1 A
2
下列条件:①A①BA=BA=EA,②E
D
BC=ED,③∠C=∠D,④
在ΔABC和ΔAED中
∠B=∠E,其中能使
AC=AD
ΔABC≌ΔAED的条件有
∠BAC=∠EAD
( )个. A.4 B.3 C.2 D.1
AB=AE
∴ΔABC≌ΔAED(SAS)
可编辑课件PPT
12
C
E
例2 (2006湖北十堰):如图, 已知∠1=∠2,AC=AD,增加 B
1 A
2
下列条件:①AB=AE,②
D
BC=ED,③∠C=∠D,④
在ΔABC和ΔAED中
∠∠BB=∠=∠EE,其, 中能使
AC=AD
ΔABC≌ΔAED的条件有
∠BAC=∠EAD
( )个.
A.4 B.3 C.2 D.1
∠B=∠E
∴ΔABC≌ΔAED(AAS)
可编辑课件PPT
15
例3 (2007金华):如图,
AB=A’B’
BC=B’C’
B
C B’
C’
AC=A’C’
全等三角形对应边相等,对应角相等
可编辑课件PPT
3
三、全等三角形的判定
1、判定1:两边和它们的夹角对应 相等的两个三角形全等。简称“边 角边 ”(SAS)。 2、判定2:两角和它们的夹边对应 相等的两个三角形全等。简称“角 边 角”(ASA)
可编辑课件PPT
16
∵AB=CD(已知) ∴ AB+BC=CD+BC, 即
AC=BD.
知,AB=CD,CE=DF,AE=BF, 在ΔACE和ΔBDF中
则AE∥BF吗?为A 什么?