浙江省专升本数学试题3套(3+2)
- 格式:doc
- 大小:317.50 KB
- 文档页数:5
浙江省2019年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题答案涂、写在答题卡上选择题部分注意事项:1.答题前,考生务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应的题目的答案标号涂黑,如需1.A.B.式C.D.)0δ外2.)A.B.C.D.()⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++∞→001lim x f h x f h h 存在3.⎥⎦⎢⎣⎡+++++++∞→n n n n n x πππsin 1...2sin 1sin 11lim 等于()A.⎰10sin dx x πB.⎰+10sin 1dx x πC.⎰+10sin 1dx x D.4.A.B.C.D.5.A.B.C.D.非选择题部分注意事项:1.用黑色字迹的签字笔或钢笔写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔填写。
二、填空题(本大题共10小题,每小题4分,共40分)6.极限=⎪⎭⎫ ⎝⎛+∞→nn n 1sin 1lim 7.8.9.10.11.12.13.14.15.三、计算题(本大题共8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分,计算题必须写出计算过程,只写答案不给分)16.极限()201ln lim xxx x -+→.17.18.19.⎩⎦⎣20.一物体由静止开始以速度()13+=t tt v (米/秒)作直线运动,其中t 表示运动的时间,求物体运动到8秒时离开出发点的距离.21.问是否存在常数a 使得函数()⎪⎩⎪⎨⎧>-≤+=0,10,2x e x a x x f ax在0=x 处可导?若存在,求出常数a ,若不存在,请说明原因.22.求过点()2,0,1A 且与两平面01:1=++-z y x π,0:2=-z x π都平行的直线的方程.23.求幂级数∑∞=-11 1nnxn的收敛区间及和函数,并计算级数11211-∞=∑⎪⎭⎫⎝⎛nnn.24.)为的处轴25.假设某公司生产某产品x 千件的总成本是()213012223++-=x x x x c (万元),售出该产品x 千件的收入是()x x r 60=(万元),为了使公司取得最大利润,问公司应生产多少千件产品?(注:利润等于收入减总成本)26.(1)(2)3M (3)浙江省2019年专升本高等数学试卷参考答案一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1、D 解析:根据极限的精确定义,若a x n n =∞→lim ,则对于,0,0>∃>∀N δ当N n >时,δ<-a x n ,即只有有限个点落在区间),(δδ+-a a 外。
浙江专升本(高等数学)模拟试卷3(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.已知当x→0时,x2ln(1+x2)是sinnx的高阶无穷小,而sinnx又是1一cosx的高阶无穷小,则正整数n等于( )A.1B.2C.3D.4正确答案:C解析:由=0知n>2;故n=3.2.设函数f(x)=|x3-1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的( )A.必要但不充分条件B.充分必要条件C.充分但非必要条件D.既非充分也非必要条件正确答案:B解析:因为(x2+x+1)φ(x)=-3φ(1),(x2+x+1)φ(x)=3φ(1),所以f(x)在x=1处可导的充分必要条件为一3φ(1)=3φ(1),即φ(1)=0,选项B正确.3.直线l:与平面π:4x一2y一2z一3=0的位置关系是( )A.平行B.垂直相交C.直线l在π上D.相交但不垂直正确答案:A解析:直线的方向向量为(一2,一7,3),平面π的法向量为(4,一2,一2).(一2)×4+(一7)×(一2)+3×(一2)=0,且直线l:上的点(一3,一4,0)不在平面:4x一2y一2z一3=0上,所以直线与平面平行.4.设F(x)是连续函数f(x)的一个原函数,则必有( )A.F(x)是偶函数f(x)是奇函数B.F(x)是奇函数f(x)是偶函数C.F(x)是周期函数f(x)是周期函数D.F(x)是单调函数f(x)是单调函数正确答案:A解析:记G(x)=f(t)dt,则G(x)是f(x)的一个原函数,且G(x)是奇(偶)函数f(x)是偶(奇)函数,又F(x)=G(x)+C,其中C是一个常数,而常数是偶函数,故由奇、偶函数的性质知应选A.5.如果级数un(un≠0)收敛,则必有( )A.级数(一1)nun收敛B.级数|un|收敛C.