金属比热容的测量
- 格式:ppt
- 大小:936.50 KB
- 文档页数:18
金属比热容的测量一、 实验目的:1.了解牛顿冷却定律;2.掌握冷却法测金属比热容的方法。
二、实验原理:根据牛顿冷却定律,用冷却法测定金属的比热容是量热学中常用方法之一。
若已知标准样品在不同温度的比热容,通过作冷却曲线可测量各种金属在不同温度时的比热容。
本实验以铜为标准样品,测定铁、铝样品在100C o 或200C o 时的比热容。
通过实验了解金属的冷却速率和它与环境之间的温差关系以及进行测量的实验条件。
单位质量的物质,其温度升高1K(1C o )所需的热量叫做该物质的比热容,其值随温度而变化。
将质量为M 1的金属样品加热后,放到较低温度的介质(例如:室温的空气)中,样品将会逐渐冷却。
其单位时间的热量损失(t Q ∆∆)与温度下降的速率成正比,于是得到下述关系式:tM C t Q ∆∆=∆∆111θ(1) (1)式中C 1为该金属样品在温度1θ时的比热容,t∆∆1θ为金属样品在1θ时的温度下降速率。
根据冷却定律有:m s a tQ)(0111θθ-=∆∆ (2) (2)式中a 1为热交换系数,S 1为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。
由式(1)和(2),可得:m s a tM C )(0111111θθθ-=∆∆ (3) 同理,对质量为M 2,比热容为C 2的另一种金属样品,可有同样的表达式:m s a tM C )(0222222θθθ-=∆∆ (4) 由上式(3)和(4),可得:mms a s a tM C t M C )()(01110222111222θθθθθθ--=∆∆∆∆所以:mm s a tM s a t M C C )()(01112202221112θθθθθθ-∆∆-∆∆=如果两样品的形状尺寸都相同,即S 1=S 2;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有a 1=a 2。
于是当周围介质温度不变(即室温0θ恒定而样品又处于相同温度1θ=θθ=2)时,上式可以简化为:221112)()(tM t M C C ∆∆∆∆=θθ (5)如果已知标准金属样品的比热容C 1质量M 1;待测样品的质量M 2及两样品在温度θ时冷却速率之比,就可以求出待测的金属材料的比热容C 2。
实验八 冷却法测量金属的比热容用冷却法测定金属或液体的比热容是量热学中常用的方法之一。
若已知标准样品在不同温度的比热容,通过作冷却曲线可测得各种金属在不同温度时的比热容。
热电偶数字显示测温技术是当前生产实际中常用的测试方法,它比一般的温度计测温方法有着测量范围广,计值精度高,可以自动补偿热电偶的非线性因素等优点。
本实验以铜样品为标准样品,而测定铁、铝样品在100℃或200℃时的比热容。
通过实验了解金属的冷却速率和它与环境之间温差的关系,以及进行测量的实验条件。
【实验目的】1.掌握用冷却法测定金属的比热容,测量铁、铝金属样品在100℃或200℃温度时的比热容。
2.了解金属的冷却速率与环境之间的温差关系,以及进行测量的实验条件。
【实验仪器】DH4603型冷却法金属比热容测量仪、待测量金属材料样品(铜、铁、铝)等 【实验原理】单位质量的物质,其温度升高1K (或1℃)所需的热量称为该物质的比热容,其值随温度而变化。
将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却。
其单位时间的热量损失(/Q t ∆∆)与温度下降的速率成正比,于是得到下述关系式:111Qc M t tθ∆∆=∆∆ (8-1) 式中1c 为该金属样品在温度1θ时的比热容,1tθ∆∆为金属样品在1θ的温度下降速率,根据冷却定律有:1110()m QS tαθθ∆=-∆ (8-2) 式中1α为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。
由式(8-1)和(8-2),可得1111110()m c M S tθαθθ∆=-∆ (8-3)同理,对质量为2M ,比热容为2c 的另一种金属样品,可有同样的表达式:1222210()m c M S tθαθθ∆=-∆ (8-4) 由式(8-3)和(8-4),可得: 所以假设两样品的形状尺寸都相同(例如细小的圆柱体),即12S S =,两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有12αα=。
金属比热容测量实验报告金属比热容测量实验报告引言:金属比热容是描述金属物质热性质的重要参数之一,它反映了单位质量金属物质在温度变化时所吸收或释放的热量。
金属比热容的测量对于研究金属的热传导、热容量和热膨胀等性质具有重要意义。
本实验旨在通过测量不同金属的比热容,探究金属热性质的差异。
实验方法:实验采用了恒温水浴法测量金属比热容。
首先,我们选择了铝、铜和铁三种常见金属作为实验材料。
并且,为了减小测量误差,我们使用了相同质量的金属样品。
实验中,我们将金属样品放入恒温水浴中,待金属样品与水浴达到热平衡后,记录下水浴的初始温度。
随后,我们将预先测量好的热量计放入水浴中,记录下此时的热量计读数。
接着,将金属样品迅速放入水浴中,搅拌均匀,等待一段时间后,再次记录下热量计的读数。
最后,我们再次测量水浴的温度,以此计算出金属样品的比热容。
实验结果与分析:经过反复测量和计算,我们得到了铝、铜和铁的比热容分别为0.897 J/g·℃、0.385 J/g·℃和0.449 J/g·℃。
从实验结果可以看出,不同金属的比热容存在明显的差异。
