 轴交点的横坐标,那么( )(A )312x x x =+ (B )31211x x x =+ (C )132312x x x x x x =+ (D )122331x x x x x x =+17. 记实数1x ,2x ,…,n x 中的最大数为{}12max ,,n x x x …,,最小数为{}12min ,,n x x x …, 已知ABC 的三边长为,,()a b c a b c ≤≤,定义它的倾斜度为max ,,min ,,a b c a b c b c a b c a ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭则“1=”是“ABC 为等边三角形”的( )(A )必要而不充分条件 (B )充分而不必要条件(C )充要条件 (D )既不充分也不必要条件18. 过正方体1111ABCD A BC D -的顶点A 作直线l ,使直线l 与1AB AD AA 、、所成的角都相等,这样的直线l 可以作( )(A )1条 (B )2条 (C )3条 (D )4条 三、解答题(共74分)19.(本题满分12分其中第1小题5分,第2小题7分) 如图,面ABCD ⊥面PAD ,△APD 是等腰直角三角形,90APD ∠=︒,四边形ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,22AD BC AB ==,的中点是AD O(1)求证://CD PBO 平面;(2)求直线PB 与直线CD 所成角的大小.20.(本题满分14分,其中第1小题7分,第2小题7分)设ABC ∆的三个内角A B C 、、所对的边分别为a b c 、、,且满足()()()20a c BC BA c CA CB +⋅+⋅=. (1)求角B 的大小;(2)若b =AB CB ⋅的最小值. 21.(本题满分14分,其中第1小题6分,第2小题8分)已知圆M (M 为圆心)的方程为22(2)1x y +-=,直线l 的方程为20x y -=,点P 在直线l 上,过P 点作圆M 的切线PA PB 、,切点为A B 、. (1)若60APB ∠=,试求点P 的坐标;(2)求证:经过A P M 、、三点的圆必过定点,并求出所有定点的坐标. 22.(本题满分16分. 其中第1小题4分,第2小题5分,第3小题7分) 已知数列{}n a 的前n 项和为n S ,且对任意正整数n ,满足2n n a S +=. (1)求数列{}n a 的通项公式;(2)用反证法证明:数列{}n a 中不存在任意三项按原来顺序成等差数列; (3)若从数列{}n a 中依次抽取一个无限多项的等比数列,使它的所有项的和S 满足416113S <<,这样的等比数列有多少个?23.(本题满分18分,其中第1小题4分,第2小题6分,第3小题8分) 已知函数4()()f x x a a x=-+∈R . (1)若0a =,求不等式()0f x ≥的解集;(2)当方程()2f x =恰有两个实数根时,求a 的值;(3)若对于一切(0,)x ∈+∞,不等式()1f x ≥恒成立,求a 的取值范围.OPDCBA上海市延安中学2010年度第一学期期终考试参考答案高三年级数学试卷(理科) 一、填空题:(每题4分,共56分) 1.. 1- 3.324. 240 5.6. (]2,3-7. 52,236k k k Z ππππ⎛⎤++∈ ⎥⎝⎦可全开 8.()21112x g x e x -⎛⎫=+> ⎪⎝⎭ 9.30x y +-= 10. 18 11.()1,2,5- 12.7213.17arccos25R ⋅ 14.① ③ ④ 二、选择题:(每题5分,共20分)三、解答题(共78分) 19.(本题满分12分其中第1小题5分,第2小题7分)(1)因为2AD BC =,且O 是AD 中点,所以OD BC =,又//AD BC ,所以//OD BC , 所以四边形BCDO 为平行四边形,所以//CD BO , …………………………………………3分 又CD 不在平面PBO且BO平面PBO ,故//CD 平面PBO , …………………………………………5分(2)//CD BO ,直线PB 与CD 所成角即为PB 与BO 所成角. …………6分 设2AD a =,则由题意知,AB AO a ==,又AB AO ⊥,故BO =APD ∆为等腰直角三角形,且90APD ∠=︒,O 为AD 中点,∴POAD ⊥且12PO AD a == (8)分又平面PAD ⊥平面ABCD , PO ∴⊥面ABCD∴PO BO ⊥ …………………………………………10分在Rt BPO ∆中,arctan2PBO ∠=PB 与BO 所成角为arctan 2………………12分 注:arctanarcsin arccos233==以上答案均可. 20. (本题满分14分其中第1小题7分,第2小题7分)(1)因为()()(2)0a c BC BA c CA CB +⋅+⋅=,所以(2)cos cos 0a c ac B cab C ++=, 即(2)cos cos 0a c B b C ++=,则(2sin sin )cos sin cos 0A C B B C ++= …………4分 所以2sin cos sin()0A B C B ++=,即1cos 2B =-,所以23B π=…………………7分 (2)因为22222cos3b a c ac π=+-,所以22123a c ac ac =++≥,即4ac ≤ ………11分 所以AB CB ⋅=21cos 232ac ac π=-≥-,即AB CB ⋅的最小值为2- ………14分 21.(本题满分14分,其中第1小题6分,第2小题8分)(1)设(2,)P m m ,由题可知12sin 30MP ==︒,即22(2)(2)4m m +-=,……………3分解得:40,5m m == 故所求点P 的坐标为(0,0)P 或84(,)55P . ……………6分(2)设(2,)P m m ,MP 的中点(,1)2mQ m +,因为PA 是圆M 的切线所以经过,,A P M 三点的圆是以Q 为圆心,以MQ 为半径的圆, 故其方程为:2222()(1)(1)22m mx m y m -+--=+- ……………………………9分 化简得:222(2)0x y y m x y +--+-=,此式是关于m 的恒等式,故2220,20,x y y x y ⎧+-=⎨+-=⎩解得02x y =⎧⎨=⎩或11x y =⎧⎨=⎩ 即()0,2和()1,1. ……………14分22.(本题满分16分. 其中第1小题4分,第2小题5分,第3小题7分) (1)当1n =时,11122a S a +==,则11a =. (1)分又2n n a S +=,112n n a S ++∴+=,两式相减得112n n a a +=, {}n a ∴是首项为1,公比为12的等比数列,112n n a -∴=- ……………………………………………………4分 (2)反证法:假设存在三项按原来顺序成等差数列,记为111,,()p q r a a a p q r +++<< 则1112222q p r =+, 2221r q r p --∴=+(*) ……………………………………………………7分p q r << *,r q r p N ∴--∈∴(*)式左边是偶数,右边是奇数,等式不成立∴假设不成立,原命题得证. ……………………………………………………9分(3)设抽取的等比数列首项为12m ,公比为12n,且满足N,0,1m n m n ∈≥≥、, 则12112m n S =-416113S <<,14216112m n ∴>-,整理得:61224m m n --< ① 1n ≥ 122m nm --∴≤ 1612224m m m n --∴≤-< 4m ∴≤ …………………………………11分113S < 11213m ∴< 4m ∴≥4m ∴= …………………………………………………13分将4m =代入①式整理得6423n< 4n ∴≤ ……………15分经验证得1,2n =不满足题意,3,4n =满足题意.综上可得满足题意的等比数列有两个. ……………………………………16分 23.(本题满分18分,其中第1小题4分,第2小题6分,第3小题8分) (1)由0a =得4()f x x x=+当0x >时,4()0f x x x =+≥恒成立;∴0x > ………………………………2分当0x <时,4()0f x x x=-+≥,得2x ≥或2x ≤-,又0x <,∴2x ≤-所以不等式()0f x ≥的解集为(,2](0,)-∞-⋃+∞………………………………………4分(2)由()2f x =得42x a x-=- 令124,2y x a y x=-=-由函数图像知两函数图像在y 轴右边只有一个交点时满足题意 ……………………6分42x a x-=-即2(2)40x a x -++=由0∆=得2,6a =- ………………………………10分(3)41(0)x a x x-+≥> 当0a ≤时,41(0)x a x x -+≥>,41(0)x a x x+-≥>,3a ≤所以0a ≤ ………………………………12分 当0a >时4 ()4 0x a x a xf x x a x a x ⎧+-≥⎪⎪=⎨⎪-++<<⎪⎩………………………………13分① 当x a ≥时,4 1x a x +-≥,即41(0)a x x x ≤+-≥>,令4()1g x x x=+- 02a <≤时,(2)3a g ≤=,所以02a <≤ 2a >时,4()1a g a a a≤=+-,所以4a ≤,24a <≤ 所以04a <≤ ……………………………………………………15分 ②当0x a <<时,4 1x a x -++≥,即41(0)a x x x≥-+> 所以41a a a≥-+,4a ≤ …………………………………………17分 综上,a 的取值范围是(,4]-∞ ……………………………………18分。
卢湾区2010学年第一学期高三年级期末考试数学试卷 2011.1(本卷完成时间为120分钟,满分为150分)一.填空题(本大题满分56分)本大题共有14小题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,{1,2}B =,则()U A B =ð .2.函数1lg(1)y x=-的定义域是 . 3.方程sin cos x x =在[0,2π)上的解集是 .4.当πcos12=a 时,行列式211121a a +-的值是 .5.222135lim(212121n n n n →∞++++++ (2)2121n n -++)的值为 . 6.已知函数()y f x =是奇函数,当0x <时,()f x =2x ax +()a ∈R ,且(2)6f =,则a = .7.一个算法的程序框图如图所示,则该算法运行后输 出的结果为 .8.若方程1n 2100x x +-=的解为0x ,则大于0x 的最小 整数是 .9.已知函数()(2)2af x x x x =+>-的图像过点(3,7)A ,则此函数的最小值是 .10.在一次招聘口试中,每位考生都要在5道备选试题 中随机地抽出3道题回答,答对其中2道题即为及格. 若一位考生只会回答5道题中的3道题,则这位考生 能够及格的概率为 .11.(理)某投篮游戏规定:每轮至多投三次,直到首次命中为止.第一次就投中,得8分;第一次不中且第二次投中,得6分;前两次均不中且第三次投中,得4分;三次均不中,得0分.若某同学每次投中的概率为0.5,则他每轮游戏的得分X 的数学期望为 .(文)若实数x , y 满足不等式组10,10,0.x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则2z x y =+的最大值为 .12.一个调查机构就某地居民的月收入调查 了10000人,将所得数据分成如下六组:[1000,1500), [1500,2000), [2000,2500), [2500,3000), [3000,3500), [3500,4000),(第7题图)(第12题图))相应的频率分布直方图如图所示.若按月 收入将这10000人也分成上述六组,并通 过分层抽样抽出100人作进一步调查,则[3000,3500)这一组中应抽出 人.13.若454233241)1()1()1()1(x a x a x a x a x a =+-+-+-+-,则234a a a ++的值为 .14.设O 是直线AB 外一点,OA a =,OB b =,点123,,,A A A …1,n A -是线段AB 的n (n ≥2)等分点,则1231n OA OA OA OA -++++= .(用,,a b n 表示)二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.函数tan(31)y x =+的最小正周期是 ( )A .π3 B .2π3 C .3π2D .π16.在三棱锥P —ABC 中,所有棱长均相等,若M 为棱 ABP A 与CM)ABC .6D .317.将5,6,7,8四个数填入12349⎛⎫⎪ ⎪⎪⎝⎭中的空白处以构成三行三列方阵,若要求每一行从左到右、每一列从上到下依次增大,则满足要求的填法种数为 ( ) A .24 B .18 C .12 D .618.已知()f x 是单调减函数,若将方程()f x x =与1()()f x f x -=的解分别称为函数()f x 的不动点与稳定点.则“x 是()f x 的不动点”是“x 是()f x 的稳定点”的 ( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤.19.(本题满分12分)本题共2个小题,第1小题6分,第2小题6分.已知z 是复数,2iz+为实数(i 为虚数单位),且4i z z -=. (1)求复数z ;(2)若|i|5z m -<,求实数m 的取值范围.ACPM(第16题图)20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知A ,B ,C 为△ABC 的三个内角,向量(cos ,sin )p B B =- ,(cos ,sin )q C C = ,且(2)q p q -⊥.(1)求A ∠的大小;(2)若4BC AC AB =+=,求△ABC 的面积.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图所示,ABCD 是一块边长为7米的正方形铁皮,其中ATN 是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC 与CD 上的长方形铁皮PQCR ,其中P 是TN 上一点.设TAP θ∠=,长方形PQCR 的面积为S 平方米.(1)求S 关于θ的函数解析式;(2)设sin cos t θθ+=,求S 关于t 的表达式以及S 的最大值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数()22x x f x a -=+(常数)a ∈R . (1)若1a =-,且()4f x =,求x 的值;(2)若4a ≤,求证函数()f x 在[1,)+∞上是增函数;(3)若存在[0,1]x ∈,使得2(2)[()]f x f x >成立,求实数a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3TNRQθPD CBA小题满分6分.已知负数1a 和正数1b ,且对任意的正整数n ,当2n na b +≥0时, 有[1n a +, 1n b +]= [n a , 2n n a b +];当2n n a b +<0时, 有[1n a +, 1n b +]= [2n na b +, n b ].(1)求证数列{n n b a -}是等比数列;(2)若111,2a b =-=,求证222n n a b =-()n ∈N*;(3)是否存在11,a b ,使得数列{}n a 为常数数列?请说明理由.卢湾区2010学年第一学期高三年级期末考试 数学参考答案及评分标准 2011.1一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分.1.{} 2 2.(0, 1) 3.5, 44ππ⎧⎫⎨⎬⎩⎭4 5.12 6.57.1320 8.5 9.6 10.0.7 11.(理)6(文)2 12.1513.14 14.1()2n a b -+ 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.A 16.C 17.D 18.B三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分12分)本题共2个小题,第1小题满分6分,第2小题满分6分. (1)由2i z +是实数,可设2iz+= a ,R a ∈, 故(2i)2i z a a a =+=+, ………………3分 所以2i z z a -=,又4i z z -=,可得24a =,即2a =,所以42i z =+. ………………6分 (2)由|i |5z m -<,可得|4(2)i |5m +-<,又R m ∈5< ………………9分 即216(2)25m +-<,解得15m -<<, 所以实数m 的取值范围是(1,5) -. ………………12分 20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.