第三章 隶属函数
- 格式:ppt
- 大小:422.00 KB
- 文档页数:25
隶属函数的定义-概述说明以及解释1.引言1.1 概述引言部分的内容可以从以下几个方面展开:1. 隶属函数的概念:隶属函数是模糊逻辑和模糊集理论中的重要概念之一。
它用来描述事物或概念在某种属性上的模糊程度或隶属程度。
不同于传统的二值逻辑,隶属函数允许事物或概念具有部分属于某个集合的特性,使得模糊集理论能够更好地处理不确定性和模糊性问题。
2. 隶属函数的应用领域:隶属函数在许多领域中都有着广泛的应用,如模糊控制、模糊推理、模糊决策等。
它们能够帮助我们处理复杂的现实问题,尤其是在面对不确定性和模糊性较高的情况下,更能展现出其优势。
3. 隶属函数的研究意义:隶属函数的研究不仅仅是为了解决现实问题,更重要的是为了揭示事物或概念的模糊性本质和不确定性特点。
通过对隶属函数的研究,我们可以深入了解模糊逻辑的基本原理和运算规则,为进一步发展模糊逻辑和模糊集理论奠定基础。
总之,本文将重点介绍隶属函数的定义及其在实际应用中的作用,希望通过对隶属函数的深入研究,能够更好地理解和应用模糊逻辑,为解决复杂问题提供一种有效的方法。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构的设计是为了更好地组织和呈现文章的内容,使读者能够更好地理解和领会作者的观点和论述。
在本文中,我们将按照以下结构展开探讨隶属函数的定义。
首先,在引言部分,我们会对整篇文章进行一个简要的介绍,包括概述、文章结构和目的。
概述部分会对隶属函数的定义进行简要的概括说明,引导读者进入主题。
然后,我们会介绍文章的结构,包括各个章节的内容和次序,以及章节之间的逻辑关系。
最后,我们会明确文章的目的,即为了什么样的读者群体撰写本文,以及我们希望读者通过阅读本文能够获得哪些知识和见解。
接下来,在正文部分,我们将对隶属函数的基本概念进行详细阐述。
首先,我们将介绍隶属函数的概念以及其与其他相关概念的关系,如模糊集合和模糊逻辑等。
然后,我们将对隶属函数的数学定义进行深入剖析,详细说明其数学表达形式和数学性质。
美国加利福尼亚大学控制论教授扎得(L、A、Zadeh)经过多年的琢磨,终于在1965年首先发表了题为《模糊集》的论文。
指出:若对论域(研究的范围)U中的任一元素x,都有一个数A(x)∈[0,1]与之对应,则称A为U上的模糊集,A(x )称为x对A的隶属度。
当x在U中变动时,A(x)就是一个函数,称为A的隶属函数。
隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。
用取值于区间[0,1]的隶属函数A(x)表征x 属于A的程度高低,这样描述模糊性问题比起经典集合论更为合理。
隶属度属于模糊评价函数里的概念:模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。
隶属度函数及其确定方法分类隶属度函数是模糊控制的应用基础,正确构造隶属度函数是能否用好模糊控制的关键之一。
隶属度函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属度函数的确定又带有主观性。
隶属度函数的确立目前还没有一套成熟有效的方法,大多数系统的确立方法还停留在经验和实验的基础上。
对于同一个模糊概念,不同的人会建立不完全相同的隶属度函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
下面介绍几种常用的方法。
(1)模糊统计法:模糊统计法的基本思想是对论域U上的一个确定元素vo是否属于论域上的一个可变动的清晰集合A3作出清晰的判断。
对于不同的试验者,清晰集合A3可以有不同的边界,但它们都对应于同一个模糊集A。
模糊统计法的计算步骤是:在每次统计中, v o是固定的,A3的值是可变的,作n次试验,其模糊统计可按下式进行计算v0对 A 的隶属频率= v0∈A 的次数/ 试验总次数n随着n的增大,隶属频率也会趋向稳定,这个稳定值就是vo对A 的隶属度值。
隶属函数正确地确定隶属函数,是运用模糊集合理论解决实际问题的基础。
隶属函数是对模糊概念的定量描述。
我们遇到的模糊概念不胜枚举,然而准确地反映模糊概念的模糊集合的隶属函数,却无法找到统一的模式。
隶属函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属函数的确定又带有主观性。
一般是根据经验或统计进行确定,也可由专家、权威给出。
例如体操裁判的评分,尽管带有一定的主观性,但却是反映裁判员们大量丰富实际经验的综合结果。
对于同一个模糊概念,不同的人会建立不完全相同的隶属函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
事实上,也不可能存在对任何问题对任何人都适用的确定隶属函数的统一方法,因为模糊集合实质上是依赖于主观来描述客观事物的概念外延的模糊性。
可以设想,如果有对每个人都适用的确定隶属函数的方法,那么所谓的“模糊性”也就根本不存在了。
2.5.1 隶属函数的几种确定方法这里仅介绍几种常用的方法,不同的方法结果会不同,但检验隶属函数建立是否合适的标准,看其是否符合实际及在实际应用中检验其效果。
1.模糊统计法在有些情况下,隶属函数可以通过模糊统计试验的方法来确定。
这里以张南组等人进行的模糊统计工作为例,简单地介绍这种方法。