级数发散D.级数收敛正确答案:C解析:因为un(un≠0)收敛,所以=∞,故发散,C正确.填空题6.函数f(x)=的第一类间断点为__________.正确答案:x=1,x=-1解析:求极限可得f(x)=f(x)=1,f(x)=0,f(x)=-1,f(x)=0,所以函数f(x)的第一类间断点为x=1,x=-1.7.已知y=lnsin(1—2x),则y′=___________.正确答案:-2cot(1-2x)解析:y=lnsin(1-2x)y′==-2cot(1-2x).8.设函数x=x(y)是由方程yx+x+y=4所确定,则=__________.正确答案:-3解析:利用隐函数求导法和对数求导法可得x′lny++x′+1=0,再由x(1)=2可得=-3.9.已知=3,则常数a=__________,b=___________.正确答案:a=-1,b=-2解析:因为=3a =-1,再由22+2a+b=0可知b=-2.10.dx=___________.正确答案:π解析:11.设f(x)=,要使f(x)在x=0处连续,则k=___________.正确答案:k=0解析:根据函数连续的定义:f(x)=f(0),因xsin=0,则k=f(0)=0.12.使得函数f(x)=适合Roll(罗尔)定理条件的闭区间是:____________.正确答案:[0,1]解析:根据罗尔定理的条件:只需函数在闭区间连续,开区间可导,并且在区间端点处的函数值相等即可.如:[0,1].13.函数y=ex+arctanx的单调递增区间是:___________.正确答案:(一∞,+∞)解析:由于y′=ex+>0,因而函数的单调递增区间为(-∞,+∞) 14.∫sec4xdx=___________.正确答案:tanx+tan3x+C解析:∫sec4xdx=∫sec2xdtanx=∫(1+tan2x)dtanx=tanx+tan3x+C15.幂级数x2n-1的收敛半径为__________.正确答案:解析:利用比值判别法的思想,x2n+1.x2<1,所以收敛区间为x∈()因此,收敛半径为R=.解答题解答时应写出推理、演算步骤。
2023年浙江省金华市成考专升本数学(理)自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.若f(x+1)=x2-2x+3,则f(x)=()A.A.x2+2x+6B.x2+4x+6C.x2-2x+6D.x2-4x+62.一个科研小组共有8名科研人员,其中有3名女性.从中选出3人参加学术讨论会,选出的人必须有男有女,则有不同选法()A.56种B.45种C.10种D.6种3.已知抛物线y2=4x上一点P到该抛物线的准线的距离为5,则过点P 和原点的直线的斜率为()A.A.4/5或-4/5B.5/4或-5/4C.1或-1D.4.设log57=m,log25=n,则log27=()A.A.B.C.m+nD.m·n5.在等腰三角形ABC中,A是顶角,且,则cosB=()。
6.不等式x≥6一x2的解集是()A.[-2,3]B.(-∞,-2]∪[3,+∞)C.[-3,2]D.(-∞,-3]∪[2,+∞) 7.8.方程9. 5个人站成一排照相,甲乙两个恰好站在两边的概率是()A.1/10B.1/20C.1/60D.1/12010.11.函数y=cos2x的最小正周期是()A.A.4πB.2πC.πD.π/212.下列成立的式子是( )A.0.8-0.1<log30.8B.0.8-0.1>0.8-0.2C.log30.8<log40.8D.30.1<3013.()A.A.(1,+∞)B.(-∞,-1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)14.函数的图像A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.是同一条曲线15.函数y=x2+x+4在点(-1,4)处的切线的斜率为()A.-1B.-2C.4D.916.不等式|2x-3|≤1的解集为()。
A.{x|1≤x≤2}B.{x|x≤-1或≥2}C.{x|1≤x≤3}D.{x|2≤x≤3}17.18.()A.A.B.5C.D.19.A.(-1,0)B.(-1,1/2)C.(-1,3/2)D.(-1,1)20.log34·log48·log8m=log416,则m为()A.9/12B.9C.18D.2721.抛物线y=2px2的准线方程是()A.A.x=-p/2B.y=-p/2C.x=-1/8pD.y=-1/8p22.对满足a>b的任意两个非零实数,下列不等式成立的是()A.B.lga2>lgb2C.a4>b4D.(1/2)a<(1/2)b23.24.圆的圆心在()点上.A.(1,-2)B.(0,5)C.(5,5)D.(0,0)25.6名学生和1名教师站成一排照相,教师必须站在中间的站法有26.