已知:如图,l1∥l2 ,l 2 ∥l 3
求证: l1∥l3
p
l1 l2 l3
证明:假设l1不平行l3,则l1与l3相交,设交点为p.
∵l1∥l2 , l2∥l3, 则过点p就有两条直线l1、 l3都与l2平行,这与“经过直线外一点,有 且只有一条直线平行于已知直线”矛盾.
所以假设不成立,所求证的结论成立, 即 l1∥l3
定理
求证:在同一平面内,如果两条直线都和第三条直线平行,那
么这两条直线也互相平行.
l
(3)不用反证法证明
已知:如图,l1∥l2 ,l 2 ∥l 3 求证: l1∥l3
2 l1
p1
l2
证明:作直பைடு நூலகம்l交直线l2于点p,
3
l3
∵l1∥l2 ,l 2∥l 3
∴直线l必定与直线l2,l3相交(在同一平面内,
小芳全家没外出旅游.
假设小芳全家外出旅游, 那么今天不可能碰到小芳, 与上午在学校碰到小芳和她妈妈矛盾, 所以假设不成立, 所以小芳全家没有外出旅游.
在证明一个命题时,有时先假设命题 不成立,从这样的假设出发,经过推理得出 和已知条件矛盾,或者与定义,公理,定理 等矛盾,从而得出假设命题不成立是错误 的,即所求证的命题正确。这种证明方法 叫做反证法。
已知:如图,四边形ABCD 求证:四边形ABCD中至少有
一个角是钝角或直角. 证:假设四边形中没有一个角是钝角或直角.
即A 90, B 90, C 90, D 90
于是A+B+C+D 360
这与四边形内角和等于360度相矛盾
所以四边形中至少有一个角是钝角或直角.
试一试
用反证法证明(填空):在三角形的内角中, 至少有一个角大于或等于60°. 已知: ∠A,∠B,∠C是△ABC的内角. 求证: ∠A,∠B,∠C中至少有一个角大 于