1 FTP5-13 Experimental Study on Nuclear Properties of Water Cooled Pebble Bed Blanket
- 格式:pdf
- 大小:877.19 KB
- 文档页数:8
国外物理学类核心期刊中英文对照物理总论类核心期刊表序号刊名中文译名中图刊号出版国1Physical review letters物理学评论快报530B0003美国2Physical review. E,Statistical,nonlinear,and soft matter physics物理学评论。
E辑,统计物理学、非线性和软凝聚态物理学530B0002-1E美国3Advances In physics物理学进展530C0002英国4Physics reports物理学报道530LB006荷兰5Physica. A物理学。
A辑530LB007荷兰6Journal of physics. D, Applied physics物理学杂志。
D辑,应用物理学539C0001英国7Journal Of physics。
A,Mathematics and general物理学杂志A辑,数理与普通物理学530C0003英国8Physics today今日物理学530B0005美国9Journal of the Physical Society of Japan日本物理学会志530D0002日本10Reports on progress In physics物理学进展报告530C0059英国11Computer physics communications计算机物理学通讯738LB002-A荷兰12Journal of mathematical physics数学物理学杂志533B0001美国13Journal of computational physics计算物理学杂志539B0002美国14Physica。
D,Nonlinear phenomena物理学。
D辑,非线性现象530LB009荷兰15Journal of experimental and theoretical physics实验与理论物理学杂志533B0006 美国16Communications In mathematical physics数学物理通讯533E0001德国17JETP letters实验与理论物理学杂志快报533B0005美国18Europhysics letters欧洲物理学快报530F054法国19Philosophical magazine哲学杂志530C0001英国20Annals of physics物理学纪事530B0007美国21Foundations Of physics物理学基础530LB003荷兰22American Journal of physics美国物理学杂志530B0006美国23Journal de physique. IV,Proceedings物理学杂志。
自然循环与强迫循环条件下阻力及换热特性对比伍振兴;阎昌琪;田春平;田旺盛;秋穗正【摘要】In order to study the difference of flow and heat transfer characteristics under natural and forced circulations,the experiments on flow and heat transfer under natural and forced circulations were conducted at a narrow rectangular channel with one side heated for research object,and the subcooling from 30 ℃ to 60 ℃ with the constant pressure of 0.2 MPa.Under the condition of the same heat flux,the experiment on flow resistance shows that resistance characteristics in laminar regime under natural circulation are almost similar to those of forced circulation,and flow resistance in turbulent regime under natural and forced circulations can be predicted by the corrected Blasius formula.It is found that the Recr and the Re regions of transitional section keep the same under forced and natural circulations.The experiment on heat transfer shows that Gneilinski formula adjusted to forced circulation can forecast heat transfer characteristics in turbulent regime under natural circulation.It is found that heat transfer characteristics under forced and natural circulations have nearly no difference within the scope of this study.%为研究自然循环和强迫循环条件下流动及换热特性的区别,以单面加热窄矩形通道为研究对象,在压力0.2 MPa、实验段入口欠热度30~60 ℃的条件下,分别进行了强迫循环和自然循环条件下流动及换热实验.等热流密度条件下的阻力实验研究表明:在层流区,强迫循环和自然循环条件下的阻力特性几乎相同;在湍流区,修正后的Blasius关系式能同时适用于强迫循环和自然循环条件下的阻力预测;通过对比发现,强迫循环和自然循环条件下的转捩点雷诺数以及过渡态雷诺数区间几乎相同.换热实验研究表明:在湍流区,适用于强迫循环条件下的Gneilinski关系式能对自然循环换热能力较好预测;通过分析发现,在本实验研究范围内,自然循环与强迫循环条件下换热能力无明显区别.【期刊名称】《原子能科学技术》【年(卷),期】2017(051)007【总页数】7页(P1188-1194)【关键词】窄矩形通道;强迫循环;自然循环;阻力特性;换热特性【作者】伍振兴;阎昌琪;田春平;田旺盛;秋穗正【作者单位】西安交通大学核科学与技术学院陕西省先进核能技术重点实验室,陕西西安 710049;哈尔滨工程大学核安全与仿真技术国防重点学科实验室,黑龙江哈尔滨 150001;哈尔滨工程大学核安全与仿真技术国防重点学科实验室,黑龙江哈尔滨 150001;哈尔滨工程大学核安全与仿真技术国防重点学科实验室,黑龙江哈尔滨 150001;哈尔滨工程大学核安全与仿真技术国防重点学科实验室,黑龙江哈尔滨150001;西安交通大学核科学与技术学院陕西省先进核能技术重点实验室,陕西西安 710049【正文语种】中文【中图分类】TL33在学术上,窄通道一般指特征尺寸在0.01~5 mm之间的流动通道[1]。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 7 期新型耐迁移橡胶防老剂的研究进展欧阳素芳1,周道伟2,黄伟2,贾凤2(1 中国石油化工股份有限公司科技部,北京 100728;2 中石化南京化工研究院有限公司,江苏 南京 210048)摘要:首先介绍了橡胶防老剂的相关理论研究,橡胶材料老化的本质为自由基反应,其防护机理主要是抑制自由基的形成,实验研究集中于差示扫描量热、核磁、紫外分光、红外光谱等分析橡胶材料以及防老剂的结构变化,而理论研究则集中于分子模拟,包括解离能、溶解度、均方位移等参数计算。
其次,通过对国内外商业化橡胶防老剂的使用现状进行追踪,分析了新型橡胶防老剂的开发与应用情况,包括胺类防老剂的改性方法、防老剂的复配研究以及具备特殊功能的新型防老剂应用等,结合几类耐迁移橡胶防老剂的结构特点和应用结果,指出具备耐迁移和低毒性等特点的新型橡胶防老剂是未来发展方向。
最后,总结了新型耐迁移橡胶防老剂应集中于发挥防老剂大分子化和多官能化的协同作用,可以更好地适应橡胶工业的持续发展。
