人大《统计学》第七章假设检验
- 格式:ppt
- 大小:4.62 MB
- 文档页数:68
第七章思考与练习参考答案1.答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在一定的范围内变化。
2.答:相关和回归都是研究现象及变量之间相互关系的方法。
相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。
3.答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数,样本相关系数。
复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数2R 的正的平方根。
偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。
4.答:回归模型假定总体上因变量Y 与自变量X 之间存在着近似的线性函数关系,可表示为t t t u X Y ++=10ββ,这就是总体回归函数,其中u t 是随机误差项,可以反映未考虑的其他各种因素对Y 的影响。
根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:tt X Y 10ˆˆˆββ+=。
总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。
两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。
第二,总体回归函数中的0β和1β是未知的参数,表现为常数;而样本回归直线中的0ˆβ和1ˆβ是随机变量,其具体数值随所抽取的样本观测值不同而变动。
第七章 假设检验学习目标知识目标:理解假设检验的基本概念小概率原理;掌握假设检验的方法和步骤。
能力目标:能够作正态总体均值、比例的假设检验和两个正态总体的均值、比例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利用样本对总体进行某种推断,然而推断的角度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
而在假设检验中,则是预先对总体参数的取值提出一个假设,然后利用样本数据检验这个假设是否成立,如果成立,我们就接受这个假设,如果不成立就拒绝原假设。
当然由于样本的随机性,这种推断只能具有一定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的一般步骤,然后重点介绍常用的参数检验方法。
由于篇幅的限制,非参数假设检验在这里就不作介绍了。
第一节 假设检验的一般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误一、假设检验的基本概念(一)原假设和备择假设为了对假设检验的基本概念有一个直观的认识,不妨先看下面的例子。
例7.1 某厂生产一种日光灯管,其寿命X 服从正态分布)200 ,(2μN ,从过去的生产经验看,灯管的平均寿命为1550=μ小时,。
现在采用新工艺后,在所生产的新灯管中抽取25只,测其平均寿命为1650小时。
问采用新工艺后,灯管的寿命是否有显著提高?这是一个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:一种是没有什么变化。
即新工艺对均值没有影响,采用新工艺后,X 仍然服从)200 ,1550(2N 。
另一种情况可能是,新工艺的确使均值发生了显著性变化。
这样,1650=X 和15500=μ之间的差异就只能认为是采用新工艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性水平05.0=α。
在上面的例子中,我们可以把涉及到的两种情况用统计假设的形式表示出来。
第一个统计假设1550=μ表示采用新工艺后灯管的平均寿命没有显著性提高。