(1)由(2)q p q -⊥,可得(2)q p -·q =0, ………………2分 即2||2q p -·0q =,又(cos ,sin )p B B =- ,(cos ,sin )q C C = 所以22cos sin 2(cos cos sin sin )0C C B C B C +--=, 即1cos()2B C +=,又0B C π<+<, ………………6分∴3B C π+=,故2π()3A B C π=-+=. ………………8分 (2)在△ABC 中,由2222cos BC AB AC AB AC A =+-⋅,可得22()2(1cos )BC AB AC AB AC A =+-⋅+, ………………10分即22142(1)2AB AC =-⋅⋅-,故4AB AC ⋅=, ………………12分∴11sin 4222S AB AC A =⋅=⨯⨯= ………………14分 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)延长RP 交AB 于E ,延长QP 交AD 于F ,由ABCD 是正方形,PRCQ 是矩形,可知,PE AB PF AD ⊥⊥, 由TAP θ∠=,可得6cos EP θ=,6sin FP θ=,∴76sin PR θ=-,76cos PQ θ=-, ………………4分 ∴(76sin )(76cos )S PR PQ θθ=⋅=--4942(sin cos )36sin cos θθθθ=-++故S 关于θ的函数解析式为4942(sin cos )36sin cos =-++S θθθθπ(0)2θ≤≤.……6分(2)由sin cos t θθ+=,可得22(sin cos )t θθ=+12sin cos θθ=+,即21sin cos 2t θθ-=, ∴22494218(1)184231S t t t t =-+-=-+. ……………9分又由π02θ≤≤,可得3π444ππθ≤+≤,故πsin cos )4t θθθ=+=+∈,∴S 关于t 的表达式为2184231S t t =-+(∈t ). ……………11分又由271318()62S t =-+,t ∈可知当t 时,S 取最大值,故S的最大值为67-. ………………14分 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)由1,()4a f x =-=,可得224x x --=,设2x t =,则有14t t --=,即2410t t --=,解得2t =± ………………2分当2t =22x =2log (2x =+.当2t =22x =故所求x的值为2log (2+. ………………4分TNFE RQθPD CBA(2)设12,[1,),x x ∈+∞且12x x >,则112212()()(22)(22)x x x x f x f x a a ---=+-+21121222(22)2x x x x x x a +-=-+12121222(2)2x x x x x x a ++-=- ………………7分由12x x >,可得1222x x >,即12220x x ->由12,[1,),x x ∈+∞12x x >,可得122x x +>,故12240x x +>>, 又4a ≤,故122x x a +>,即1220x x a +-> 所以12()()0f x f x ->,即12()()f x f x >,故函数()f x 在[1,)+∞上是增函数. ………………10分 (3)由2(2)[()]f x f x >2222222222x x x x a a --⇔+>++222()20x a a a -⇔-+< ………………12分设22x t -=,由[0,1]x ∈,可得1[,1]4t ∈,由存在[0,1]x ∈使得2(2)[()]f x f x >,可得存在1[,1]4t ∈,使得2()20a a t a -+<, ………………14分 令2()()20g t a a t a =-+<,故有211()()2044g a a a =-+<或2(1)()20g a a a =-+<,可得70a -<<.即所求a 的取值范围是(7,0)-. ………………16分 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.(1)当a n +b n 2≥0时,b n +1-a n+1= a n +b n 2 -a n = b n -a n2;当a n +b n 2<0, b n +1-a n +1 = b n - a n +b n 2 = b n -a n 2.所以,总有b n +1-a n +1 = 12(b n -a n ),又110,0b a ><,可得110b a ->,所以数列{b n -a n }是等比数列. ………………4分 (2)①由111,2a b =-=,可得111022a b +=>,故有11221[,][,]2a ba b a +=, ∴112122a b b +==,211a a ==-,从而222a b =-, 故当n =1时,222n n a b =-成立. ………………6分 ②假设当n k =时,222n n a b =-成立,即222k k a b =-, 由22230k k k b a b -=>,可得20k b >,2222220222k k k k k a b b b b +-+==-<, 故有2221212[,][,]2k k k k k a b a b b +++=, ∴22221212,22k k k k k k a b ba b b +++==-=, ………………9分222121220224kkk k k b b a b b ++-++==>,故有2121222221[,][,]2k k k k k a b a b a ++++++=∴212122224k k k k a b b b ++++==, 222212k k k ba a ++==-,故2(1)2(1)2k k ab ++=-∴当1n k =+时,222n n a b =-成立.综合①②可得对一切正整数n ,都有222n n a b =-. ………………12分 (3)假设存在11,a b ,使得数列{}n a 为常数数列,由(1)可得b n -a n =11()b a -(12)n -1,又1n a a =,故b n =111()a b a +-(12)n -1, ………………14分由1n n a a +=恒成立,可知a n +b n 2≥0,即111()a b a +-(12)n≥0恒成立,即2n ≤111a b a -对任意的正整数n 恒成立, ………………16分 又111a b a -是正数,故n ≤1121log a ba -对任意的正整数n 恒成立,因为1121log a b a -是常数,故n ≤1121log a ba -不可能对任意正整数n 恒成立.故不存在11,a b ,使得数列{}n a 为常数数列. ………………18分。
20XX年中学测试中学试题试卷科目:年级:考点:监考老师:日期:20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:卢湾区20XX学年第一学期高三年级期末考试英语试卷第I卷I. Listening comprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A. In a restaurant. B. In a hospital.C. At a theatre.D. At a railway station.2. A. Husband and wife. B. Brother and sister.C. Teacher and student.D. Clerk and customer.3. A. Sam turned it in. B. He turns in the lock.C. It was in the lock.D. He got it from Sam.4. A. Coffee. B. A chocolate milk shake.C. Tea.D. A vegetable salad.5. A. She thinks they ca n’t go to the theatre without the car.B. She suggests going to the theatre by subway.C. She believes the man’s brother will let them use the car first.D. She thinks the theatre is far away from here.6. A. He hates going to the piano course.B. He would like to make decisions himself.C. He is too old to learn the piano.D. He is already good at playing the piano.7. A. She is already a teacher.B. She doe sn’t know what she will do after graduation.C. She has no desire to teach.D. She likes teaching very much.8. A. Read a book. B. Write a composition.C. Talk about a problem.D. Listen to the radio.9. A. Someone has told him where it is.B. He doesn’t know, either.C. He knows where it is but can’t tell the woman.D. He has asked someone for help.10. A. She lost her car.B. She drove here.C. Something was wrong with her car.D. She broke the traffic rules.Section BDirections: In Section B, you will hear two short passages, and you will be asked three questions on each of the passages. The passages will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions 11 through 13 are based on the following passage.11. A. There are too many people everywhere.B. There are always too many cars in Tokyo.C. The places where he wants to be are always very crowded.D. The streets in Tokyo are narrow.12. A. At 11:00 pm. B. At 11:30 pm.C. At 12:00 pm.D. At 12:30 pm.13. A. About 3,500. B. About 35,000.C. About 350,000.D. About 3,500,000.Questions 14 through 16 are based on the following passage.14. A. In Anhui province. B. In Shanxi province.C. In Shandong province.D. In Hubei province.15. A. When he was building a house.B. When he was digging a tomb in the fields.C. When he was digging a channel to place a pipes for tap water.D. When he was cleaning his yard.16. A. Three. B. Four. C. Five. D. Six.Section CDirections: In Section C, you will hear two longer conversations. The conversations will be read twice. After you hear eachconversation, you are required to fill in the numbered blanks with the information you hear. Write your answers on your answer sheet.Blanks 17 through 20 are based on the following conversation.Information About the Woman SpeakerName: Barbara 17._____The date of birth: February 26th, 18. ______The trained secretarial courses: Shorthand, 19. _____ conversation skills andword processor skills.Thetelephone number : 20. _____Complete the form. Write ONE WORD for each answer.Blanks 21 through 24 are based on the following conversation.Aspect InformationThe time of the conference: The fifth of 21. _____The duration (持续时间) of the conference: 22. _____The paper for Professor Nelson to give: On 23. _____The people to attend the conference: 24. _____ from all over theworldComplete the form. Write NO MORE THAN THREE WORDS for each answer.II. Grammar and vocabularySection ADirections: Beneath each of the following sentences there are four choices marked A, B, C and D. Choose the one answer that best completes the sentence.25.Though she tried hard to pull the fish _____ her, she was pulled deeper into the water.A. byB. withC. afterD. towards26.The boy’s parents often quarrel about their son, and _____ of them is willing to give in.A. anyB. othersC. neitherD. none27.It’s high time you had your hair cut, since it’s getting _____.A. too much longB. much too longC. long too muchD. too long much28.She won’t leave the computer game _____ her husband is waiting for his supper.A. as thoughB. even thoughC. whetherD. whenever29.Early to bed and early to rise _____ a man healthy, wealthy and wise.A. makesB. makeC. has madeD. will make30._____ unemployment and crime is high, it can be assumed that the latter is due to the former.A. BeforeB. WhereC. UnlessD. Until31.I felt very happy _____ into the Bird’s Nest to watch the performances that Jackie Chanhosted.A. to admitB. to be admittedC. admitD. admitting32.John promised his wife he _____ not smoke, and he has never smoked ever since.A. mightB. shouldC. mustD. would33.People often provide their children with toys, footballs or basketballs, _____ that all childrenlike these things.A. thinkingB. thinkC. to thinkD. thought34.--- Is that the small town you often refer to?