关键词:橡胶防老剂;老化机理;耐迁移;分子模拟中图分类号:TQ330.38 文献标志码:A 文章编号:1000-6613(2023)07-3708-12Research progress on novel anti -migration rubber antioxidantsOUYANG Sufang 1,ZHOU Daowei 2,HUANG Wei 2,JIA Feng 2(1 Science & Technology Development Department, China Petroleum & Chemical Corporation, Beijing 100728, China;2SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, Jiangsu, China)Abstract: The work introduced the theoretical research on rubber antioxidants at first. The essence of rubber material aging was free radical reaction, and its protection mechanism was mainly to inhibit the formation of free radicals. Experiments of mechanism focused on differential scanning calorimeter, nuclear magnetic resonance, ultraviolet spectroscopy and infrared spectroscopy to analyze the structural changes of both rubber materials and antioxidants, while the theoretical research focused on molecular simulation including the calculation of parameters such as dissociation energy, solubility and mean square displacement. Secondly, though tracing the commercial rubber antioxidants, the development and application of novel rubber antioxidants were analyzed including the modifying of amine antioxidants, the compounding of antioxidants and the application of new antioxidants with special functions, etc . Combining with the structural features and experimental results of several types of anti -migration rubber antioxidants, it was proposed that the novel rubber antioxidants with anti -migration and low toxicity were the crucial points. Finally, it was summarized that the novel anti -migration rubber antioxidants should focus on the improvement of synergistic effect of macro-molecular and multi-functional for antioxidants, which can better adapt to the sustainable development of rubber industry.Keywords: rubber antioxidants; aging mechanism; anti -migration; molecular simulation综述与专论DOI :10.16085/j.issn.1000-6613.2023-0520收稿日期:2023-04-04;修改稿日期:2023-05-26。
内质网应激通过调控巨噬细胞向M1方向极化产生致炎作用的实验研究中文摘要目的:脓毒症(sepsis)是常见的致死原因,其病理过程常伴随严重的炎症反应,已有学者发现脓毒症最常见的致病因素——脂多糖(lipopolysaccharide,LPS)可通过诱导巨噬细胞向M1型极化进而产生炎症反应。
内质网应激(Endoplasmic reticulum stress,ERS)是机体遭受到外界刺激(内毒素,缺氧等)时内质网产生的一个复杂的适应性反应,可通过调控多条炎症反应通路产生致炎作用。
由于内质网应激和巨噬细胞极化均可控制炎症反应并且二者也有相似的诱发因素,因此二者是否存在关联是本实验探究的主要内容。
方法:第一部分实验用革兰阴性菌内毒素脂多糖腹腔注射造成炎症反应,6h 后取小鼠肺组织,用western blot检测内质网应激相关蛋白eIF2α,p-eIF2α,IRE1α,p-IRE1α,p-IκB,XBP-1的表达量来判断脓毒症所致的炎症反应是否与内质网应激有关。
第二部分实验将小鼠分为四组,取出其中两组分别注射内质网应激激动剂TM和内质网应激抑制剂TUDCA预处理30min,然后将处理后的两组和未处理的一组分别注射等量的LPS,最后一组注射PBS作为对照。
通过流式细胞仪检测巨噬细胞M1的标记物iNOS的表达情况来判断巨噬细胞极化是否与内质网应激有关。
第三部分实验取小鼠骨髓间充质干细胞用M-CSF定向诱导至巨噬细胞M0,然后用LPS刺激使其发生极化,然后用RT-PCR检测巨噬细胞M1因子IL-1, IL-12,iNOS,TNF-α的表达水平来检测极化的细胞是否为M1型。
第四部分实验将定向诱导的巨噬细胞M0分为6组:M-CSF组;LPS组;LPS+TUDCA(50μg/mL)组;LPS+TUDCA(100μg/mL)组;LPS+TUDCA(200μg/mL)组,LPS+TG组。
内质网应激激动剂TG和抑制剂TUDCA均需预处理30min。
第55卷第6期2021年6月原子能科学技术AtomicEnergyScienceandTechnologyVol.55,No.6Jun.(0(1 5X5螺旋十字型棒束组件阻力与交混特性实验研究张琦1顾汉洋,肖瑶*,杨珏2朱俊志2•上海交通大学核科学与工程学院,上海200240#2•中广核研究院有限公司,广东深圳518000)摘要:本文对5X5螺旋十字型棒束(HCF)组件进行热工水力实验,获得了HCF组件的阻力系数和交混系数%测量了螺旋十字型棒束组件的沿程压降,并拟合了阻力系数关系式%基于能量平衡法对HCF组件的交混特性进行了分析%将低温水直接注入棒束组件的子通道中,通过测温导管将T型热电偶固定在子通道的中心位置,并测量了各子通道内的水温分布%HCF组件内的横向交混由湍流交混和流动后掠组成,定义等效交混系数来分析HCF组件内的横向交混率%HCF组件的等效交混系数不随雷诺数的增加而明显变化,其均值为0.019%将等效交混系数输入子通道分析程序Cobra-tf中,计算了子通道内的水温分布%结果表明,水温分布的实验值和计算值符合良好,平均偏差为0.16i%关键词:螺旋十字型棒束组件;沿程压降;温度分布;阻力系数;交混系数中图分类号:TL333文献标志码:A文章编号:1000-6931(2021)06-1060-07doi:10.7538/yzk.2020.youxian.0436Experimental Study on Resistance and Mixing Characteristicsof5X5Helical Cruciform Fuel AssemblyZHANG Qi1,GU Hanyang1",XIAO Yao1,YANG Jue2,ZHU Junzhi2(1.School of Nuclear Science and Engineering,Shanghai Jiao Tong University,Shanghai200240,China#2.China Nuclear Poxver Technology Research Institute Co.,Ltd.,Shenzhen518000,China)Abstract:The thermal hydraulic