统计学__假设检验(第五章)_(1)_2
- 格式:ppt
- 大小:1.10 MB
- 文档页数:71
医学统计学第七版教材第五章总结假设检验1.试述假设检验中α与P的联系与区别。
区别:(1)α值是事先确定的一个小的概率值。
为一次检验中,甘愿冒的风险。
(2)P值是在H,成立的条件下,出现当前检验统计量以及更极端状况的概率。
为一次检验中,实际冒的风险。
联系:以t检验为例,P、α都可以用t分布尾部面积大小表示。
Kα时,拒绝H。
假设,差异有统计学意义。
2.试述假设检验与置信区间的联系与区别。
联系:区间估计与假设检验是由样本数据对总体参数做出统计学推断的两种主要方法。
区别:置信区间用于说明量的大小,即推断总体参数的置信范围;假设检验用于推断质的不同,即判断两总体参数是否不等。
3.怎样正确运用单侧检验和双侧检验?需要根据数据的特征及专业知识进行确定。
若比较甲、乙两种方法有无差异,则应选用双侧检验。
若需要区分何者为优,,则应选用单侧检验。
在没有特殊专业知识说明的情况下,一般采用双侧检验即可。
4.试述两类错误的意义及其关系。
(1)Ⅰ类错误:如果检验假设H。
实际是正确的,由样本数据计算获得的检验统计量得出拒绝H。
的结论,此时就犯了错误,统计学上将这种拒绝了正确的零假设H。
(弃真)的错误称为Ⅰ类错误。
I类错误的概率用α表示。
(2)Ⅱ类错误:若检验假设H。
原本不正确(H正确),由样本数据计算获得的检验统计量得出不拒绝H。
(纳伪)的结论,此时就犯了Ⅱ类错误。
Ⅱ类错误的概率用β表示。
5.简述假设检验的基本思想。
假设检验是在局成立的前提下,从样本数据中寻找证据来拒绝H。
、接受H,的一种“反证”方法。
如果从样本数据中得到的证据不足,则只能不拒绝H,暂且认为H,成立,即样本与总体间的差异仅仅是由于抽样误差所引起。
拒绝H。
是根据某个界值,即根据小概率事件确定的。
所谓小概率事件是指如果比检验统计量更极端(即绝对值更大)的概率较小,比如小于等于0.05,则认为零假设的事件在某一次抽样研究中不会发生,此时有充分理由拒绝H。
,即有足够证据推断差异具有统计学意义。
第四章 抽样分布与参数估计3.某地区粮食播种面积5000亩,按不重复抽样方法随机抽取了100亩进行实测,调查结果,平均亩产450公斤,亩产量标准差为52公斤。
试以95%的置信度估计该地区粮食平均亩产量和总产量的置信区间。
解:已知X =450公斤,n =100(大样本),n/N=1/50,11≈-Nn,不考虑抽样方式的影响,用重复抽样计算。
s =52公斤,1-α=95%,α=5%。
这时查标准正态分布表,可得临界值:96.1025.02/==z z α该地区粮食平均亩产量的置信区间是:1005296.14502⨯±=±nsz x α=[439.808,460.192] (公斤) 总产量的置信区间是:[439.808⨯5000,460.192⨯5000] (公斤) =[2199040,2300960](公斤)4.已知某种电子管使用寿命服从正态分布。
从一批电子管中随机抽取16只,检测结果,样本平均寿命为1490小时,标准差为24.77小时。
试以95%的置信度估计这批电子管的平均寿命的置信区间。
解:(1)已知X =1490小时,n =16,s =24.77小时,1-α=95%,α=5%。
这时查t 分布表,可得 2.13145)1(2/=-n t α该批电子管的平均寿命的置信区间是:1677.2413145.214902⨯±=±nst x α=[ 1476.801,1503.199](小时)因此,这批电子管的平均寿命的置信区间在1476.801小时与1503.199小时之间。
6.采用简单随机重复抽样的方法,从2 000件产品中抽查200件,其中合格品190件。
要求:(1)计算合格品率及其抽样平均误差。
(2)以95.45%的置信度,对合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其置信度是多少? 解:(1)合格品率:P=190/200⨯100%=95% 抽样平均误差:np p p )1()(-=σ=0.015(2)%3%95%100015.02%95)(22/02275.02/±=⨯⨯±=±==p Z P Z Z σαα]19601840[]2000%982000%92[(%]98%92[,,的置信区为:件合格品数量,:合格品率的置信区间为=⨯⨯)(3)%64.87)(8764.01,54.1%31.2%100015.0%31.2)(2/2/2/==-==⨯⨯==∆z F Z Z p Z ασααα查表得7.从某企业工人中随机抽选部分进行调查,所得工资分布数列如下:试求:(1)以95.45%的置信度估计该企业工人平均工资的置信区间,以及该企业工人中工资不少于800元的工人所占比重的置信区间;(2)如果要求估计平均工资的允许误差范围不超过30元,估计工资不少于800元的工人所占比重的允许误差范围不超过10%,置信度仍为95.45%,试问至少应抽多少工人? 解(1)通过EXCEL 计算可得: X =816元,n =50人,s =113.77元。
统计学习题及答案第五章假设检验一、填空题:1. 就是事先对总体参数作出一个假设,然后利用样本信息判断该假设是否合理。
2.原假设和备择假设的关系是。
3.假设检验最常用的有三种情况:双侧检验、和。
4. 当总体方差已知,正态总体时,样本均值服从正态分布,选择的统计量为统计量。
5. 左侧检验的拒绝区域位于统计量分布的,右侧检验的拒绝区域位于统计量分布的。
6(假设检验中的两类错误是和。
二、单项选择题:1. 在假设检验中,原假设H,备择假设H,则称( )为犯第一类错误 01A、H为真,接受HB、H为真,拒绝H 0000C、H不真,接受HD、H不真,拒绝H 01002. 按设计标准,某自动食品包装及所包装食品的平均每袋中量应为500克。
若要检验该机实际运行状况是否符合设计标准,应该采用( )。
A、左侧检验B、右侧检验C、双侧检验D、左侧检验或右侧检验3. 当样本统计量的观察值未落入原假设的拒绝域时,表示( )。
A、可以放心地接受原假设B、没有充足的理由否定与原假设C、没有充足的理由否定备择假设D、备择假设是错误的4(进行假设检验时,在其它条件不变的情况下,增加样本量,检验结论犯两类错误的概率会( )。
A、都减少B、都增大C、都不变D、一个增大一个减小三、多项选择题:1. 关于原假设的建立,下列叙述中正确的有( )。
A、若不希望否定某一命题,就将此命题作为原假设B、尽量使后果严重的错误成为第二类错误C、质量检验中若对产品质量一直很放心,原假设为“产品合格(达标)”D、若想利用样本作为对某一命题强有力的支持,应将此命题的对立命题作为原假设E、可以随时根据检验结果改换原假设,以期达到决策者希望的结论2. 在假设检验中,α与β的关系是( )。
A、α和β绝对不可能同时减少B、只能控制α,不能控制βC、在其它条件不变的情况下,增大α,必然会减少βD、在其它条件不变的情况下,增大α,必然会增大βE、增大样本容量可以同时减少α和β四、计算题:,(某种感冒冲剂的生产线规定每包重量为,,克,超重或过轻都是严重的问题。