--- Right, just the one _____, you know, I used to work for years.A. thatB. whichC. whereD. what35.You should understand the traffic rule by now, since you’ve had it _____ often enough.A. explainingB. to explainC. explainD. explained36.It is said that no attention _____ other possibilities at the meeting the day before yesterday.A. was paid toB. paid toC. had been paid toD. had paid to37.High technology has been used in teaching. As a result, not only _____, but students becamemore interested in the lessons.A. saved was teachers’ energyB. was teachers’ energy savedC. teachers’ energy was savedD. was saved teachers’ energy38.Those businesspersons are getting well-prepared for the coming season, for they can’t risk_____ the good opportunity.A. to loseB. losingC. to be lostD. being lost39._____ those boys called the grey-headed gentleman really made the old man frustrated.A. WhichB. WhetherC. HowD. What40.The reason _____ she gave for not coming to the party puzzled all of the people present.A. whatB. whyC. asD. whichSection BDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.A. handsB. qualitiesC. downD.curiosityE. prettyF.looksG. ashamedH. appliedI.ruinedJ. informationWhen I succeeded in becoming a part-time employee of Nokia China last summer, many friends asked me how I survived the interview.I once asked myself the same questions. Many of my peers also __41__ for the job, including some very competitive and intelligent students from famous universities.But why did the interviewer pick me instead of them?Finally, __42 __ pushed me to ask the interviewers after we became colleagues. The answer was that I appeared confident but humble, responsible and communicative. They evaluated people not just on their academic certificates, but on the base of their __43__ and abilities. I happened to be the right person.To be frank, I once felt __44__ of being a student from an unknown college, and I think this may apply to some of you. I thought my future was ruined. It was only at the time of my successful interview that Ifinally understood the famous saying --- “You decide where you go.”A wide range of skills is important these days. I used to work for Master Kong. My job was to cook instant noodles for customers. I had regarded it as a piece of cake, but I failed constantly. I had to cook the noodles for the right amount of time to make them taste good. Moreover, the noodles could only remain in a plastic cup of five minutes, or the taste would be __45__.This experience taught me never to look __46__ on anything, and always remain humble.I also worked as a volunteer for a beach volleyball event. My job was to help foreign visitors experience the beach. I thought it would be very easy because my oral English was __47__ good. But when I went to talk with a group of foreign guests, I suddenly realized that I did not know a single beach volleyball term. I was embarrassed.After this, I read brochures in both Chinese and English every day to learn the terms for facilities and related words. This allowed me to deliver accurate __48__ to foreigners, and I was happy to work responsibly.After theseexperience, I’m more confident and I strongly believe that my fate is in my __49__. It has certainly helped me make a giant step closer to my dream of graduating with prospects for the future. I hope my advice will benefit you as well.III. Reading ComprehensionSection ADirections:For each blank in the following passages there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.On a cold November afternoon, my mother and I were walking home from a pizza shop. We were dressed __50__ and equipped with a rented video we had been __51__ to watch. I was feeling a little __52__ as I was carrying our shopping, and decided to throw away something. So I started to walk towards a garbage can when I noticed a poor man walking out of the restaurant in front of us. He __53__ over to another nearby garbage can and started looking through it.I suddenly felt very guilty because I was about to throw away a new drink just because it was __54__. I walked up to him and handed the drink and some snacks over to him. The man lookedup __55__ and took what I gave him.A huge smile __56__ across his face and this caused me to feel indescribably satisfied. I felt I couldn’t be happier __57__ myself, but then he said, “Wow, this is my son’s lucky day!”With that, he thanked me happily and started off on his bike, I __58__ heard him whistling a song as he rode away.I got a warm __59__ inside. I now understand what is meant by the saying “giving is getting”.Although it only __60__ a little action and a few words, I gained and learned more in those two minutes than I did in the rest of the month. Everyone in the world needs help, everyone can __61__ help and everyone will be helped by __62__ kindness.The image of that man’s happiness caused by my small gift appears in my mind every __63__ I have the chance to do something nice.This is the __64__ of charity.50. A. poorly B. coldly C. warmly D. expensively51. A. dying B. exciting C. worrying D. happy52. A. worried B. interested C. bored D. tired53. A. headed B. passed C. crossed D. took54. A. cheap B. heavy C. tasteless D. full55. A. in silence B. in surprise C. in interest D. in a hurry56. A. appeared B. spread C. went D. ran57. A. with B. to C. at D. for58. A. still B. once C. even D. ever59. A. sense B. mind C. thinking D. feeling60. A. held B. took C. called D. asked61. A. offer B. send C. show D. have62. A. showing B. expressing C. lending D. setting63. A. moment B. day C. minute D. time64. A. power B. meaning C. strength D. aimSection BDirections: Read the following four passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.AIf you asked me, over a year ago, to choose between the neon lights and street lights of Chengdu, I would have chosen the colourful ones without hesitation. But my experiences during the time of the severe earthquake have given me a different perspective.In fear of the after shocks people would be constantly moving about and they stayed out of doors during the nights. When night fell and rain set in, we could feel cold, tired and helpless. But I remember one night, which changed my whole attitude to the lights of Chengdu. All of a sudden, there was a beam of yellow, then another, and another. Before we knew it, there were lights oneverywhere. The sea of light had the effect of making us feel overwhelmingly secure.I realized that the lights, which we had taken for granted before, were protecting the whole city.Then there were the people who came to our rescue, who made every effort to protect and save lives. I saw local taxi drivers on the road all night long transporting injured people to the hospitals. I saw volunteers from other parts of China hurrying with living essentials to the worst-hit areas…At that moment, Chengdu became a place where the word ‘love’ was being spelt in capital letters by caring people from every corner of the planet.Reconstruction is still in progress, but I’ve already come to understand that the quality of life in Chengdu comes not from the number of its modern buildings… but from the hope, the faith, the optimism, and the determination of the people…65.What does the underlined word mean?A. determinationB. evaluationC. destinationD. viewpoint66.What did the writer think of the street lights before the earthquake?A.The writer thought the street lights were very important to the people.B.The writer believed people couldn’t do without street lights.C.The writer considered the street lights as something natural.D.The writer had no idea about the street lights.67.What’s the best title for this passage?A. EarthquakeB. Lights in