已知点A(-5,3),B(3,1),则线段AB中点的坐标为()A.A.(4,-1)B.(-4,1)C.(-2,4)D.(-1,2)27.A.奇函数,在(-∞,0)上是减函数B.奇函数,在(-∞,0)上是增函数C.偶函数,在(0,+∞)上是减函数D.偶函数,在(0,+∞)上是增函数28.以x2-3x-1=0的两个根的平方为根的一元二次方程是()A.x2-1lx+l=0B.x2+x-ll=0C.x2-llx-l=0D.x2+x+1=029.如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=( )A.0B.1C.-1D.230.命题甲:x>π,命题乙:x>2π,则甲是乙的()A.A.充分条件但不是必要条件B.必要条件但不是充分条件C.充分必要条件D.不是必要条件也不是充分条件二、填空题(20题)31.32.33.34.设函数f(x)=x+b,且f(2)=3,则f(3)=______。
2023年浙江省台州市成考专升本数学(理)自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.第11题设0<a<1/2,则()A.log a(1-a)>1B.cos(1+a)<cos(1-a)C.a-1<(1/2)-1D.(1-a)10<a103.已知点A(1,0),B(-1,1),若直线kx-y-1=0与直线AB平行,则k=()A.B.C.-1D.14.已知全集U=R,A={x|x≥l},B={x|-l<x≤2},则( )A.{x|x≤2}B.{x|x<2}C.{x|-1<x≤2}D.{x|-1<x<1}5.函数y=3x的反函数是()A.A.y=(1/3)x(x>0)B.-y=(1/3)x(x>0)C.y=log3x(x>0)D.-y=-log3x(x>0)6.已知f(x)是偶函数,且其图像与x轴有4个交点,则方程f(x)=0的所有实根之和为( )A.4B.2C.1D.07.8.()A.A.{x|0<x<1}B.{x|-1<x<1}C.{x|0<x<2}D.{x|x>1}9.长方体有一个公共顶点的三个面的面积分别为4,8,18,则此长方体的体积为A.12B.24C.36D.4811.已知正方形ABCD,以A,C为焦点,且过B点的椭圆的离心率为12. 设f(x)=ax(a>0,且a≠1),则x>0时,0<f(x)<1成立的充分必要条件是()A.a>1B.0<a<1C.D.1<a<213.14.A.A.3:1B.4:1C.5:1D.6:115.函数y=(1/3)|x| (x∈R)的值域为( )A.y>0B.y<0C.0<y≤lD.y>116.若loga2<logb2<0,则()A.A.0<b<a<1B.0<a<b<1C.1<b<nD.1<a<b17.设甲:△>0.乙:有两个不相等的实数根,则A.A.甲是乙的必要条件,但不是充分条件B.甲是乙的充分条件,但不是必要条件C.甲是乙的充分必要条件D.甲是乙的充分条件,也不是必要条件18.已知点P(sinα—COSα/,tanα)在第一象限,则在[0,2π)内α的取值范围是()A.A.B.C.D.19.()A.A.(11,9)B.(4,0)C.(9,3)D.(9,-3)20.若A(4,a)到直线4x-3y=1的距离不大于3,则a的取值范围是()A.(0,10)B.[1/3,31/3]C.[0,10]D.(-∞,0)U[1/3,10]21.22.23.A.12B.6C.3D.124.25.第14题曲线|x|+|y|=l所围成的正方形的面积为()26.不等式|x-2|<1的解集是()A.{x-1<x<3}B.{x|-2<x<l}C.{x|-3<x<1}D.{x|1<x<<3}27.A.1B.1/2C.OD.∞28.29.设集合M={x∣-1≤x<2},N={x∣x≤1}集合M∩N=()。
2013年浙江专升本数学试卷(3)一、选择题1.()1sin ,00,0x f x x x x ⎧⎪=≠⎨⎪=⎩在0x =处 ( )A . 极限不存在B .极限存在但不连续C .连续但不可导D .可导但不连续2.设()2421,f x x x =++则 ()=-'1f ( )A .1B .3C . -1D . -33.设()()ln 1f x x =+,则()()5f x = ( ) A .()54!1x + B .()54!1x -+ C . ()55!1x + D . ()55!1x -+4.设()y f x =由方程()2cos 1x y exy e +-=-所确定,则曲线()y f x =在点(0,1)的切线斜率(0)f '= ( ) A .2 B . -2 C .12 D . -125.设()f x 在1x =有连续导数,且()12f '=,则(0lim x d f dx +→= ( ) A . 1 B . -1C . 2D .-26. 