卫生统计学_第七章_假设检验基础
- 格式:ppt
- 大小:915.50 KB
- 文档页数:108
卫生统计学基础流行病学数据的假设检验与置信区间计算在卫生统计学中,流行病学数据的假设检验与置信区间计算是常见的分析方法。
通过这些方法,我们可以对流行病学数据进行有效的推断和判断。
本文将介绍基本的假设检验和置信区间计算的原理和应用。
一、假设检验假设检验是指通过收集样本数据,对总体的某个参数提出假设,并利用样本统计量对该假设进行验证的统计方法。
常见的假设检验有单样本均值检验、两样本均值检验和相关性检验等。
1. 单样本均值检验假设我们有一组样本数据,想要判断该样本的均值是否等于某个给定的值。
首先我们提出原假设(H0)和备择假设(H1),然后计算样本均值和标准误差,接着利用标准正态分布或t分布进行判断。
2. 两样本均值检验在两个独立的样本群体中,我们想要判断两个群体均值是否存在显著差异。
同样,我们提出原假设(H0)和备择假设(H1),计算两个样本的均值和标准误差,并利用t分布进行判断。
3. 相关性检验当我们需要了解两个变量之间是否存在相关性时,可以进行相关性检验。
常见的方法有Pearson相关系数和Spearman等级相关系数。
通过计算相关系数的置信区间,我们可以判断两个变量之间的相关程度。
二、置信区间计算置信区间是指对总体参数的一个区间估计,通常用一个上限值和一个下限值表示。
置信区间计算可以帮助我们确定总体参数的范围。
在流行病学数据分析中,我们常用置信区间来估计疾病的患病率、死亡率等指标。
置信区间的计算方法与假设检验类似,根据所需的置信水平和样本数据,计算样本均值和标准误差,再利用正态分布或t分布确定置信区间。
除了单个参数的置信区间计算外,对于两个参数之间的差异,也可以计算置信区间。
例如,在两组样本数据中,我们希望确定两个样本均值之间的差异是否显著。
通过计算差异的置信区间,可以得出结论。
三、数据分析示例为了更好地理解假设检验和置信区间计算的应用,我们以某疾病的发病率为例进行说明。
假设我们有两组样本数据,分别为疫苗接种组和非接种组的患病人数。
《卫生统计学》复习资料08生物技术曾洋and林阳第一章绪论名词解释统计学:是一门通过收集、整理和分析数据来认识社会和自然现象数量特征的方法论科学。
其目的是通过研究随机事件的局部外在数量特征和数量关系, 从而探索事件的总体在规律性,而随机性的数量化,是通过概率表现出来。
总体:总体是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
抽样:从研究总体中抽取少量有代表性的个体,称为抽样。
概率:概率(probability)又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P(A),P(A)越大,说明A事件发生的可能性越大。
0﹤P(A)﹤1。
频率:在相同的条件下,独立重复做n次试验,事件A出现了m次,则比值m/n称为随机事件A在n次试验中出现的频率(freqency)。
当试验重复很多次时P(A)= m/n。
变量:表现出个体变异性的任何特征或属性。
随机变量:随机变量(random variable)是指取指不能事先确定的观察结果。
随机变量的具体容虽然是各式各样的,但共同的特点是不能用一个常数来表示,而且,理论上讲,每个变量的取值服从特定的概率分布。
系统误差:系统误差(systematic error)是指由于仪器未校正、测量者感官的某种偏差、医生掌握疗效标准偏高或偏低等原因,使观察值不是分散在真值的两侧,而是有方向性、系统性或周期性地偏离真值。
系统误差可以通过实验设计和完善技术措施来消除或使之减少。
随机误差:随机误差(random error)又称偶然误差,是指排除了系统误差后尚存的误差。
它受多种因素的影响,使观察值不按方向性和系统性而随机的变化。