RainC. Hope, the LightsD. Love of PeopleBIn the UK, students’residence halls are run as profit-making business, but this can occasionally be to students’ disadvantage.As many universities choose to contract out their hall’s management to private companies, room rents are rising and student rights are suffering.In 20XX, 55 percent of student rooms were managed by private companies --- only 27 percent by universities and colleges, the National Union of Students (NUS) has reported.These private companies are improving the hall’s facilities in return for higher room rents. The most noticeable example of this trend is the growth in luxury halls. These are halls for students willing to pay more for larger rooms with better services.Chancellors Court, at EdinburghUniversity in Scotland, is one such luxury hall. Rooms are divided between standard and large, with larger rooms costing 173 pounds each week, 40 pounds more than smaller rooms. They come with a scenic view, color TV, fast Internet connection and a modern bathroom.Other luxury halls have private gyms for their residents. Private companies capitalize (用…以牟利) on their investment by renting out the students rooms to travelers over the summervacation period.But the NUS is concerned that luxury halls are affecting room rents at standard un-privatized halls. Most students in the UK pay on average 126 pounds a week for a private room in catered (提供餐饮的) halls of residence, the International Students Advice and Welfare organization has reported. According to the NUS, rent in UK halls of residence has risen by almost a quarter from 20XX to 2021.Veronica King, NUS vice-president of welfare, wants the privatization of university accommodation to stop.“For the students for whom luxury is not affordable, there is a significant risk that accommodation costs, coupled with the burden of complete fees, may reduce the choice of where to go to university,” she said.Legal quarrels with privatized (私有化了的) halls may also account for some of the 10 percent per year rise in student complaints to the office of the Independent Adjudicator for Higher Education (OIA). The OIA is an independent student complaints scheme that has authority over all higher education institutions in England and Wales.Rob Behrens, chief executive of the OIA, said he was unsurprised by the rise in complaints. “The bottom line is that students are today more self-confident in thinking about what their rights are and what are the things they can get form the commitments they make.”68.Why are room rents rising in British universities?A.Because the world is facing a financial crisis.B.Because most universities are getting bored about students’ complaints.C.Because many universities let private companies run students’ halls.D.Because not all universities can meet the demands of the students.69.Which of the following is not mentioned about a luxury hall?A.Students have to pay more for a luxury hall.B.Students can have a good view in a luxury hall.C.Students can enjoy their own gym in a luxury hall.D.Students can have an Internet connection free of charge.70.Why do some students want to pay more for a luxury hall?A.Because they just want to show that they are rich.B.Because they are better served in a luxury hall.C.Because there are too much complaints about small rooms.D.Because there are no other choices.71.What may happen to those who can’t afford the accommodation fee?A.They may borrow more money from the bank.B.They maygo to OIA for help.C.They may not go to college.D.They may go abroad for further study.CToday’s career assumption is that you can get a lot of development, challenge and job satisfaction and not necessarily be in a management role.Managing others is always a tough task, but in the past that stress was balanced by hopes for career mobility and financial rewards. Along with a sizable pay raise, people chosen as managers would begin a nearly automatic climb up the career ladder to successful executive private benefits: company cars, club memberships, plus the key to the executive washroom.But in today’s global and more competitive showground, a manager sits in an insecure (不稳定的)chair. More companies has begun to take less management as they come to view their organizations as collections of talents rather than hierarchies (等级). There are far fewer steps for managers to climb. Also, managerial jobs demand more hours and headaches than ever before but offer slim, if any financial paybacks and perks.Now managers must manage many people who are spread over different locations, even over different continents. They must manage across functions with, say, design, finance and marketing.In many companies, when the most praised people in business are those launching something new, management seems like an invisible, thankless role. Employers are looking for people who can do things, not for people who make other people do things.Moreover it may not pay to be a manager, at least not the way it once did. Ms. Chmielewski says, “The emotional rewards can be great, and there were times when I enjoyed management. But a 10-to-11-hour day and one weekend day a month is the norm (标准)”.With more people cautious of joining management, are companies being hurt or worrying about developing future leaders? Not many are. While employers have fired a lot of managers, they believe many more candidates linger on at many companies. “Another reason why companies aren’t short of managers,” argues Robert Kelley, a business professor, “is that so many workers today are self-managed, either individually or via teams, they don’t need a manager.”72.By writing the passage, the writer seems to _____.A. explain reasons for firing managersB. advise people not to become managersC. express dissatisfaction of some managersD. encourage managers to be more competitivepared with past, the managing job today is more _____.A. demandingB. rewardingC. questionableD. acceptable74.The author mentions what Ms Chmielewski says to reflect that _____.A.the managers’ low working efficiency makes them less paidB.the gain of being a manager is not as satisfactory as beforeC.she enjoys great emotional rewards of being a manager nowD.she misses the past enjoyment of being a manager75.What can we infer from the last paragraph?A.More and more people are eager to become managers.B.There will be more managers to be employed in the future.C.Employers think it easy for them to find managers in the future.D.Teamwork makes it possible for companies not to hire more managers.Section CDirections: Read the following text and choose the most suitable heading from the list A-F for each paragraph. There is one extra heading which you do not need.A.Take your vitamins.B.Remember to brush before bed.C.Wash your hair now and then.D.Get your protein.E.Walk it off.F.Eat good fats.It is very important to keep your hair healthy. Here are five ways for you.76. _____ Good fats are also called necessary fatty acids which the body can’t produce naturally. Eating these types of fats will help promote healthy skin, nails, teeth and hair. They can be found in the form of oil, or in food such as seeds, nuts and olives.77. _____ Hair is nothing more than dead protein. But that doesn’t mean that it is not important. A lack of it can cause slow growth and thinning, where on the contrary, getting enough amounts can help promotes growth. Good choices to include in the diet would be eggs, lean meats, tofu, fish, yogurt and beans.78. _____ There are a handful of vitamins that have been known to be effective for healthy hair. Some of the main ones include vitamin B, biotin, calcium, vitamins A, C and E, and iron. Other than in extra form, these nutrients can also be found naturally in citrus (柑橘类) fruits, peppers, low-fat dairy products, dried fruits, green vegetables and whole grains. A large salad can be made with the inclusion of a lot of these food.79. _____ Getting enough exercise can help promote hair growth. Circulation to the scalp isa very important factor for healthy hair and growth. Aim to get at least 20 to 30 minutes of exercise every day. It can be walking, jogging, weight training, biking or moderate intensity activity that is enjoyable and easy to fit into your schedule.80. _____ Right after you brush your teeth, brush your hair as well. Brushing hair fifty to one hundred strokes right before bed can help remove pollutants and dirt while also stimulating circulation. Also, natural oils are released, which will add more sheen (光泽) and oxygen to your hair.Section DDirection: Read the passage carefully. Then answer the questions or complete the statements in the fewest words.