experiment of5X5helical cruciform fuel(HCF) assembly wasconductedinthispaper theresistanceand mixingcoe f icientsof HCF assemblywereobtained.Thefrictionalpressuredropofthetestsectionwasmeasured andtheresistancecoe f icientcorrelationofHCFassemblywasfi t ed.Themixingchar-acteristicofthetestsectionwasanalyzedwithenergybalanceapproach.Thecoldfluid wasdirectlyinjectedintooneofthesub-channels the T-typethermocouple wasfixed intothecentralofsubchannel andthefluidtemperatureofthesub-channelwasmeas-ured.Thetransverse mixingof HCFassembly wascomprised withturbulence mixing andlateralflow diversion andthee f ective mixing coe f icient was defined to describe收稿日期2020-08-20#修回日期:2020-11-01基金项目:国家自然科学基金资助项目(1876128)"通信作者:顾汉洋第6期张琦等(X5螺旋十字型棒束组件阻力与交混特性实验研究1061the transverse mixing.The e Y ective mixing coe icient oY HCF assembly does not change distinctly with Reynolds number,and the mean effective mixing coefficient is0.019.The e f ect.ve m.x.ng coe f.c.ent was.nputto the sub-channelanalys.s codeCobra-tf!thetemperatured.str.but.onofthesub-channelwascalculated.Thecalculated temperature correspondes well with experimental data,the average deviation is0.16°C.Key words:helical cruciform fuel assembly;frictional pressure drop;temperature distribution#resistance coefficient;mixing coefficient螺旋十字型棒束(HCF)组件的换热面积较传统燃料棒大30%〜40%,且相邻的燃料棒可通过燃料棒上的肋片相互支撑,无需采用定位格架来固定。
质子在砷化镓材料中产生位移损伤的Geant4模拟李永宏;寇勃晨;赵耀林;贺朝会;于庆奎【摘要】本文使用Geant4模拟了1、5、10、20、50、100、500、1 000 MeV 能量的质子入射GaAs的位移损伤情况.随入射质子能量的增大,产生的初级离位原子(PKA)数目增加、种类增多;PKA能谱分布总体上呈递减趋势,PKA在低能量区间所占份额降低,在高能量区间所占份额升高.研究结果表明,辐射缺陷浓度在质子入射方向上遵循布拉格规律.【期刊名称】《原子能科学技术》【年(卷),期】2018(052)010【总页数】5页(P1735-1739)【关键词】质子;砷化镓;位移损伤;Geant4【作者】李永宏;寇勃晨;赵耀林;贺朝会;于庆奎【作者单位】西安交通大学核科学与技术学院,陕西西安710049;西安交通大学核科学与技术学院,陕西西安710049;西安交通大学核科学与技术学院,陕西西安710049;西安交通大学核科学与技术学院,陕西西安710049;中国航天宇航元器件工程中心,北京100029【正文语种】中文【中图分类】TL341砷化镓(GaAs)材料是一种重要的化合物半导体材料,它可制成电阻率比硅、锗高3个数量级以上的半绝缘高阻材料,可用来制作集成电路衬底、红外探测器、γ光子探测器等。
由于GaAs电子迁移率比硅大5~6倍,因此在制作微波器件和高速电路方面得到重要应用。
用GaAs制成的半导体器件具有高温与低温性能好、噪声小、抗辐射能力强等优点,使其在太空领域有着广泛的应用前景[1]。
空间宇宙射线(如质子流等)与宇航电子系统通过核反应在其组成材料(如GaAs)内部产生具有较高能量的反冲原子,这些反冲原子或反冲产物会在材料内部沉积大量能量[2-7]。
这些能量通常分为:非电离能量损失(NIEL),即可使材料内部原子产生离位效应,在GaAs中引入位移缺陷,使材料性能退化;电离能量损失,引起材料内部原子进一步电离或激发[8-12]。
一种新型抗辐照SRAM的设计与验证的开题报告题目:一种新型抗辐照SRAM的设计与验证背景及研究意义:随着半导体工艺的不断进步,SRAM(Static Random Access Memory)被广泛应用于存储数据、程序和缓存。
然而,在高剂量辐射环境下,SRAM的可靠性会变得越来越低,这不仅会对芯片的可靠性和稳定性产生影响,还可能导致严重的安全问题。
因此,研究新型抗辐照SRAM 的设计与验证,提高SRAM在高剂量辐射环境下的可靠性,对于保障芯片的可靠性和稳定性具有重要的现实意义。
研究内容:本研究旨在设计一种新型抗辐照SRAM,具体内容包括:1. 利用设计技术,提高SRAM的辐射抗性,对SRAM的故障率进行统计、分析和优化。
2. 分析和验证设计的新型抗辐照SRAM的可靠性和稳定性。
3. 借助工艺仿真和测试技术,研究抗辐照设计技术的成效,并提出实用性建议。
预期成果:本研究的预期成果包括:设计并验证一种新型抗辐照SRAM。
结果将有助于提高SRAM在高剂量辐射环境下的可靠性和稳定性,为芯片的可靠性和稳定性提供技术支持。
研究方法:本研究将采用如下研究方法:1. 整合相关文献资料,对SRAM的辐射故障机理、设计技术和测试方法进行综述分析。
2. 设计一种新型抗辐照SRAM,利用SRAM的故障率进行统计、分析和优化设计。
3. 在工艺仿真和测试平台上,开展对新型抗辐照SRAM的可行性验证。
4. 分析验证结果,验证新型抗辐照SRAM的可靠性和稳定性,提出实用性建议。
研究计划:本研究的计划内容如下:第一阶段:文献综述和研究思路的明确,预计时间为一个月。
第二阶段:设计并模拟新型抗辐照SRAM,预计时间为三个月。
第三阶段:工艺制程测试和优化,预计时间为三个月。
第四阶段:测试验证和数据分析,预计时间为两个月。
第五阶段:论文撰写和论文答辩,预计时间为两个月。
参考文献:[1] Suraj S., Jafar I., Malik S. Design of Radiation Hardened Embedded Static Random Access Memory (EH-SRAM) for Space Mission Applications. Journal of Computer Science, Vol. 13, No. 5, 2017, pp. 203-214.[2] Al-Iman R.N., Al-Mashhadani K.A, Al-Araji I.K. Radiation Hardening Techniques for SRAM Memory. Journal of Engineering Science and Technology Review, Vol. 10, No. 3, 2017, pp. 41-48.[3] Giuseppe I., Luigi R. Radiation Effects on SRAM-Based FPGA: Experimental and Theoretical Investigations. IEEE Transactions on Nuclear Science, Vol. 55, No. 4, 2008, pp. 2231-2238.[4] Liu J., Liu J., Chen W., et al. A split-gate cell construct to improve neutron irradiation hardness for 28-nm bulk SRAMs. IEEE Transactions on Nuclear Science, Vol. 61, No. 4, 2014, pp. 2199-2206.[5] 张阳, 程海洋, 吕志刚, 等. 基于阈值电压编程的高剂量辐照环境下自适应SRAM设计[J]. 科学技术与工程, 2018, 18(19):46-50, 58.。