设⎪⎩⎪⎨⎧+=bax x x x f 1sin )(2 00≤>x x 在x = 0处可导, 则 ( ) A.a = 1, b = 0 B. a = 0, b 为任意常数C. a = 0, b = 0D.a = 1, b 为任意常数7. 曲线2211x xe e y ---+=( )A.没有渐近线;B.仅有水平渐近线C.仅有铅直渐近线D. 既有水平渐近线又有铅直渐近线8. 设函数()x f 在点0可导,且()00=f ,则()=→xx f x 0lim ( ) A .()x f ' B .()0f ' C .不存在 D .∞9.设()21,1,1x x f x ax b x ⎧+≤=⎨+>⎩在1x =可导,则,a b 为( )A . 2,2a b =-=B . 0,2a b ==C . 2,0a b ==D . 1,1a b ==10. 设()f x 为可导偶函数,且()()cos g x f x =,则'2g π⎛⎫= ⎪⎝⎭( ) A . 0 B .1 C .-1 D . 211. 设||3)(23x x x x f +=, 则使)0()(n f 存在的最高阶导数n 为( )A. 0B. 1C. 2D. 312. 设()x f 为奇函数,且()20='x f ,则()=-'0x f ( )A .-2B .21C .2D .21- 13. 若()30-='x f ,则()()=∆∆+-∆+→∆xx x f x x f x 3lim 000 ( ) A .-3 B .6 C .-9 D .-12二、填空题1.设6y x k =+是曲线23613y x x =-+的一条切线,则k =2. 设()f x 在2x =连续,且(2)f =4,则2214lim ()24x f x x x →⎛⎫-= ⎪--⎝⎭ 3. 直线l 与x 轴平行,且与曲线xy x e =-相切,则切点坐标是4. 设)('31)()(lim0000x f x x f x k x f x =∆-∆+→∆, 则k = ________. 5. 设函数y = y(x)由方程0)cos(=++xy e y x 确定, 则=dx dy ____ __ 6. 已知f(-x) =-f(x), 且k x f =-)('0, 则=)('0x f ____ __7.若()f x 为可导的偶函数,则()0f '=8.若sin cos t t x e t y e t-⎧=⎪⎨=⎪⎩,则22d y dx = 9.设y =,则dy = 10. 已知x x f dx d 112=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛, 则=⎪⎭⎫ ⎝⎛21'f _______ 11. 设y = f(x)由方程1)cos(2-=-+e xy ey x 所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______ 12. 当 2y ax =与ln y x =相切时,a 的值为___________ 13.()⎩⎨⎧>+≤=002,,x x b ax x x x x f 若若,函数()x f 于点0x x =处连续而且可微,则系数a =______,b =________三、计算题1.求下列函数的导数x x e y x +=1 122-+-=x x e yy = 4)sin(=++xy e y x x y e y ln = ()2y f x b =+,求y '';2.已知2sin()0xy y π-=,求01|x y y =='及01|x y y ==-'';3.求13cos x y e x -= 的微分;4.求02lim sin x x x e e x x x-→---5.()113ln 0lim sin 3x x x ++→6.2011lim()sin x x x x→- 7.求由曲线33cos sin x a y a αα⎧=⎪⎨=⎪⎩所确定的函数的导数dy dx ; 8.设()x x f 111+=,且()()x f x g 111+=,计算()x f '和()x g ';9.()x y y =是由方程组⎪⎩⎪⎨⎧=+-++=01sin 3232y t e t t x y 所确定的隐函数,求022=τdx y d ; 10.设()f x 有连续的导函数,且()()00,0f f b '==若()()sin ,0,0f x a x x F x x A x +⎧≠⎪=⎨⎪=⎩在0x =连续,求常数A 。