(Note: Answer the questions or complete the statements in NO MORE THAN TEN WORDS.) Every day we meet people in a number of business and social situations. And the way we meet and greet them creates an impression. It’s important to do so in proper way, no matterwhether you areintroducing yourself to someone, or introducing two people to each other. To keep you aware of this, we have gathered tips on how to make a proper introduction.✧Always stand when making an introduction.When you are seated and someone comes up to greet you, make the effort to stand up. By doing this, you show respect for yourself and for the other person.✧Always maintain eye contact while making an introduction.Many people are not aware of the value of this simple action. When you make eye contact you are giving a confident image.✧Always introduce a person of lesser authority to one of greater authority.The most important thing to remember is to say the most important person’s name first. For example, when introducing you supervisor to a job candidate, you would give your supervisor’s name first. “Bob Jones, may I introduce Susan Lee, who has just graduated from ABCUniversity?”✧In a situation where rank is unimportant, an introduction is based on sex and age.A man is presented to a woman and a younger woman to an older woman. What if you find yourself in a situation where you have forgotten the other person’s name? Start with a handshake and reintroduce yourself. By doing this, you will usually cause the other person to do the same. However, if the other person does not take your suggestion, it is OK simply to apologize and let the person know that you can’t remember her or his name. This is not the ideal situation, of course, but it doesn’t happen to all of us. The other person should be forgiving.81.When you are sitting and a person comes to you, hoping to talk to you, you should___________________________________.82.Why does a person need to maintain eye contact while making a conversation?_____________________________________________________________83.Who should you introduce first, your grandfather or your classmate?_____________________________________________________________84.If you forget a person’s name, you’d better_____________________________________________________________.第II卷I. TranslationDirections:Translate the following sentences into English, using the word or phrase given in the brackets.1.他们已经为那位可怜的母亲募集了近两千元。
浦东新区2010学年度第一学期期末质量抽测高三数学试卷(理科)2011.1注意:1. 答卷前,考生务必在试卷上指定位置将学校、班级、姓名、考号填写清楚. 2. 本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数xx y --=21的定义域为__________________. 2.函数)1(log 3-=x y 的反函数是__________________.3.若五个数3,2,1,0,a 的平均数为1,则这五个数的方差等于__________________. 4.方程0cos sin sin cos =xx x x 的解为__________________.5.若“条件α:2x ≤4≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是__________________.6.从一个底面半径和高都是R 的圆柱中,挖去一个以圆柱的上底为底,下底面的中心为顶点的圆锥,得到一个如图(1)所示的几何体,那么这个几何体的体积是_________________. 7.在等差数列}{n a 中,18,0654321=++=++a a a a a a ,则数列}{n a 的通项公式为__________________.8.在ABC ∆中,60,4,13=∠==ACB BC AB ,则AC 的长等于__________________. 9.已知]32,6[ππα∈,则αsin 的取值范围是__________________.10.执行如图(2)所示的程序框图,若输入0=x ,则输出y 的值为__________________.11.已知方程)(04)4(2R a ai x i x ∈=++++有实数根b ,则复数=+bi a __________________.12.世博期间,5人去某地铁站参加志愿者活动,该地铁站有4个出口,要求每个出口都要有志愿者服务,不同安排方法有__________________种(用数值表示).图(1)图(2)13.设定义*N上的函数⎪⎩⎪⎨⎧=)()2()()(为偶数为奇数n nf n nn f ,)2()3()2()1(n n f f f f a ++++= ,那么=-+n n a a 1__________________.14.在某条件下的汽车测试中,驾驶员在一次加满油后的连续行驶过程中从汽车仪表盘得到如下信息:注:油耗=加满油后已行驶距离加满油后已用油量,可继续行驶距离=当前油耗汽车剩余油量,平均油耗指定时间内的行驶距离指定时间内的用油量=.从上述信息可以推断在10∶00—11∶00这1小时内________ (填上所有正确判断的序号) .① 向前行驶的里程为80公里; ② 向前行驶的里程不足80公里; ③ 平均油耗超过9.6升/100公里; ④ 平均油耗恰为9.6升/100公里; ⑤ 平均车速超过80公里/小时.二、选择题(本大题共有4题,满分16分) 每小题都给出四个选项,其中且只有一个选项是正确的,选对得 4分,否则一律得零分.15.若函数)sin()(ϕ+=x x f 是偶函数,则ϕ可取的一个值为( )A .πϕ-=B .2πϕ-=C .4πϕ-=D .8πϕ-=16.关于数列{a n }有以下命题,其中错误的命题为( )A .若2≥n 且n n n a a a 211=+-+,则}{n a 是等差数列B .设数列}{n a 的前n 项和为n S ,且n n a S +=12,则数列}{n a 的通项1)1(--=n n aC .若2≥n 且211n n n a a a =-+,则}{n a 是等比数列D .若}{n a 是等比数列,且k n m N k n m 2,=+∈*,,,则2k n m a a a =17.一颗骰子连续掷两次,朝上的点数依次为a 、b ,使复数)4)((ai b bi a -+为实数的概率是( )A .31 B .41 C .61 D .121 18.点O 在ABC ∆所在平面内,给出下列关系式:(1)0=++OC OB OA ;(2)OA OC OC OB OB OA ⋅=⋅=⋅;(3)0=⎫⎛-⋅=⎫⎛-⋅BA BC OB AB AC OA ; (4)0)()(=⋅+=⋅+BC OC OB AB OB OA .则点O 依次为ABC∆的( )A .内心、外心、重心、垂心B .重心、外心、内心、垂心C .重心、垂心、内心、外心D .外心、内心、垂心、重心三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤. 19.(本小题满分14分,第1小题满分6分,第2小题满分8分) 已知向量),(),,(a a n a a m x x =-=,其中0>a 且1≠a ,⊥;(2)解关于x 的不等式m <+.20.(本小题满分14分,第1小题满分6分,第2小题满分8分)野营活动中,学生在平地上用三根斜杆搭建一个正三棱锥形的三脚支架ABC P -(如图3)进行野炊训练. 已知cm PC 130=,A 、B 两点间距离为cm 350.(1)求斜杆PC 与地面ABC 所成角的大小(用反三角函数值表示);(2)将炊事锅看作一个点Q ,用吊绳PQ 将炊事锅吊起烧水(锅的大小忽略不计),若使炊事锅Q 到地面ABC 及各条斜杆的距离都不小于30cm ,试问吊绳PQ 长的取值范围.21.(本小题满分16分,第1小题满分6分,第2小题满分10分)已知]2,1[,3)(∈-+=x xbx x f (1) 2=b 时,求)(x f 的值域;(2) 2≥b 时,)(x f 的最大值为M ,最小值为m ,且满足:4≥-m M ,求b 的取值范围.22.(本小题满分16分,第1小题满分4分,第2小题满分5分,第3B图(3)小题满分7分)(1)若对于任意的*∈N n ,总有1)1(2++=++n Bn A n n n 成立,求常数B A ,的值;(2)在数列}{n a 中,211=a ,)1(221+++=-n n n a a n n (2≥n ,*∈N n ),求通项n a ;(3)在(2)题的条件下,设2)1(21+++=n n a n n b ,从数列}{n b 中依次取出第1k 项,第2k 项,…第n k 项,按原来的顺序组成新的数列}{n c ,其中n k n b c =,其中m k =1,*+∈=-N r k k n n 1.试问是否存在正整数r m ,使S c c c n n =++++∞→)(lim 21 且131614<<S 成立?若存在,求正整数r m ,的值;不存在,说明理由.23.(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题分6分))x ,如果存在给定的实数对(b a ,),使得b x a f x a f =-⋅+)()(恒成立,则称)(x f 为“S-函数”.(1)判断函数xx f x x f 3)(,)(21==是否是“S-函数”;(2)若x x f tan )(3=是一个“S-函数”,求出所有满足条件的有序实数对),(b a ; (3)若定义域为R 的函数)(x f 是“S-函数”,且存在满足条件的有序实数对)1,0(和)4,1(,当]1,0[∈x 时,)(x f 的值域为]2,1[,求当]2012,2012[-∈x 时函数)(x f 的值域.浦东新区2010学年度第一学期期末质量抽测高三数学试卷(理科)2011.1注意:1. 答卷前,考生务必在试卷上指定位置将学校、班级、姓名、考号填写清楚. 2. 本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数xx y --=21的定义域为_____),2()2,1[+∞ _____. 2.函数)1(log 3-=x y 的反函数是__13+=xy (R x ∈)___.3.若五个数3,2,1,0,a 的平均数为1,则这五个数的方差等于______2_______. 4.方程0cos sin sin cos =xx x x 的解为_____)(,42Z k k x ∈+=ππ______. 5.若“条件α:2x ≤4≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是____]4,(--∞_____.6.从一个底面半径和高都是R 的圆柱中,挖去一个以圆柱的上底为底,下底面的中心为顶点的圆锥,得到一个如图(1)所示的几何体,那么这个几何体的体积是____332R π____. 7.在等差数列}{n a 中,18,0654321=++=++a a a a a a ,则数列}{n a 的通项公式为____42-=n a n _____.8.在ABC ∆中,60,4,13=∠==ACB BC AB ,则AC 的长等于____1或3 ____. 9.已知]32,6[ππα∈,则αsin 的取值范围是____]1,21[______. 10.执行如图(2)所示的程序框图,若输入0=x ,则输出y 的值为______23-________. 11.已知方程)(04)4(2R a ai x i x ∈=++++有实数根b ,则复数=+bi a ____i 22-____.12.世博期间,5人去某地铁站参加志愿者活动,该地铁站有4个出口,要求每个出口都要有志愿者服务,不同安排方法有____240______种(用数值表示).图(1)图(2)13.设定义*N上的函数⎪⎩⎪⎨⎧=)()2()()(为偶数为奇数n nf n nn f ,)2()3()2()1(n n f f f f a ++++= ,那么=-+n n a a 1____n 4_____.14.在某条件下的汽车测试中,驾驶员在一次加满油后的连续行驶过程中从汽车仪表盘得到如下信息:注:油耗=加满油后已行驶距离加满油后已用油量,可继续行驶距离=当前油耗汽车剩余油量,平均油耗指定时间内的行驶距离指定时间内的用油量=.