核医学绪论一、核医学的定义、内容和特点二、核医学发展现状三、回顾与展望四、怎样学习核医学一、核医学的定义、内容和特点1、核医学的定义:是用放射性nuclide(核素)诊断、治疗疾病和进行医学研究的医学学科;是一门研究核素和核射线在医学中的应用及其理论基础的学科,它是核技术与医学结合的产物。
2、核医学的内容:(1)Experimental nuclear medicine:利用核技术探索生命现象的本质和物质变化规律,已广泛应用于医学基础理论研究,内容包括:核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等;(2)Clinial nuclear medicine:临床核医学是用放射性核素诊断和治疗疾病的临床医学学科。
(3)诊断核医学:in vivo(体内)诊断法:包括脏器显像和功能测定in vitro(体外)诊断法:放射免疫分析(4)治疗核医学:利用 radionuclide 发射的核射线对病变进行内照射治疗。
3、核医学的特点:(1)核医学显像:核医学显像是显示放射性核素标记的放射性药物在体内的分布图,放射性药物根据自己的代谢和生物学特性,能特异地分布于体内特定的器官或病变组织,由于放射性核素放出γ射线,故能在体外被探测到,医学显像是显示器官及病变组织的解剖结构和代谢、功能相结合的显像。
(2)核医学器官功能测定:核医学器官功能测定是利用放射性药物在体内能被某一器官特异摄取、在某一特定的器官组织中被代谢或通过某一器官排出等特性,在体外测定这些放射性药物在相应的器官中摄取的速度、存留的时间、排出的速度等,就可推断出相应器官功能状态。
(3)放射性核素治疗:放射性核素治疗是利用在机体内能高度选择性地聚集在病变组织内的放射性药物,在体内杀伤病变细胞,达到治疗疾病的目的,治疗用放射性药物一般选用:射程短、对组织的局部损伤作用强的射线,常用的射线是β射线,放射性核素治疗由于在体内能得到高的靶/非靶比值,故对病变组织有强的杀伤作用,而全身正常组织受的辐射损伤小,有较高的实用价值。
Experimental Study on Nuclear Properties of Water Cooled Pebble BedBlanketS. Sato, Y. Verzilov, K. Ochiai, M. Wada, N. Kubota, K. Kondo, M. Yamauchi, T. Nishitani, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 Japane-mail: sato.satoshi92@jaea.go.jpAbstract. For the first time, nuclear properties are experimentally examined on the water cooled pebble bed blanket by using DT neutrons with two partial mockups; multi-layered mockup with water and pebble bed mockup. Prediction uncertainties are clarified on tritium production rate (TPR) through the experimental analyses. From the multi-layered mockup experiment, it is found that integrated tritium productions can be accurately evaluated. Calculation methods are discussed on the evaluation for TPR of the pebble bed layer, and the precise modeling method is proposed using the hexagonal close-packed heterogeneous geometry. The integrated tritium productions by the homogenous geometry decrease compared with those by the heterogeneous geometry. It is clarified that evaluations are required on a tritium breeding ratio in the blanket design calculation by the proposed method.1. IntroductionIn fusion DEMO reactors, the blanket is required to provide a tritium breeding ratio (TBR) more than unity. The water cooled pebble bed blanket being developed by JAEA consists of Li2TiO3 or Li2O pebbles with enriched 6Li as tritium breeder, beryllium pebbles as neutron multiplier, ferritic steel F82H and water [1]. The TBR is 1.0-1.2 for the present DEMO reactor design, therefore a prediction uncertainty is required to be less than 10 % [1, 2]. The prediction uncertainty is estimated to be more than 10 % based on our previous experiments [3 - 6], and studies have been performed for enhancement of the accuracy [7]. Neutronics experiments were conducted on simple mockup by using DT neutrons in the previous studies [3 - 7]. In those studies, preliminary experimental data were obtained on TPR. In the present study, neutronics experiments have been extended to introduce water and pebble bed layers so that the experimental mockup can better simulate the blanket structure and TPR can be obtained in more detail. Fast neutrons are moderated by water, and slow neutrons increase. TPRs are required to be measured on the blanket including water. In addition, no experimental studies have been reported so far about the pebble bed layer. Since mean free path of slow neutrons is very short in the tritium breeder, TPRs are expected to be affected by the geometry of the breeder. In order to evaluate TPR on the blanket with water and pebble bed layer, neutronics studies are performed on the followings; 1) multi-layered