浙江省2019年高职高专毕业生进入本科学习统一考试高等数学一、选择题(本大题共5小题,每小题4分,共20分) 1、设lim x→0x n =a 则说法不正确的是( )A 、对于正数2,一定存在正整数N ,使得当n >N 时,都有|x n −a |<2.B 、对于任意给定的无论多么小的正数ε,总存在整数N ,使得当n >N 时,不等于|x n −a |<ε成立.C 、对于任意给定的a 的邻域(a −ε,a +ε), 总存在整数N ,使得当n >N 时,所有的x n 都落在(a −ε,a +ε)内,而只有有限个(至多只有N 个)在这个区间外.D 、可以存在某个小的正数ε0,使得有无穷多个点ε0落在区间(a −ε0,a +ε0)外. 2、设在点x 0的某邻域内有定义,则在点x 0处可导的一个充分条件是( ) A 、lim ℎ→0f (x 0+2ℎ)−f(x 0)ℎ存在 B 、lim ℎ→0−f (x 0)−f(x 0−ℎ)ℎ存在C 、limℎ→0f (x 0+ℎ)−f(x 0−ℎ)ℎ存在 D 、lim ℎ→+∞ℎ[f (x 0+1ℎ)−f (x 0)]存在3、limx→+∞1n[√1+sin πn +√1+sin 2πn +⋯+√1+sinnπn]等于( )A 、∫√sin πx dx 10B 、∫√1+sin πx dx 10 C 、∫√1+sin x dx 10 D 、π∫√1+sin x dx 10 4、下列级数或广义积分发散的是( ) A 、∑(−1)n−1n+100∞n=1 B 、∑cos 2n ∞n=1 C 、∫√21D 、∫1(1+x 2)2dx +∞15、微分方程y ′′−4y ′+4y =0的通解为( ) A 、y =c 1x +c 2e −2x B 、y =(c 1+c 2x)e −2x C 、y =(c 1+c 2x)e 2x D 、y =(c 1+c 2x)xe −2x二、填空题(只要在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)6、极限lim x→∞(1+sin 1n )n =7、设一雪堆的高度ℎ与时间t 的关系为ℎ(t )=100−t 2,则雪堆的高度在时刻t =5时的变化率等于8、当a = 时,极限lim x→01−cos xln (1+x 3)(a −e x )存在且不等于0.9、设 ,则d 2ydx 2=10、设g (x )=∫sin t 2dx x0,且当x →0时,g (x )与x n 是同阶无穷小,则n = 11、定积分∫√1−x 2dx 10 =12、设函数y =y (x )由方程e x+y −xy =0确定,则dydx = 13、曲线y (x )=x 3+3x 2的拐点是14、由曲线y =√x ,x =1 ,x =2及x 轴围成的曲边梯形绕x 轴旋转一周而成的旋转体体积等于15、设y =32x ,则y (n)=三、计算题(本大题共8小题,其中16-19题每小题7分,20-23小题每小题8分,共60分) 16、求极限lim x→0ln (1+x )−xx 2.17、设y (x )=ln(2+cos πx)+x x ,求函数y (x )在x =1处的微分.18、求不定积分∫sin √x dx .19、设f (x )= ,求p (x )=∫f(t)xdt 在[0,π]上的表达式.x =sin t y =cos tcos x ,x ∈[0,π)x ,x ∈[π,π]20、一物体由静止到以速度v (t )=3t√t+1(m/s)作直线运动,其中t 表示运动的时间,求物体运动到8秒时离开出发点的距离。
2022年浙江省湖州市成考专升本高等数学二自考真题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.下列极限计算正确的是【】A.B.C.D.2.3.称e-x是无穷小量是指在下列哪一过程中它是无穷小量【】A.x→0B.x→∞C.x→+∞D.x→∞4.【】A.0B.1C.0.5D.1.55.A.A.0B.-1C.-1D.16.f(x)=|x-2|在点x=2的导数为A.A.1B.0C.-1D.不存在7. ()。
A.0B.1C.e-1D.+∞8.9.10.()。
A.-1B.0C.1D.211.A.A.2x+1B.2xy+1C.x2+1D.x212.当x→0时,若sin2与x k是等价无穷小量,则k=A.A.1/2B.1C.2D.313.()。
A.B.C.D.14. 设?(x)具有任意阶导数,且,?ˊ(x)=2f(x),则?″ˊ(x)等于().A.2?(x)B.4?(x)C.8?(x)D.12?(x)15.A.A.B.C.D.16.17.A.x=-2B.x=-1C.x=1D.x=018.()。
A.1/2B.1C.2D.319.20.21. A.1/2 B.1 C.3/2 D.222.23.24.设f(x)的一个原函数为Xcosx,则下列等式成立的是A.A.f'(x)=xcosxB.f(x)=(xcosx)'C.f(x)=xcosxD.∫xcosdx=f(x)+C25.设函数f(x)=xlnx,则∫f'(x)dx=__________。
A.A.xlnx+CB.xlnxC.1+lnx+CD.(1/2)ln2x+C26.函数曲线y=ln(1+x2)的凹区间是A.A.(-1,1)B. (-∞,-1)C.(1,+∞)D. (-∞,+∞)27. A.2x+cosy B.-siny C.2 D.028.29.30.二、填空题(30题)31.32.33.34.35.36.37.设函数y=xsinx,则y"=_____.38.39.40. 设函数y=f(-x2),且f(u)可导,则dy=________。