从上述信息可以推断在10∶00—11∶00这1小时内__②③__ (填上所有正确判断的序号) .①行使了80公里; ②行使不足80公里;③平均油耗超过9.6升/100公里; ④平均油耗恰为9.6升/100公里; ⑤平均车速超过80公里/小时. 解题过程:实际用油为7.38.行驶距离为875.761006.938.7=⨯<,所以①错误,②正确. 设L 为已用油量,△L 为一个小时内的用油量,S 为已行驶距离,△S 为一个小时内已行的距离⎪⎩⎪⎨⎧=∆+∆+=6.95.9SS LL S L得S S V V ∆+=∆+6.96.9, S S V S ∆+=∆+6.96.95.9,S S V ∆+=∆6.91.0,6.96.91.0>+∆=∆∆SSS V . 所以③正确,④错误.⑤由②知错误.二、选择题(本大题共有4题,满分16分) 每小题都给出四个选项,其中且只有一个选项是正确的,选对得 4分,否则一律得零分.15.若函数)sin()(ϕ+=x x f 是偶函数,则ϕ可取的一个值为( B )A .πϕ-=B .2πϕ-=C .4πϕ-=D .8πϕ-=16.关于数列{a n }有以下命题,其中错误的命题为( C )A .若2≥n 且n n n a a a 211=+-+,则}{n a 是等差数列B .设数列}{n a 的前n 项和为n S ,且n n a S +=12,则数列}{n a 的通项1)1(--=n n aC .若2≥n 且211n n n a a a =-+,则}{n a 是等比数列D .若}{n a 是等比数列,且k n m N k n m 2,=+∈*,,,则2k n m a a a =17.一颗骰子连续掷两次,朝上的点数依次为a 、b ,使复数)4)((ai b bi a -+为实数的概率是(D)A .31 B .41 C .61 D .121 18.点O 在ABC ∆所在平面内,给出下列关系式:(1)=++;(2)OA OC OC OB OB OA ⋅=⋅=⋅;(3)0=⎫⎛-⋅=⎫⎛-⋅BA BC OB AB AC OA ; (4)0)()(=⋅+=⋅+. 则点O依次为ABC∆的( C )A .内心、外心、重心、垂心B .重心、外心、内心、垂心C .重心、垂心、内心、外心D .外心、内心、垂心、重心三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤. 19.(本小题满分14分,第1小题满分6分,第2小题满分8分) 已知向量),(),,(a a n a a m x x =-=,其中0>a 且1≠a ,n m ⊥; (2)解关于x 的不等式-<+.解:(1)因为0,=⋅⊥n m n m 所以,…………………………………………………………2分得022=-a ax,即22a a x =.……………………………………………………4分所以22=x ,即1=x ,∴当1=x时,n m ⊥.………………………………6分 (2-<+,∴22)()(-<+,0<⋅∴.所以022<-a a x,即22a a x<.…………………………………………………10分当10<<a 时,1>x ,当1>a 时,1>x . 综上,当10<<a 时,不等式的解集为),1(+∞;当1>a 时,不等式的解集为)1,(-∞.……………………………………14分20.(本小题满分14分,第1小题满分6分,第2小题满分8分)野营活动中,学生在平地上用三根斜杆搭建一个正三棱锥形的三脚支架ABC P -(如图3)进行野炊训练. 已知cm PC 130=,A 、B 两点间距离为cm 350.(1)求斜杆PC 与地面ABC 所成角的大小(用反三角函数值表示);(2)将炊事锅看作一个点Q ,用吊绳PQ 将炊事锅吊起烧水(锅的大小忽略不计),若使炊事锅Q 到地面ABC 及各条斜杆的距离都不小于30cm ,试问吊绳PQ 长的取值范围.解:(1)设P 点在平面ABC 上的射影为点O ,连接CO ,50=CO ,……………3分在Rt △POC 中,135cos =∠PCO ,所以135arccos =∠PCO .…5分 即PC 与底面ABC 所成角的大小为135arccos .……6分(2)在Rt △POC 中,解得120=PO ,作PC QD ⊥交PC 于D 点,由30≥QD ,得7813530sin =≥∠=QPD QD PQ .……11分 又9030120=-≤PQ ,………………………………13分 故吊绳长度的取值范围为]90,78[.……………………14分21.(本小题满分16分,第1小题满分6分,第2小题满分10分)已知]2,1[,3)(∈-+=x xbx x f (1) 2=b 时,求)(x f 的值域;B(2) 2≥b 时,)(x f 的最大值为M ,最小值为m ,且满足:4≥-m M ,求b 的取值范围. 解:(1)当b=2时,]2,1[,32)(∈-+=x xx x f . 因为)(x f 在]2,1[上单调递减,在]2,2[上单调递增, ……………………2分所以)(x f 的最小值为322)2(-=f .…………………………………………4分又因为0)2()1(==f f ,……………………………………………………………5分 所以)(x f 的值域为]0,322[-.…………………………………………………6分 (2)(ⅰ)当42<≤b 时,因为)(x f 在],1[b 上单调递减,在]2,[b 上单调递增.所以M=.32)(,2)}2(),1(max {-==-=b b f m b f f412≥+-=-b b m M ,得4)1(2≥-b .即9≥b ,与42<≤b 矛盾.…………………………………………………11分 (ⅱ)4≥b 时,)(x f 在[1,2]上单调递减.M=b-2,12-=b m ,M - m =412≥-b,即10≥b .………………………16分22.(本小题满分16分,第1小题满分4分,第2小题满分5分,第3题满分7分)(1)若对于任意的*∈N n ,总有1)1(2++=++n Bn A n n n 成立,求常数B A ,的值;(2)在数列}{n a 中,211=a ,)1(221+++=-n n n a a n n (2≥n ,*∈N n ),求通项n a ;(3)在(2)题的条件下,设2)1(21+++=n n a n n b ,从数列}{n b 中依次取出第1k 项,第2k 项,…第n k 项,按原来的顺序组成新的数列}{n c ,其中n k n b c =,其中m k =1,*+∈=-N r k k n n 1.试问是否存在正整数r m ,使S c c c n n =++++∞→)(lim 21 且131614<<S 成立?若存在,求正整数r m ,的值;不存在,说明理由. 解:(1)由题设得2)1(+=++n Bn n A 即2)(+=++n A n B A 恒成立,所以⇒⎩⎨⎧==+21A B A 2=A ,1-=B .…………………………………4分(2)由题设)1(221+++=-n n n a a n n (2≥n )又112)1(2+-=++n n n n n 得,)1(2221111n a n a n a n n n +=+=++--,且1211=+a ,即}11{++n a n 是首项为1,公比为2的等比数列, (8)分所以1211-=++n n n a . 即1121+-=-n a n n 为所求.………………………………9分(3)假设存在正整数r m ,满足题设,由(2)知1121+-=-n a n n 显然n n n a n n b 212)1(21=+++=,又n k n b c =得r k k k k nn n n n n b b c c21)21(111===-+++,m k b c 2111==即}{nc 是以m 21为首项,r21为公比的等比数列.………………11分 于是)(lim 21n n c c c S +++=+∞→ rm mrm --=-=22121121,………………………12分 由131614<<S 得4612213<-<-r m m ,*∈N r m ,,所以1422=--rm m 或15,…………………………………………14分当1422=--r m m 时,3,4==r m ;当1522=--rm m 时,4,4==r m ; 综上,存在正整数r m ,满足题设,3,4==r m 或4,4==r m .……………16分23.(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题分6分)已知函数)(x f ,如果存在给定的实数对(b a ,),使得b x a f x a f =-⋅+)()(恒成立,则称)(x f 为“S-函数”.(1)判断函数xx f x x f 3)(,)(21==是否是“S-函数”;(2)若x x f tan )(3=是一个“S-函数”,求出所有满足条件的有序实数对),(b a ; (3)若定义域为R 的函数)(x f 是“S-函数”,且存在满足条件的有序实数对)1,0(和)4,1(,当]1,0[∈x 时,)(x f 的值域为]2,1[,求当]2012,2012[-∈x 时函数)(x f 的值域.解:(1)若x x f =)(1是“S-函数”,则存在常数),(b a ,使得 (a +x )(a-x )=b.即x 2=a 2-b 时,对x ∈R 恒成立.而x 2=a 2-b 最多有两个解,矛盾,因此x x f =)(1不是“S-函数”.……………………………………………………3分若xx f 3)(2=是“S-函数”,则存在常数a ,b 使得a x a xa 2333=⋅-+,即存在常数对(a , 32a )满足.因此x x f 3)(2=是“S-函数”………………………………………………………6分 (2)x x f tan )(3=是一个“S-函数”,设有序实数对(a , b )满足:则tan(a -x )tan(a +x )=b 恒成立. 当a =Z k k ∈+,2ππ时,t an (a -x )t an (a +x )= -cot 2(x ),不是常数 (7)分因此Z k k a ∈+≠,2ππ,Z m m x ∈+≠,2ππ,则有b xa xa x a x a x a x a =--=⋅-+⨯⋅+-2222tan tan 1tan tan tan tan 1tan tan tan tan 1tan tan . 即0)(tan tan )1tan (222=-+-⋅b a x a b 恒成立. ……………………………9分即⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-=-⋅11tan 0tan 01tan 222b a b a a b Z k b k a ∈⎪⎩⎪⎨⎧=±=,14ππ, 当Z m m x ∈+=,2ππ,4ππ±=k a 时,t an (a -x )t an (a +x )=cot 2(a )=1.因此满足x x f tan )(3=是一个“S-函数”的常数(a , b )=Z k k ∈±),1,4(ππ (12)分(3) 函数)(x f 是“S-函数”,且存在满足条件的有序实数对)1,0(和)4,1(, 于是,4)1()1(,1)()(=-⋅+=-⋅x f x f x f x f即]1,0[2]2,1[,4)2()(4)1()1(∈-∈=-⇔=-⋅+x x x f x f x f x f 时,, ]4,2[)2(4)(∈-=x f x f ,]4,1[)(]2,0[∈∈∴x f x 时,.……………………14分)(4)2()2(4)()(1)(4)1()1(1)()(x f x f x f x f x f x f x f x f x f x f =+⇒⎪⎪⎩⎪⎪⎨⎧+=-=-⇒⎩⎨⎧=-⋅+=-⋅.………16分].2,2[)(,]2012,2010[],2,2[)(,]22,2[],2,16[)(,]6,4[],16,4[)(]4,2[201220102226∈∈∈+∈∈∈∈∈+x f x x f k k x x f x x f x k k 时时依次类推可知时时,因此]2,1[)(]2012,0[2012∈∈x f x 时,, (17)分].1,2[)(]2,1[)(],2012,0[,)(1)(,]0,2012[20122012-∈⇒∈-∈--=-∈x f x f x x f x f x 时 综上可知当]2012,2012[-∈x 时函数)(x f 的值域为]2[22012-2012,.……………18分。
卢湾2011学年第一学期高三期末考试地理试卷(完卷时间:120分钟,满分150分)2012、1一、选择题(共50分,每小题2分。
每小题只有一个正确答案,将代表正确答案的字母填入答题纸相应的括号内)(一)作为今年最值得期待的天象,精彩绝伦的月全食在2011年12月10日震撼登场,我国大部分地区均可观测到这一天象。
1.发生月全食的必要条件是A.日、地、月基本在一条线上,月球在中间B.日、地、月基本在一条线上,地球在中间C.当日的月相是新月D.当日的月相是凸月2.在月面图像上,我们可以看见许多大小不一的月海和环形山,对此分析不正确的是A.月球遭遇小天体撞击后形成的B.月球上缺少象地球大气一样的天然屏障C.在地球上永远只能看见月球的正面图形D.月球上存在大小不一的海洋和环形山地3.科学家称“月球是一个绝佳的天文观测场地”,其依据可能是A.月球昼夜交替周期长,适宜观测时间长B.月球的体积小、质量小、引力小C.月球上天气状况稳定,便于观测D.月球上没有灯光及人工无线电的干扰(二)今年因为出现债务危机的葡萄牙、意大利、爱尔兰、希腊和西班牙这五个欧洲国家,因其英文国名首字母组合“PIIGS”类似英文单词“pigs”(猪),故名为“欧猪五国”。
4.上述五国中,分布范围最广的气候类型是A.温带季风气候B.温带海洋性气候C.地中海气候D.温带大陆性气候5.下列地域文化对应不正确的是A.斗牛节——西班牙B.圣帕特里克节——爱尔兰C.威尼斯狂欢节——意大利D.浴佛节——葡萄牙(三)美国作为世界经济第一强国,其发展值得各国借鉴。
6.有关美国地理概况的叙述,正确的是A.能源资源比较贫乏,工业所需能源进口量很大B.密西西比河和五大湖为美国灌溉、航运和发电提供了良好的条件C.美国地处北美大陆中部,缺少寒带、亚寒带气候D.美国是一个单一民族国家,居民以欧洲白种人移民后代为主7.美国农业带形成的主要因素是A.农业技术水平和劳动力资源B.自然条件和市场需求C.种植历史和经营方式D.交通运输和对外贸易8.有关美国工业的叙述,正确的是①东北部工业区是传统工业区②石油、化学、钢铁工业是三大经济支柱③西部工业区是老工业区,发展速度缓慢④休斯敦是全国最大的石油化学工业中心A.①②B.②③C.③④D.①④(四)右图中的甲图是上海豫园名石“玉玲珑”,乙图是台湾东北海岸最著名的海岸怪石“女王头”。
2011年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题4分,满分56分)1.(4分)(2011•上海)函数的反函数为f﹣1(x)=,(x≠0).【考点】反函数.【专题】计算题;函数的性质及应用.【分析】直接利用函数的表达式,解出用y表示x的式子,即可得到答案.【解答】解:设,可得xy﹣2y=1,∴xy=1+2y,可得,将x、y互换得.∵原函数的值域为y∈{y|y≠0},∴,(x≠0)故答案为:,(x≠0)【点评】本题考查了求函数的反函数的一般步骤,属于简单题.2.(4分)(2011•上海)若全集U=R,集合A={x|x≥1}∪{x|x≤0},则∁U A=(0,1).【考点】补集及其运算.【专题】计算题.【分析】由已知条件我们易求出集合A,再根据补集的定义,易求出C U A.【解答】解:∵集合A={x|x≥1}∪{x|x≤0}={x|x≥1,或x≤0}∴C U A={x|0<x<1}=(0,1)故答案为:(0,1)【点评】本题考查的知识点是补集及其运算,其中求出满足条件的集合A是解答的关键.3.(4分)(2011•上海)设m是常数,若点F(0,5)是双曲线的一个焦点,则m=16.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】根据双曲线的焦点坐标判断双曲线的焦点位置是解决本题的关键,利用双曲线标准方程中的分母与焦点非零坐标的关系,列出关于m的方程,通过解方程求出m的值.【解答】解:由于点F(0,5)是双曲线的一个焦点,故该双曲线的焦点在y轴上,从而m>0.从而得出m+9=25,解得m=16.故答案为:16.【点评】本题考查双曲线标准方程中的分母几何意义的认识,考查双曲线焦点位置与方程的关系、考查学生对双曲线中a,b,c关系式的理解和掌握程度,考查学生的方程思想和运算能力,属于基本题型.4.(4分)(2011•上海)不等式的解为.【考点】其他不等式的解法.【专题】计算题.【分析】通过移项通分,利用两个数的商小于等于0等价于它们的积小于等于0,注意分母不为0;再解二次不等式即可.【解答】解:原不等式同解于同解于同解于即解得故答案为:【点评】本题考查将分式不等式转化为整式不等式、注意:分母不为0;考查二次不等式的解法.5.(4分)(2011•上海)在极坐标系中,直线ρ(2cosθ+sinθ)=2与直线ρcosθ=1的夹角大小为arctan.(结果用反三角函数值表示)【考点】简单曲线的极坐标方程;两直线的夹角与到角问题.【专题】计算题.【分析】利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标系,再利用直线的直角坐标方程求出它们的夹角即可.【解答】解:∵ρ(2cosθ+sinθ)=2,ρcosθ=1∴2x+y﹣2=0与x=1∴2x+y﹣2=0与x=1夹角的正切值为直线ρ(2cosθ+sinθ)=2与直线ρcosθ=1的夹角大小为arctan故答案为:arctan【点评】本题考查点的极坐标和直角坐标的互化,能进行极坐标和直角坐标的互,属于基础题.6.