blanket mockup experiment with water panel, 2) pebble bed layer experiment.2. Multi-layered Blanket Mockup Experiment with Water Panel2.1. ExperimentDT neutron irradiations were performed by using the 80° beam line of the Fusion Neutronics Source (FNS) facility [8] in JAEA. DT neutron yield of the source target was about 1 x 1011 neutrons/s on average. Figure 1 shows the experimental assembly. The mockup is composed of slabs of 16 mm thick first wall panel, two 12 mm thick Li2TiO3 (6Li enrichment of 40 %) layers, two 101.6 mm thick beryllium layers and four 7.8 mm thick partition panels with 500 mm height and 500 mm width each. The first wall and partition panels are composedFIG. 1. Cross-sectional view of experimental assembly in the multi-layered blanket mockup.of F82H and water, and water is filled in the F82H vessel. Thicknesses of the water are 6 and 4.2 mm in the first wall and partition panels, respectively. Front and rear walls are 3 and 7 mm in thickness, respectively, in the first wall panel, and both walls are 1.8 mm in thickness in the partition panels. The partition panels are installed at the boundaries between Li2TiO3 and beryllium layers. The distance from the DT source to the mockup surface is 100 mm.As detectors of TPR, Li2CO3 pellets have been applied. Fifteen slices of Li2CO3 diagnostic pellets, 13 mm in diameter and 0.5, 1 and 2 mm in thickness, were embedded inside the center of the Li2TiO3 layers. The lithium isotopes are also enriched by mixing each isotope in these pellets to be equal to the atomic density in the Li2TiO3. Tritium activities produced in these irradiated pellets were measured with a liquid scintillation counter (LSC) after the wet-chemistry treatment procedure, thus evaluating TPRs.2.2. Results and DiscussionsNumerical analyses were conducted by using Monte Carlo code MCNP-4C [9] with the Evaluated Nuclear Data Libraries FENDL-2.0 [10], JENDL-3.2 [11] and 3.3 [12]. Figure 2 shows distributions of the experimental and calculated values on TPRs. Experimental errors are 7%, which are mainly from the calibration error of the tritium activity measurement. The TPRs increase with decrease in distance to the beryllium layer, and these sharply change in the 12 mm thick breeder layers. The TPRs at the boundaries between the breeder layer and the partition panel adjacent to the beryllium layer are larger than those at the center in the breeder layer by factors of 8 and 6 in the first and second layers, respectively. Table I shows the integrated tritium productions from all the diagnostic pellets. The integrated tritium production in the second layer is 1.3 times as large as that in the first layer. First breeder layer is sandwiched by the first wall panel and the partition panel adjacent to the beryllium layer. On the other hand, second breeder layer is sandwiched by the partition panel adjacent to the beryllium layers. Slow neutrons drastically increase by the reaction between fast neutron and beryllium. The integrated tritium production in the second layer is larger because increased neutrons incident to the breeder layer from both sides.Figure 3 shows distributions of the ratios of the calculation results to the experimental results (C/Es) on TPRs for the FENDL-2.0. The C/Es are 0.87 – 1.05 in the first layer, and 0.97 – 1.11 in the second layer. Most of the calculation results agree with the experimental results10-2710-26T P R (/n u c l i d e /s o u r c e n e u t r o n )Distance from Li 2TiO 3 layer front surface (mm)FIG . 2. TPR Distributions.0.80.911.11.2C /E Distance from Li 2TiO 3 layer front surface (mm)FIG . 