图2-5-1 27岁对“青年”隶属频率的稳定性张南纶等人在武汉建材学院,选择129人作抽样试验,让他们独立认真思考了“青年人”的含义后,报出了他们认为最适宜的“青年人”的年龄界限。
由于每个被试者对于“青年人”这一模糊概念理解上的差异,因此区间不完全相同,其结果如表2-5-1所示。
现选取0u =27岁,对“青年人”的隶属频率为)调查人数()岁的区间数(隶属次数包含n 27=μ (2-5-1)用μ作为27岁对“青年人”的隶属度的近似值,计算结果见表2-5-2。
78.027)=(青年人μ按这种方法计算出15~36岁对“青年人”的隶属频率,从中确定隶属度。
关于隶属函数和属性测度的注记隶属函数与属性测度是应用统计技术的常用方法。
它们可以用来度量变量的性质,同时也可以帮助分析变量之间的关系。
一、隶属函数1.什么是隶属函数?所谓隶属函数,是指变量与隶属因素之间相互关系的数字化表达。
隶属函数以一定规律地描述了隶属因素影响变量的程度,使用者可以根据它来计算变量的估值。
2.隶属函数特点(1)变量的范围性为0到1:隶属函数的输出值均介于0到1之间,但是并不意味着变量与隶属因素成线性关系,因此变量之间关系更为复杂。
(2)能够定义变量的大小:与非隶属函数不同,隶属函数可以精确地定义变量中每一点的大小,使其在影响变化过程中表现出更多的容错性和精度。
(3)隶属函数可绘制:隶属函数可以通过绘制函数图像,清晰地显示出变量与隶属因素的关系,从而使用者可以充分了解其作用及含义。
二、属性测度1.什么是属性测度?所谓属性测度,是根据统计学原理来测量变量属性的方法。
它利用一组数据,可以计算出一个或多个特定的特征指标,用以识别变量的属性。
通过测量变量的属性,可以进一步分析变量之间的关系,从而提高分析效果。
2.属性测度的应用(1)测量变量分布情况:属性测度可以测量变量分布情况,比如常用的均值等,可以查看数据的中心趋势,定量描述数据分布的形态。
(2)分析变量联系:属性测度通过计算出变量的协方差系数,来分析不同变量之间的联系,可以测量出变量之间的相关性,从而推断出两个变量之间的潜在变化关系。
(3)检验变量正态分布:属性测度还可以检验变量是否符合正态分布。
如果变量不符合正太分布,可以推断出变量之间存在着其他特殊联系,这有助于变量分析的深入思考。
总之,隶属函数与属性测度是应用统计技术的重要举措,它们可以帮助我们更好的理解数据的特征。
隶属度函数----------------------------精品word文档值得下载值得拥有----------------------------------------------美国加利福尼亚大学控制论教授扎得(L、A、Zadeh)经过多年的琢磨,终于在1965年首先发表了题为《模糊集》的论文。
指出:若对论域(研究的范围)U中的任一元素x,都有一个数A(x)?[0,1]与之对应,则称A为U上的模糊集,A(x )称为x对A的隶属度。
当x在U中变动时,A( x)就是一个函数,称为A的隶属函数。
隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。
用取值于区间[0,1]的隶属函数A(x)表征x 属于A的程度高低,这样描述模糊性问题比起经典集合论更为合理。
隶属度属于模糊评价函数里的概念:模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。
隶属度函数及其确定方法分类隶属度函数是模糊控制的应用基础,正确构造隶属度函数是能否用好模糊控制的关键之一。
隶属度函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属度函数的确定又带有主观性。
隶属度函数的确立目前还没有一套成熟有效的方法,大多数系统的确立方法还停留在经验和实验的基础上。
对于同一个模糊概念,不同的人会建立不完全相同的隶属度函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
下面介绍几种常用的方法。
(1)模糊统计法:模糊统计法的基本思想是对论域U上的一个确定元素vo是否属于论域上的一个可变动的清晰集合A3作出清晰的判断。
对于不同的试验者,清晰集合 A3可以有不同的边界,但它们都对应于同一个模糊集A。
模糊统计法的计算步骤是:在每次统计中, vo是固定的,A3的值是可变的,作 n次试验,其模糊统计可按下式进行计算v0对 A 的隶属频率 = v0?A 的次数 / 试验总次数 n随着 n的增大,隶属频率也会趋向稳定,这个稳定值就是 vo对A 的隶属度值。
隶属函数非隶属函数相似度
隶属函数和非隶属函数是模糊集合理论中重要的概念,用于描述模糊集合的成员关系。
隶属函数是指将模糊集合中的元素映射到区间[0,1]上的函数,其中函数取值为0表示该元素不属于该模糊集合,取值为1表示该元素完全属于该模糊集合。
而非隶属函数则是指将模糊集合中的元素映射到任意实数域上的函数,用于描述元素的隶属度。
在实际应用中,我们需要比较不同的隶属函数和非隶属函数之间的相似度。
相似度可以用于判断两个模糊集合之间的相似程度,从而进行分类、聚类等应用。
一般来说,我们可以使用余弦相似度、欧几里得距离等方法来计算隶属函数和非隶属函数之间的相似度。
总之,隶属函数和非隶属函数是模糊集合理论中的重要概念,相似度则可以用于比较不同的隶属函数和非隶属函数之间的相似程度,为实际应用提供了基础支持。
- 1 -。