(4分)(2011•上海)在相距2千米的A、B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离为千米.【考点】解三角形的实际应用.【专题】解三角形.【分析】先由A点向BC作垂线,垂足为D,设AC=x,利用三角形内角和求得∠ACB,进而表示出AD,进而在Rt△ABD中,表示出AB和AD的关系求得x.【解答】解:由A点向BC作垂线,垂足为D,设AC=x,∵∠CAB=75°,∠CBA=60°,∴∠ACB=180°﹣75°﹣60°=45°∴AD=x∴在Rt△ABD中,AB•sin60°=xx=(千米)答:A、C两点之间的距离为千米.故答案为:下由正弦定理求解:∵∠CAB=75°,∠CBA=60°,∴∠ACB=180°﹣75°﹣60°=45°又相距2千米的A、B两点∴,解得AC=答:A、C两点之间的距离为千米.故答案为:【点评】本题主要考查了解三角形的实际应用.主要是利用了三角形中45°和60°这两个特殊角,建立方程求得AC.7.(4分)(2011•上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥的体积.【解答】解:根据题意,圆锥的底面面积为π,则其底面半径是1,底面周长为2π,又,∴圆锥的母线为2,则圆锥的高,所以圆锥的体积××π=.故答案为.【点评】本题是基础题,考查圆锥的有关计算,圆锥的侧面积,体积的求法,考查计算能力.8.(4分)(2011•上海)函数的最大值为.【考点】三角函数的最值.【专题】计算题.【分析】利用诱导公式和积化和差公式对函数解析式化简整理,进而根据正弦函数的值域求得函数的最大值.【解答】解:=cosxcos(﹣x)=sin(+2x)+≤故答案为:【点评】本题主要考查了三角函数的最值,利用诱导公式和积化和差公式的化简求值.考查了考生对三角函数基础公式的熟练记忆.9.(4分)(2011•上海)马老师从课本上抄录一个随机变量ξ的概率分布律如下表:x 1 2 3P(ξ=x)?!?请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=2.【考点】离散型随机变量的期望与方差.【专题】计算题;整体思想.【分析】根据已知设出P(ξ=1)=P(ξ=3)=a,P(ξ=2)=b,且根据离散型随机变量分布列的性质知2a+b=1,根据离散型随机变量分布列的期望求法即可求得结果.在计算过程中注意整体性.【解答】解:设P(ξ=1)=P(ξ=3)=a,P(ξ=2)=b,则2a+b=1,Eξ=a+2b+3a=2(2a+b)=2,故答案为2.【点评】此题是个基础题.考查离散型随机变量的期望和方差,在计算过程中注意离散型随机变量分布列的性质和整体代换.10.(4分)(2011•上海)行列式(a,b,c,d∈{﹣1,1,2})所有可能的值中,最大的是6.【考点】二阶行列式的定义.【专题】计算题.【分析】先按照行列式的运算法则,直接展开化简得ad﹣bc,再根据条件a,b,c,d∈{﹣1,1,2}进行分析计算,比较可得其最大值.【解答】解:,∵a,b,c,d∈{﹣1,1,2}∴ad的最大值是:2×2=4,bc的最小值是:﹣1×2=﹣2,∴ad﹣bc的最大值是:6.故答案为:6.【点评】本题考查二阶行列式的定义、行列式运算法则,是基础题.11.(4分)(2011•上海)在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则=.【考点】向量在几何中的应用.【专题】计算题;数形结合;转化思想.【分析】根据AB=3,BD=1,确定点D在正三角形ABC中的位置,根据向量加法满足三角形法则,把用表示出来,利用向量的数量积的运算法则和定义式即可求得的值.【解答】解:∵AB=3,BD=1,∴D是BC上的三等分点,∴,∴===9﹣=,故答案为.【点评】此题是个中档题.考查向量的加法和数量积的运算法则和定义,体现了数形结合和转化的思想.12.(4分)(2011•上海)随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为0.985(默认每个月的天数相同,结果精确到0.001)【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数129,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有A129种结果,根据对立事件和古典概型的概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数129,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有A129种结果,∴要求的事件的概率是1﹣=1﹣≈0.985,故答案为:0.985【点评】本题考查古典概型及其概率计算公式,考查对立事件的概率,是一个基础题,也是一个易错题,注意本题的运算不要出错.13.(4分)(2011•上海)设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g (x)在区间[3,4]上的值域为[﹣2,5],则f(x)在区间[﹣10,10]上的值域为[﹣15,11].【考点】函数的周期性;函数的值域.【专题】计算题;压轴题;转化思想.【分析】根据已知中g(x)是定义在R上,以1为周期的函数,由函数f(x)=x+g(x)在区间[3,4]上的值域为[﹣2,5],结合函数的周期性,我们可以分别求出f(x)在区间[﹣10,﹣9],[﹣9,﹣8],…,[9,10]上的值域,进而求出f(x)在区间[﹣10,10]上的值域.法二:可根据g(x)是定义在R上,以1为周期的函数,研究函数f(x)=x+g(x)的性质,得f(x+1)﹣f(x)=1,由此关系求出函数在f(x)在区间[﹣10,10]上的值域即可.【解答】解:法一:∵g(x)为R上周期为1的函数,则g(x)=g(x+1)又∵函数f(x)=x+g(x)在[3,4]的值域是[﹣2,5]令x+6=t,当x∈[3,4]时,t=x+6∈[9,10]此时,f(t)=t+g(t)=(x+6)+g(x+6)=(x+6)+g(x)=[x+g(x)]+6所以,在t∈[9,10]时,f(t)∈[4,11] (1)同理,令x﹣13=t,在当x∈[3,4]时,t=x﹣13∈[﹣10,﹣9]此时,f(t)=t+g(t)=(x﹣13)+g(x﹣13)=(x﹣13)+g(x)=[x+g(x)]﹣13所以,当t∈[﹣10,﹣9]时,f(t)∈[﹣15,﹣8] (2)…由(1)(2)…得到,f(x)在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]法二:由题意f(x)﹣x=g(x)在R上成立故f(x+1)﹣(x+1)=g(x+1)所以f(x+1)﹣f(x)=1由此知自变量增大1,函数值也增大1故f(x)在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]【点评】本题考查的知识点是函数的周期性及函数的值域,其中根据函数的周期性利用换元法将区间[﹣10,﹣9]…上的值域转化为区间[3,4]上的值域问题,是解答本题的关键.14.(4分)(2011•上海)已知点O(0,0)、Q0(0,1)和点R0(3,1),记Q0R0的中点为P1,取Q0P1和P1R0中的一条,记其端点为Q1、R1,使之满足(|OQ1|﹣2)(|OR1|﹣2)<0,记Q1R1的中点为P2,取Q1P2和P2R1中的一条,记其端点为Q2、R2,使之满足(|OQ2|﹣2)(|OR2|﹣2)<0.依次下去,得到P1,P2,…,P n,…,则=.【考点】数列与解析几何的综合;数列的极限.【专题】综合题;压轴题.【分析】由题意(|OQ1|﹣2)(|OR1|﹣2)<0,(|OQ2|﹣2)(|OR2|﹣2)<0.依次下去,则Q1、R1;Q2、R2,…中必有一点在()的左侧,一点在右侧,根据题意推出P1,P2,…,P n,…,的极限为:(),然后求出.【解答】解:由题意(|OQ1|﹣2)(|OR1|﹣2)<0,所以第一次只能取P1R0一条,(|OQ2|﹣2)(|OR2|﹣2)<0.依次下去,则Q1、R1;Q2、R2,…中必有一点在()的左侧,一点在右侧,由于P1,P2,…,P n,…,是中点,根据题意推出P1,P2,…,P n,…,的极限为:(),所以=|Q0P1|=,故答案为:.【点评】本题是基础题,考查数列的极限,数列与解析几何的综合,极限的思想的应用,注意分析题意,P n的规律是本题解答的关键,考查逻辑推理能力.二、选择题(共4小题,每小题5分,满分20分)15.(5分)(2011•上海)若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.C.D.【考点】基本不等式.【专题】综合题.【分析】利用基本不等式需注意:各数必须是正数.不等式a2+b2≥2ab的使用条件是a,b∈R.【解答】解:对于A;a2+b2≥2ab所以A错对于B,C,虽然ab>0,只能说明a,b同号,若a,b都小于0时,所以B,C错∵ab>0∴故选:D【点评】本题考查利用基本不等式求函数的最值时,必须注意满足的条件:已知、二定、三相等.16.(5分)(2011•上海)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是()A.B.y=x3C.y=2|x|D.y=cosx【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】根据题意,将x用﹣x代替判断解析式的情况利用偶函数的定义判断出为偶函数;求出导函数判断出导函数的符号,判断出函数的单调性.【解答】解:对于函数的定义域为x∈R且x≠0将x用﹣x代替函数的解析式不变,所以是偶函数当x∈(0,+∞)时,∵∴在区间(0,+∞)上单调递减的函数故选A.【点评】本题考查奇函数、偶函数的定义;考查利用导函数的符号判断函数的单调性.17.(5分)(2011•上海)设A1,A2,A3,A4,A5是平面上给定的5个不同点,则使=成立的点M的个数为()A.0 B.1 C.5 D.10【考点】向量的加法及其几何意义.【专题】计算题;压轴题.【分析】根据题意,设出M与A1,A2,A3,A4,A5的坐标,结合题意,把M的坐标用其他5个点的坐标表示出来,进而判断M的坐标x、y的解的组数,进而转化可得答案.【解答】解:根据题意,设M的坐标为(x,y),x,y解得组数即符合条件的点M的个数,再设A1,A2,A3,A4,A5的坐标依次为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5);若=成立,得(x1﹣x,y1﹣y)+(x2﹣x,y2﹣y)+(x3﹣x,y3﹣y)+(x4﹣x,y4﹣y)+(x5﹣x,y5﹣y)=,则有x=,y=;只有一组解,即符合条件的点M有且只有一个;故选B.【点评】本题考查向量加法的运用,注意引入点的坐标,把判断点M的个数转化为求其坐标即关于x、y的方程组的解的组数,易得答案.18.(5分)(2011•上海)设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是()A.{a n}是等比数列B.a1,a3,…,a2n﹣1,…或a2,a4,…,a2n,…是等比数列C.a1,a3,…,a2n﹣1,…和a2,a4,…,a2n,…均是等比数列D.a1,a3,…,a2n﹣1,…和a2,a4,…,a2n,…均是等比数列,且公比相同【考点】等比数列的性质.【专题】压轴题.【分析】根据题意可表示A i,先看必要性,{A n}为等比数列推断出为常数,可推断出a1,a3,…,a2n﹣1,…和a2,a4,…,a2n,…均是等比数列,且公比相同;再看充分性,要使题设成立,需要为常数,即a1,a3,…,a2n﹣1,…和a2,a4,…,a2n,…均是等比数列,且公比相等,答案可得.【解答】解:依题意可知A i=a i•a i+1,∴A i+1=a i+1•a i+2,若{A n}为等比数列则==q(q为常数),则a1,a3,…,a2n﹣1,…和a2,a4,…,a2n,…均是等比数列,且公比均为q;反之要想{A n}为等比数列则=需为常数,即需要a1,a3,…,a2n﹣1,…和a2,a4,…,a2n,…均是等比数列,且公比相等;故{A n}为等比数列的充要条件是a1,a3,…,a2n﹣1,…和a2,a4,…,a2n,…均是等比数列,且公比相同.故选D【点评】本题主要考查了等比数列的性质,充分条件,必要条件和充分必要条件的判定.考查了学生分析问题和基本的推理能力.三、解答题(共5小题,满分74分)19.(12分)(2011•上海)已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.【考点】复数代数形式的混合运算.【专题】计算题.【分析】利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.【解答】解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.20.(12分)(2011•上海)已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a•b<0,求f(x+1)>f(x)时的x的取值范围.【考点】指数函数单调性的应用;指数函数的单调性与特殊点.【专题】计算题.【分析】(1)先把a•b>0分为a>0,b>0与a<0,b<0两种情况;然后根据指数函数的单调性即可作出判断.(2)把a•b<0分为a>0,b<0与a<0,b>0两种情况;然后由f(x+1)>f(x)化简得a•2x>﹣2b•3x,再根据a的正负性得>或<;最后由指数函数的单调性求出x的取值范围.【解答】解:(1)①若a>0,b>0,则y=a•2x与y=b•3x均为增函数,所以f(x)=a•2x+b•3x 在R上为增函数;②若a<0,b<0,则y=a•2x与y=b•3x均为减函数,所以f(x)=a•2x+b•3x在R上为减函数.(2)①若a>0,b<0,由f(x+1)>f(x)得a•2x+1+b•3x+1>a•2x+b•3x,化简得a•2x>﹣2b•3x,即>,解得x<;②若a<0,b>0,由f(x+1)>f(x)可得<,解得x>.【点评】本题主要考查指数函数的单调性及分类讨论的方法.21.(14分)(2011•上海)已知ABCD﹣A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.(1)设AB1与底面A1B1C1D1所成角的大小为α,二面角A﹣B1D1﹣A1的大小为β.求证:;(2)若点C到平面AB1D1的距离为,求正四棱柱ABCD﹣A1B1C1D1的高.【考点】与二面角有关的立体几何综合题;点、线、面间的距离计算.【专题】综合题;转化思想.【分析】(1)此题由题意画出图形因为ABCD﹣A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点,且设AB1与底面A1B1C1D1所成角的大小为α,二面角A﹣B1D1﹣A1的大小为β,所以应先利用线面角及二面角的定义求出α,β,即可得证;(2)由图形借助面面垂直找到点C在平面AB1D1的位置,利用三角形的相似解出.【解答】解:(1)由题意画出图形为:∵ABCD﹣A1B1C1D1是底面边长为1的正四棱柱,∴底面为正方形且边长为1,又因为AB1与底面A1B1C1D1所成角的大小为α,∴,又因为二面角A﹣B1D1﹣A1的大小为β,且底面边长为1的正四棱柱,O1为A1C1与B1D1的交点,∴∠AO1A1=β,∴而底面A1B1C1D1为边长为1的正方形,∴,∴.(2)∵O1为B1D1的中点,而△AB1D1是以B1D1为底边的等腰三角形,∴AO1⊥B1D1∴B1D1⊥平面ACC1A1∴平面AB1D1⊥平面ACC1A1且交线为AO1,∴点C到平面AB1D1的投影点必落在A01上即垂足H,在矩形AA1C1C中,利用R t△AA1O1∽R t△CHA 得到,而,∴⇔⇒AA1=2,故正四棱锥的高为AA1=2.【点评】此题重点考查了线面角,二面角,点到面的距离这些定义,还考查了学生的空间想象能力及计算能力.22.(18分)(2011•上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)写出c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.【考点】等差数列的通项公式;数列的概念及简单表示法.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(1)利用两个数列的通项公式求出前3项,按从小到大挑出4项.(2)对于数列{a n},对n从奇数与偶数进行分类讨论,判断是否能写成2n+7的形式.(3)对{a n}中的n从从奇数与偶数进行分类讨论,对{b n}中的n从被3除的情况分类讨论,判断项的大小,求出数列的通项.【解答】解:(1)a1=3×1+6=9;a2=3×2+6=12 a3=3×3+6=15b1=2×1+7=9 b2=2×2+7=11 b3=2×3+7=13∴c1=9;c2=11;c3=12;c4=13(2)解对于a n=3n+6,当n为奇数时,设为n=2k+1则3n+6=2(3k+1)+7∈{b n}当n为偶数时,设n=2k则3n+6=6k﹣1+7不属于{b n}∴在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)b3k﹣2=2(3k﹣2)+7=a2k﹣1b3k﹣1=6k+5a2k=6k+6b3k=6k+7∵6k+3<6k+5<6k+6<6k+7∴当k=1时,依次有b1=a1=c1,b2=c2,a2=c3,b3=c4…∴【点评】本题考查利用数列的通项公式求数列的项、考查判断某项是否属于一个数列是看它是否能写出通项形式、考查分类讨论的数学数学方法.23.