3. C/Es on TPRs.TABLE I: EXPERIMENT AND CALCULATION RESULTS ON INTEGRATED TRITIUMPRODUCTIONS IN MULTI-LAYYERED BLANKET MOCKUP EXPERIMENTExperiment Calculation C/E FENDL-2 JENDL-3.2JENDL-3.3FENDL-2JENDL-3.2 JENDL-3.31stlayer 6.49 6.44 6.07 6.46 0.99 0.94 0.99 2ndlayer 8.70 9.02 8.81 9.07 1.04 1.01 1.04 Total 15.2 15.5 14.9 15.5 1.02 0.98 1.0220within the experimental error. The C/Es are 0.99 and 1.04 in the first and second layers, respectively, on the integrated tritium productions. The C/E is 1.02 on the tritium production integrated in the first and second breeder layers. Calculations by JENDL-3.2 and 3.3 show the similar results. The prediction uncertainties were clarified on TPRs for the blanket with water from this experimental study. It can be concluded that TPRs are accurately predicted using the latest Monte Carlo code with the nuclear data libraries.3. Pebble Bed Layer Experiment3.1. ExperimentNuclear property experiments have been performed using the pebble bed layer mockup. Figure 4 shows the experimental assembly. The mockup is composed of 15 mm thick Li 2O (natural enrichment) pebble bed layer, 101.6 mm thick beryllium block and 1.8 mm thick F82H container. The pebble diameter is 1 mm, and the packing fraction is 57.8 %. The Li 2O pebbles are packed in the F82H container. The beryllium blocks are installed in the both sides of the F82H container. Figure 5 shows the photograph of the pebble bed layer in packing Li 2O pebbles inside the F82H container. The pebble bed layer is 350 mm in height and 350 mm in width. The distance from the DT source to the mockup surface is 100 mm. In order to measure a spatial distribution of TPR in the pebble bed layer, two aluminum cylinders with a thin wall (0.1 mm) filled with pebbles and sectioned on eight equal parts with a diameter of 13 mm and a width of 1.85 mm were installed at the center of the pebble bed layer (Detector #1) and at the position of 29 mm distance from the center in the horizontal direction (Detector #2). Tritium activities produced in the pebbles were measured with a LSC.3.2. Numerical CalculationThe experiment was analyzed by MCNP-4C with homogeneous and heterogeneous geometries for the pebble bed layer. Homogenous geometries have been applied in the blanket design calculation. By mixing the void and the pebble, i. e. diluting the atomic density in the pebble bed layer, homogeneous geometries have been created. A hexagonal close-packed model was assumed in the heterogeneous geometry, and all pebbles and void among the pebbles were simulated using the repeated-structure modeling method. Figure 6 shows zoomed-up cross-sectional views of the hexagonal close-packed heterogeneous geometry applied for MCNP calculation in this study. Pebble bed layers are created by repeating the unit cell shown in bold lines. Yellow means the pebble bed layer, and green means the pebble for the TPR detector. The pebble packing fraction is 74 % in the hexagonal close-packed models, while it is 57.8 % in the experiment. It is proposed that uniform annular gaps are installed at the boundaries between adjacent pebbles in the calculation to adjust the packing fraction in the experiment.Li2FIG. 4. Cross-sectional view of experimentalassembly in the pebble bed layer experiment.FIG. 5. Photograph of the pebble bed layerin packing Li2O pebbles inside the F82Hcontainer.Line A-A’ Line B-B’FIG. 6. Cross-sectional views of the hexagonal close-packed heterogeneous calculation geometry applied for MCNP in the pebble bed layer blanket mockup experiment.Structure of hexagonalclose-packed model.A A’B B’3.3. Results and DiscussionsFigures 7 and 8 show distributions of the experimental and calculation results on the TPRs for the detectors #1 and #2, respectively. Similarly to the results on the