浙江省2016年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共5小题,每小题4分,共20分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设x x x f -=][)(,则)(x f 为()A.有界函数 B.偶函数 C.奇函数 D.无界函数2.设)(x f 在],[b a 上可导,且0)(0='x f ,()b a x ,0∈,则()A.)(0x f 为函数的极值B.)(x f '在0x x =处连续C.)(x f 在0x x =处可微D.))(,(00x f x 为函数的拐点3.设3)1(='f ,0)0(=f ,则=''⎰10)(dx x f x ()A.2 B.3C.0D.14.若实数a b <<0,则级数∑∞=+1n n n nba x 的收敛半径为()A.aB.bC.+a bD.-a b 5.微分方程sin '''++=y y y x x ,则其特解形式为()A.)cos sin (x b x a x + B.]cos )(sin )[(x d cx x b ax x +++C.x d cx x b ax cos )(sin )(+++ D.)cos sin )((x d x c b ax ++二.填空题:本大题共10小题,每小题4分,共40分。
6.极限=--→11lim 1x x x _________.7.函数2()ln(1)=-f x x 的定义域为_________.8.若(1)2'=f ,则0(12)(1)lim →--=h f h f h_________.9.若()=y y x 为方程sin 20++=y y xe x 所确定的隐函数,则=dy _________.10.ln =⎰x xdx _________.11.111lim(12→∞++⋅⋅⋅+=+++n n n n n_________.12.由sin =y x (0)π≤≤x 与x 轴所围平面图形的面积为_________.13.320'''++=y y y 的通解为_________.14.设(1,3,6)=-- a ,(4,3,0)=- b ,则⨯= a b _________.15.与平面032=+-+z y x 距离为6的平面方程为_________.三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分。
2023年浙江省嘉兴市成考专升本数学(理)自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.点(2,4)关于直线y=x的对称点的坐标为()。
A.(4,2)B.(-2,-4)C.(-2,4)D.(-4,-2)2.某学生从7门课程中选修4门,其中甲、乙、丙三门课程至少选修两门,则不同的选课方案共有()A.A.4种B.18种C.22种D.26种3.函数:y=2x的图像与函数x=log2y的图像( )A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.是同-条曲线4.已知复数z1=2+i,z2=l-3i,则3z1-z2=()A.A.5+6iB.5-5iC.5D.75.已知函数f(x)的定义域为R,且f(2x)=4x+1,则f(1)=()A.9B.5C.7D.36.已知复数z=a+6i,其中a,b∈R,且b≠0,则()A.A.B.C.D.7.Y=xex,则Y’=()A.A.xexB.xex+xC.xex+exD.ex+x8.在△ABC中,已知AB=5,AC=3,∠A=120°,则BC长为()A.A.7B.6C.D.9.9种产品有3种是名牌,要从这9种产品中选5种参加博览会,如果名牌产品全部参加,那么不同的选法共有()A.A.30种B.12种C.15种D.36种10.抛物线的准线方程为()。
11.12.设0<x<l,则()A.log2x>0B.0<2x<1C.D.1<2x<213.14.已知平面向量a=(-2,1)与b=(λ,2)垂直,则λ=()。
A.4B.-4C.1D.115.三角形全等是三角形面积相等的A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件16.()A.A.(3,-6)B.(1.-2)C.(-3,6)D.(2,-8)17.18.下列各选项中,正确的是()A.y=x+sinx是偶函数B.y=x+sinx是奇函数C.Y=D.xE.+sinx是偶函数F.y=G.xH.+sinx是奇函数19.20.若函数f(x)的定义域为[0,1],则f(cosx)的定义域为( )A.[0,1]B.(-∞,+∞)C.[-π/2,π/2]D.[2kπ-π/2,2kπ+π/2](k∈Z)22.下列函数在各自定义域中为增函数的是()。