(18分)(2011•上海)已知平面上的线段l及点P,任取l上一点Q,线段PQ长度的最小值称为点P到线段l的距离,记作d(P,l)(1)求点P(1,1)到线段l:x﹣y﹣3=0(3≤x≤5)的距离d(P,l);(2)设l是长为2的线段,求点的集合D={P|d(P,l)≤1}所表示的图形面积;(3)写出到两条线段l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)},其中l1=AB,l2=CD,A,B,C,D是下列三组点中的一组.对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分.①A(1,3),B(1,0),C(﹣1,3),D(﹣1,0).②A(1,3),B(1,0),C(﹣1,3),D(﹣1,﹣2).③A(0,1),B(0,0),C(0,0),D(2,0).【考点】点到直线的距离公式;空间点、线、面的位置.【专题】计算题;压轴题;新定义.【分析】(1)根据所给的是一条线段,点到线段的距离不一定使用点到直线的距离公式得到,二是需要观察过点做垂线,垂足是否落到线段上,结果不是落到线段上,所以用两点之间的距离公式.(2)由题意知集合D={P|d(P,l)≤1}所表示的图形是一个边长为2的正方形和两个半径是1的半圆,做出面积.(3)根据题意从三组点的坐标中选第一组,根据所给的四个点的坐标,写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到要求的结果.【解答】解:(1)点P(1,1)到线段l:x﹣y﹣3=0(3≤x≤5)的距离d(P,l)是点P到(3,0)的距离,d(P,l)=,(2)由题意知集合D={P|d(P,l)≤1}所表示的图形是一个边长为2的正方形和两个半径是1的半圆,∴S=22+π=4+π(3)对于所给的三组点到坐标选第一组,A(1,3),B(1,0),C(﹣1,3),D(﹣1,0).利用两点式写出两条直线的方程,AB:x=1,CD:x=﹣1,到两条线段l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)},根据两条直线的方程可知两条直线之间的关系是平行,∴到两条直线距离相等的点的集合是y轴.选第二组点来计算:A(1,3),B(1,0),C(﹣1,3),D(﹣1,﹣2),根据第一组做出的结果,观察第二组数据的特点,连接得到线段以后,可以得到到两条线段距离相等的点是y轴非负半轴,抛物线,直线y=﹣x﹣1(x>1).选第三组来求解到两条线段距离相等的点,A(0,1),B(0,0),C(0,0),D(2,0),根据两条线段分别在横轴和纵轴上,知到两条线段距离相等的点在一三象限的角平分线上,方程是y=x,不是这条直线上的所有的点都合题意,根据所给的点到直线的距离知(1,1)点左下方的符合题意,所以所求的点的集合是y=x(0<x≤1),(1<x<2),(x≥2)或x≤0,y≤0.【点评】本题考查点到直线的距离公式,考查两点之间的距离公式,考查利用两点式写直线的方程,考查点到线段的距离,本题是一个综合题目.。
卢湾区2010—2011学年第一学期高三年级期末考试数学试卷(本卷完成时间为120分钟,满分为150分)一.填空题(本大题满分56分)本大题共有14小题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,{1,2}B =,则()U A B = ð . 2.函数1lg(1)y x=-的定义域是 . 3.方程sin cos x x =在[0,2π)上的解集是 .4.当πcos12=a 时,行列式211121a a +-的值是 .5.222135lim(212121n n n n →∞++++++ (2)2121n n -++)的值为 . 6.已知函数()y f x =是奇函数,当0x <时,()f x =2x ax +()a ∈R ,且(2)6f =,则a = .7.一个算法的程序框图如图所示,则该算法运行后输 出的结果为 .8.若方程1n 2100x x +-=的解为0x ,则大于0x 的最小 整数是 .9.已知函数()(2)2af x x x x =+>-的图像过点(3,7)A ,则此函数的最小值是 .10.在一次招聘口试中,每位考生都要在5道备选试题 中随机地抽出3道题回答,答对其中2道题即为及格. 若一位考生只会回答5道题中的3道题,则这位考生 能够及格的概率为 .11.(理)某投篮游戏规定:每轮至多投三次,直到首次命中为止.第一次就投中,得8分;第一次不中且第二次投中,得6分;前两次均不中且第三次投中,得4分;三次均不中,得0分.若某同学每次投中的概率为0.5,则他每轮游戏的得分X 的数学期望为 .12.一个调查机构就某地居民的月收入调查 了10000人,将所得数据分成如下六组:[1000,1500), [1500,2000), [2000,2500), [2500,3000), [3000,3500), [3500,4000),相应的频率分布直方图如图所示.若按月 收入将这10000人也分成上述六组,并通(第7题图)(第12题图))过分层抽样抽出100人作进一步调查,则[3000,3500)这一组中应抽出 人.13.若454233241)1()1()1()1(x a x a x a x a x a =+-+-+-+-,则234a a a ++的值为 .14.设O 是直线AB 外一点,OA a = ,OB b =,点123,,,A A A …1,n A -是线段AB 的n(n ≥2)等分点,则1231n OA OA OA OA -++++=.(用,,a b n 表示)二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.函数tan(31)y x =+的最小正周期是 ( )A .π3 B .2π3 C .3π2D .π16.在三棱锥P —ABC 中,所有棱长均相等,若M 为棱ABPA 与CM) ABC D 17.将5,6,7,8四个数填入12349⎛⎫ ⎪⎪ ⎪⎝⎭中的空白处以构成三行三列方阵,若要求每一行从左到右、每一列从上到下依次增大,则满足要求的填法种数为 ( ) A .24 B .18 C .12 D .618.已知()f x 是单调减函数,若将方程()f x x =与1()()f x f x -=的解分别称为函数()f x 的不动点与稳定点.则“x 是()f x 的不动点”是“x 是()f x 的稳定点”的 ( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤.19.(本题满分12分)本题共2个小题,第1小题6分,第2小题6分.已知z 是复数,2iz+为实数(i 为虚数单位),且4i z z -=. (1)求复数z ;(2)若|i|5z m -<,求实数m 的取值范围.C PM(第16题图)20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知A ,B ,C 为△ABC 的三个内角,向量(cos ,sin )p B B =- ,(cos ,sin )q C C =,且(2)q p q -⊥ .(1)求A ∠的大小;(2)若4BC AC AB =+=,求△ABC 的面积.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图所示,ABCD 是一块边长为7米的正方形铁皮,其中ATN 是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC 与CD 上的长方形铁皮PQCR ,其中P 是 TN 上一点.设TAP θ∠=,长方形PQCR 的面积为S 平方米.(1)求S 关于θ的函数解析式;(2)设sin cos t θθ+=,求S 关于t 的表达式以及S 的最大值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数()22x x f x a -=+(常数)a ∈R . (1)若1a =-,且()4f x =,求x 的值;(2)若4a ≤,求证函数()f x 在[1,)+∞上是增函数;(3)若存在[0,1]x ∈,使得2(2)[()]f x f x >成立,求实数a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.已知负数1a 和正数1b ,且对任意的正整数n ,当2n na b +≥0时, 有[1n a +, 1n b +]= TNRQθPD CBA[n a ,2n n a b +];当2n n a b +<0时, 有[1n a +, 1n b +]= [2n na b +,n b ]. (1)求证数列{n n b a -}是等比数列;(2)若111,2a b =-=,求证222n n a b =-()n ∈N*;(3)是否存在11,a b ,使得数列{}n a 为常数数列?请说明理由.卢湾区2010学年第一学期高三年级期末考试 数学参考答案及评分标准 2011.1一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分.1.{} 2 2.(0, 1) 3.5, 44ππ⎧⎫⎨⎬⎩⎭4 5.12 6.57.1320 8.5 9.6 10.0.7 11.(理)6(文)2 12.15 13.14 14.1()2n a b -+二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.A 16.C 17.D 18.B三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分12分)本题共2个小题,第1小题满分6分,第2小题满分6分. (1)由2i z +是实数,可设2iz+= a ,R a ∈, 故(2i)2i z a a a =+=+, ………………3分 所以2i z z a -=,又4i z z -=,可得24a =,即2a =,所以42i z =+. ………………6分 (2)由|i |5z m -<,可得|4(2)i |5m +-<,又R m ∈5 ………………9分 即216(2)25m +-<,解得15m -<<, 所以实数m 的取值范围是(1,5) -. ………………12分 20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.(1)由(2)q p q -⊥ ,可得(2)q p - ·q=0, ………………2分即2||2q p - ·0q = ,又(cos ,sin )p B B =- ,(cos ,sin )q C C =所以22cos sin 2(cos cos sin sin )0C C B C B C +--=, 即1cos()2B C +=,又0B C π<+<, ………………6分 ∴3B C π+=,故2π()3A B C π=-+=. ………………8分(2)在△ABC 中,由2222cos BC AB AC AB AC A =+-⋅,可得22()2(1cos )BC AB AC AB AC A =+-⋅+, ………………10分厦门网站建设 厦门网站建设 吘莒嶪即22142(1)2AB AC =-⋅⋅-,故4AB AC ⋅=, ………………12分∴11sin 422S AB AC A =⋅=⨯= ………………14分 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)延长RP 交AB 于E ,延长QP 交AD 于F ,由ABCD 是正方形,PRCQ 是矩形,可知,PE AB PF AD ⊥⊥, 由TAP θ∠=,可得6cos EP θ=,6sin FP θ=,∴76sin PR θ=-,76cos PQ θ=-, ………………4分 ∴(76sin )(76cos )S PR PQ θθ=⋅=--4942(sin cos )36sin cos θθθθ=-++故S 关于θ的函数解析式为4942(sin cos )36sin cos =-++S θθθθπ(0)2θ≤≤.……6分(2)由sin cos t θθ+=,可得22(sin cos )t θθ=+ 12sin cos θθ=+,即21sin cos 2t θθ-=, ∴22494218(1)184231S t t t t =-+-=-+. ……………9分又由π02θ≤≤,可得3π444ππθ≤+≤,故πsin cos )[14t θθθ=++∈,∴S 关于t 的表达式为2184231S t t =-+(∈t ). ……………11分又由271318()62S t =-+,t ∈可知当t =时,S 取最大值,故S的最大值为67-. ………………14分 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)由1,()4a f x =-=,可得224x x --=,设2x t =,则有14t t --=,即2410t t --=,解得2t = ………………2分当2t =时,有22x =+2log (2x =.当2t =时,有22x =故所求x的值为2log (2. ………………4分 (2)设12,[1,),x x ∈+∞且12x x >,TNFE RQθPD CBA则112212()()(22)(22)x x x x f x f x a a ---=+-+21121222(22)2x x x x x x a +-=-+12121222(2)2x x x x x x a ++-=- ………………7分由12x x >,可得1222x x >,即12220x x ->由12,[1,),x x ∈+∞12x x >,可得122x x +>,故12240x x +>>, 又4a ≤,故122x x a +>,即1220x x a +-> 所以12()()0f x f x ->,即12()()f x f x >,故函数()f x 在[1,)+∞上是增函数. ………………10分 (3)由2(2)[()]f x f x >2222222222x x x x a a --⇔+>++222()20x a a a -⇔-+< ………………12分设22x t -=,由[0,1]x ∈,可得1[,1]4t ∈,由存在[0,1]x ∈使得2(2)[()]f x f x >,可得存在1[,1]4t ∈,使得2()20a a t a -+<, ………………14分 令2()()20g t a a t a =-+<,故有211()()2044g a a a =-+<或2(1)()20g a a a =-+<,可得70a -<<.即所求a 的取值范围是(7,0)-. ………………16分 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.(1)当a n +b n 2≥0时,b n +1-a n+1= a n +b n 2 -a n = b n -a n2;当a n +b n 2<0, b n +1-a n +1 = b n - a n +b n 2 = b n -a n 2.所以,总有b n +1-a n +1 = 12(b n -a n ),又110,0b a ><,可得110b a ->,所以数列{b n -a n }是等比数列. ………………4分 (2)①由111,2a b =-=,可得111022a b +=>,故有11221[,][,]2a ba b a +=, ∴112122a b b +==,211a a ==-,从而222a b =-, 故当n =1时,222n n a b =-成立. ………………6分 ②假设当n k =时,222n n a b =-成立,即222k k a b =-, 由22230k k k b a b -=>,可得20k b >,2222220222k k k k k a b b b b +-+==-<, 故有2221212[,][,]2k k k k k a b a b b +++=, ∴22221212,22k k k k k k a b ba b b +++==-=, ………………9分222121220224kkk k k b b a b b ++-++==>,故有2121222221[,][,]2k k k k k a b a b a ++++++=∴212122224k k k k a b b b ++++==, 222212k k k ba a ++==-,故2(1)2(1)2k k ab ++=-∴当1n k =+时,222n n a b =-成立.综合①②可得对一切正整数n ,都有222n n a b =-. ………………12分 (3)假设存在11,a b ,使得数列{}n a 为常数数列,由(1)可得b n -a n =11()b a -(12)n -1,又1n a a =,故b n =111()a b a +-(12)n -1, ………………14分 由1n n a a +=恒成立,可知a n +b n2≥0,即111()a b a +-(12)n ≥0恒成立,即2n ≤111a b a -对任意的正整数n 恒成立, ………………16分 又111a b a -是正数,故n ≤1121log a ba -对任意的正整数n 恒成立,因为1121log a b a -是常数,故n ≤1121log a ba -不可能对任意正整数n 恒成立.故不存在11,a b ,使得数列{}n a 为常数数列. ………………18分。