multi-layered blanket mockup experiment shown in Fig. 2, the TPRs increase as distance to one of the beryllium layers on both sides decreases. The TPRs at the boundary between the breeder layer and the container are larger than those at the center in the breeder layer by a factor of 1.6. Changes of the TPRs along the depth of the breeder layer in the pebble bed mockup are much lower than those in the multi-layered mockup. This is because atomic density of 6Li is smaller due to natural isotope and pebble bed layer.Figures 9 and 10 show distributions of the C/E on the TPRs for the detectors #1 and #2, respectively. The C/E values are 0.91 – 1.05 except for the boundary in the homogeneous and heterogeneous geometries, and most of calculation results agree well with the experimental ones. Table II shows integrated tritium productions from all the diagnostic pellets and these C/Es. The C/Es are 0.97 and 0.99 in the homogeneous and heterogeneous geometries, respectively, on the integrated tritium production.9 10-2710-26T P R (/n u c l i d e /s o u r c e n e u t r o n )Distance from Li 2O pebble bed layer front surface (mm)2 10FIG . 7. TPR Distributions in the detector #1.9 10-2710-26T P R (/n u c l i d e /s o u r c e n e u t r o n )Distance from Li 2O pebble bed layer front surface (mm)2 10FIG . 8. TPR Distributions in the detector #2.0.80.911.11.2051015C /EDistance from Li 2O pebble bed layer front surface (mm)0.80.911.11.2051015C /EDistance from Li 2O pebble bed layer front surface (mm)FIG . 9. C/E distributions on TPR in the detector#1.FIG . 10. C/E distributions on TPRs in thedetector #2.TABLE II: EXPERIMENTAL AND CALCULATION RESULTS ON INTEGRATED TRITIUMPRODUCTIONS IN PEBBLE BED MOCKUP EXPERIMENTHomogeneous geometry Heterogeneous geometry Experiment Calculation C/E Calculation C/E Detector #1 5.18 5.06 0.98 5.14 0.99 Detector #2 5.11 4.90 0.96 5.04 0.99 Total 10.3 9.96 0.97 10.2 0.99 200.80.911.11.2051015C /EDistance from Li 2O pebble bed layer front surface (mm)FIG . 11. C/E distributions on TPRs in the detector #1.At the boundaries between the pebble bed layer and the F82H container, it is observed that the divergence of C/Es from unity is slightly larger. This is expected to be due to change of the packing fraction in the boundary. In order to evaluate this effect, calculations have been performed using a two-region homogeneous geometry. These have been performed changing the packing fraction partially and keeping constant values on the total packing fraction. The packing fraction in the region of 0 – 1.875 mm depth from the front boundary was changed to 50.8 %. The packing fraction in the region of 1.875 – 15 mm depth was changed to 58.8 %. Total packing fraction is 57.8 %. Figure 11 shows distributions of the C/Es in the two-region homogeneous geometry with ones in the uniform homogenous geometry. Calculation results are improved by applying the two-region homogeneous geometry.Influence of 6Li enrichment was further studied on integrated tritium production in the calculation. Figure 12 shows ratios of the integrated tritium production with the homogeneous geometry to that with the heterogeneous geometry as a function of the enrichment of 6Li isotope. This figure shows the results on the tritium productions integrated in the pebble bed layer with dimensions of 15 mm in thickness, 350 mm in width and 350 mm in height. With the increase of the 6Li enrichment, the difference between integrated tritium productions for the heterogeneous and homogeneous geometries becomes larger. In the case of the 90 % enriched 6Li, the difference is about 5 %. The effect is due to reduction of the effective macro-scopic tritium production cross section in the homogeneous geometry. Figure 13 shows the ratios as a function of the distance from the Li 2O pebble bed layer front surface. This figure shows the tritium productions integrated in the pebble bed layer with dimensions of0.940.960.981020*********R a t i oEnrichment of 6Li (%)FIG . 