统计学导论第7章 假设检验
- 格式:ppt
- 大小:5.20 MB
- 文档页数:65
第七章假设检验实例:一项新的减肥产品在广告中声称:服用该产品的第一周内,参加者的体重平均至少可以减轻8磅。
现随机抽取40位服用该减肥产品的样本,结果显示:样本的体重平均减少7磅,标准差为3.2磅。
假定显著性水平为0.05.问:该广告是否是属实的?消费者该不该信赖它呢?有人说大学中男生的学习成绩比女生好。
现从一个学校中随机抽取了25名男生和16名女生,对他们进行同样题目的测试,测试结果表明,男生的平均成绩为82分,标准差为10分;女生的平均成绩为78分,标准差为7分。
假定显著性水平为0.05,问:调查数据能否支持该人的结论?回答这些问题我们需要进行假设检验!一、假设检验的基本问题(一)假设检验的定义假设检验—也称显著性检验,它是先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。
(二)假设检验的基本思想假设检验的基本思想即小概率事件原理。
小概率事件原理——即小概率事件在一次试验中是几乎不可能发生的。
也就是说,如果提出的总体的某个假设是真实的,那么不利于或不可能支持这一假设的小概率事件A在一次试验中几乎是不可能发生的,要是在一次试验中事件A发生了,我们就有理由怀疑这一假设的真实性,并拒绝这一假设。
(三)假设检验的基本形式假设:1、原假设:通常将研究者想收集证据予以反对的假设,也称为零假设,用H0表示。
2、备择假设:通常将研究者想收集证据予以支持的假设,或称为研究假设,用H1表示。
根据备择假设有无特定的方向,可将假设检验的形式分为双侧检验和单侧检验。
(1)双侧检验——备择假设没有特定的方向性,并含有符号“”的假设检验;(2)单侧检验——备择假设具有特定的方向性,并含有符号“<”或“>”的假设检验; 在单侧检验中,根据研究者感兴趣的方向不同: 左侧检验:研究者感兴趣的备择假设方向为“<”的假设检验;右侧检验:研究者感兴趣的备择假设方向为“>”的假设检验。
单侧检验单侧检验左侧检验右侧检验假设检验的表达式假设原假设备择假设双侧检验00:θθ=H 01:θθ≠H 00:θθ≥H 01:θθ<H 00:θθ≤H 01:θθ>H例1:消费者协会接到消费者投诉,指控某品牌纸包装茶叶存在重量不足,有欺骗消费者之嫌。
第7章假设检验一、假设检验概述1.概念:假设检验是利用样本的实际资料来检验事先对总体某些数量特征所作的假设是否可信的一种统计分析方法。
2.主要目的:在于判决原假设的总体和当前抽样所取自的总体是否发生了显著的差异。
3.假设检验的检验法则假设检验过程就是比较样本观察结果与总体假设的差异。
差异显著,超过了临界点,拒绝H0;反之,差异不显著,接受H0。
4.假设检验中的两类错误:“弃真”、“取伪”在假设检验中,在一定样本容量下,不能同时做到犯这两类错误的概率都很小。
因为减少α会引起β增大,减少β会引起α增大。
5.基本思想:反证法思想、小概率原理6.假设检验的步骤:根据题意合理地建立原假设和备择假设→选择适当的检验统计量,并确定其分布形式→选定显著性水平,并根据相应统计量的统计分布表查出临界值→根据样本观察值计算检验统计量的观察值→根据检验规则作出接受或拒绝原假设的判断二、单个正态总体的假设检验(显著水平为α)三、两个正态总体的假设检(显著水平为α)注:2221212222212121211s s n n f s s n n n n ⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-- 四、总体比率的假设检验1、根据中心极限定理,在大样本条件下,若np 和nq 都大于5时,样本比率的抽样分布近似服从正态分布,因此,我们可用Z =作为检验统计量2、对于两总体比率之差的概率分布,可证明其近似地服从正态分布。
若总体比率未知,且1111,(1)n p n p -和 2222,(1)n p n p -都大于5时,我们可用样本比率1p 和2p 来替代。
因此,我们可用Z =五、假设检验中的其他问题1、区间估计与假设检验的关系:两者推断的角度不同、两者立足点不同、两者的主要决策参考点不同。
两者都属于统计推断方法,根据样本统计量对总体参数进行推断 对相同条件的推断问题,其推断的理论依据——抽样分布理论相同都是建立在概率基础上的推断,推断结果都具有一定的可靠程度或风险 利用置信区间可以进行假设检验2、假设检验中的p -值假设检验的p -值就是拒绝原假设的最小显著性水平。