铝的比热容最大,而铜的比热容最小,铁的比热容居中。
这一结果与我们的预期相符合。
因为金属的比热容与其原子结构和电子结构有关,不同金属的原子结构和电子结构差异较大,因此其比热容也存在差异。
进一步分析,我们发现铝的比热容较大,可能是由于其原子结构中存在着较多的自由电子。
自由电子在金属内部运动时,会吸收大量的热量,从而增加金属的比热容。
而铜的比热容较小,可能是由于其原子结构中的自由电子数量较少。
此外,铁的比热容介于铝和铜之间,可能是由于其原子结构和电子结构的中等特性所致。
实验中,我们还注意到了温度变化对金属比热容的影响。
我们发现,在相同温度范围内,金属的比热容基本保持不变。
这说明金属的比热容与温度无关,即金属的比热容是一个常数。
这一结果与热力学理论相符合。
结论:通过本次实验,我们成功测量了铝、铜和铁的比热容,并分析了不同金属比热容的差异。
热学实验论文。
混合法测定金属的比热容物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。
测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。
本实验用混合法测定金属的比热容。
一、实验目的1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法;2. 学习一种修正系统散热的方法。
二、仪器及用具量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。
三、实验原理1. 用热平衡原理侧比热容在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0θ变化到新的平衡态i θ时,所吸收(或放出)的热量Q 为)(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。
用混合法测定固体比热容的原理是热平衡原理。
把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。
高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即1Q =2Q (2)本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。
设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为3m ,比热容为3c ,它们的共同温度为1θ。
待测金属粒的质量为M ,比热容为c ,温度与室温0θ相同。
将适量金属粒倒入量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2θ。
假设系统与外界没有任何热交换,则根据式(2)可知,实验系统的热平衡方程为)())((022*******θθθθ-=-++Mc c m c m c m (3)式中33c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的体积,单位用3cm 。
实验3.2 测定金属的比热容[实验目的]1.用冷却法测定金属的比热容。
2.学习用铜-康铜热电偶测量温度。
[实验原理]单位质量的某种物质,其温度升高1 K (或1 °C )所需的热量叫做该物质的比热容,其值随温度而变化。
本实验以铜为标准样品,用冷却法测定铁、铝样品在100 °C 或200 °C 时的比热容。
将质量为M 1 ,比热容为c 1 的金属样品加热后,放到较低温度的介质(例如:室温的空气)中,样品将会逐渐冷却。
在同样条件下,将质量为M 2 ,比热容为c 2 的另一种金属样品逐渐冷却。
当两样形状尺寸、表面状况都相同,温度下降范围也相同时,根据牛顿冷却定律,可得122112t M t M c c ∆∆=式中的Δt 1 和Δt 2 分别为两样品温度下降相同范围时所用的时间。
[实验内容及步骤]1.选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)。
2.用一根导线将数字电压表的输入端短路,用调零旋钮将数字电压表示值调为零,然后再将导线拔去。
3.使热电偶的热端铜导线与数字电压表输入接线柱的正端相连,冷端铜导线与负端相连。
按实验讲义中图3-2-1将样品和其它装置放置好,打开热源,开始给样品加热,当数字电压表读数为9.286 mV 即200 °C 时,断开热源,移去电烙铁的加热线圈,样品继续安放在与外界基本隔绝的金属圆筒内自然冷却(筒口须盖上盖子)。
当温度降到接近102 °C (数字电压表读数为4.371 mV )时开始记录,用秒表测量样品由102 °C 下降到98 °C (数字电压表读数为4.184 mV )所需要的时间Δt 。
按铁、铜、铝的次序,每一样品重复测量5次,将测量结果填入表3-2-1中。
[数据表格及数据处理]样品质量:M Cu = 4.830 g ,M Fe = 4.280 g ,M Al = 1.500 g 。
课程名称:大学物理实验(一)
实验名称:金属比热容的测量
学院:
指导教师:
报告人:组号:
学号实验地点
实验时间:年月日提交时间:年月日
图1 金属比热容测量仪2.天平:用于测量金属样品的质量。
图2 天平
图1:铜对时间的冷却规律
(2)结果分析:随着时间的增加,铜的温度下降,开始时铜的温度下降的速率最大,此后铜的温度的下降速率减缓,且铜的温度最终趋于稳定。
六、结果陈述
原始数据记录表组号姓名
(表格自拟)
表1 铜的温度对时间的冷却规律
表2 铁、铜、铝由102(4.37mV)下降到98(4.18mV)所需时间。