12. Ratios of the integrated tritium production with the homogeneous geometry to that with the heterogeneous geometry in the pebble bed layer.0.70.80.911.1R a t i oDistance from Li 2O pebble bed layer front surface (mm)FIG . 13. Ratio of the integrated tritium production with the homogeneous geometry to that with the heterogeneous geometry in the pebble bed layer .350 mm in width and 350 mm in height in cases of natural, 40 % and 90 % enrichment for 6Li isotope. In cases of natural, 40 % and 90 % enrichment, the integrated tritium productions with the homogeneous geometry are lower than those with the heterogeneous geometry by more than 2 %, 10 % and 20 % in the boundaries, though no significant differences are found around the center. Mean free path for slow neutrons is less than 1 mm for the 6Li(n,α)3H reaction, and this is very short. This becomes shorter with the enrichment of 6Li. Effective atomic densities in the homogeneous geometry decrease compared with those in the heterogeneous geometry in the boundaries. This is because the atomic densities are diluted and the surface area are reduced in the homogenous geometry. It is expected that the decrease of the effective atomic densities reduces tritium productions in the homogeneous geometry.The heterogeneous calculation method proposed in the present study can enhance calculation accuracy compared with the homogenous geometry, e.g. by 5 % in the case of the 90 % enriched 6Li for the integrated tritium production, and it can be concluded that this method is essential for evaluations of TPR and TBR in the pebble bed layer.4. SummaryWe have studied nuclear properties of water cooled pebble bed blanket using a DT neutron source. Experiments have been done using two partial mockups; multi-layered mockup with water and pebble bed mockup. Numerical studies have been also performed using the latest Monte Carlo calculation code and nuclear data libraries. As evaluation for the pebble bed layer, a numerical calculation method was proposed using a hexagonal close-packed heterogeneous geometry. From these experiments and numerical studies, following findings have been obtained.(1) The C/Es were range of 0.94 - 1.04 on integrated tritium productions from themulti-layered blanket mockup experiment. It was found that integrated tritium productions could be accurately evaluated.(2) The C/Es were 0.97 and 0.99 on integrated tritium productions with the homogeneous andheterogeneous geometries, respectively, from the pebble bed mockup experiment. The integrated tritium productions obtained by the homogeneous geometry are smaller than that by the heterogeneous geometry.(3)The integrated tritium productions by the homogeneous geometry were clearly reducedcompared with those by the heterogeneous geometry in both boundaries between the pebble bed layer and its container. With enrichment, the results the by homogeneous geometry decrease.(4)Impact of this reduction due to the homogeneous geometry on the blanket design is not sosmall, and it can be concluded that Monte Carlo calculations with the heterogeneous geometry is essential on TBR evaluations.AcknowledgmentsThe authors would like to thank Messrs. C. Kutsukake, S. Tanaka, Y. Abe, M. Seki, Y. Oginuma and M. Kawabe for operation of the FNS accelerator. The authors thank Drs. M. Seki, S. Seki and H. Takatsu for their support and encouragement.References[1] ENOEDA, M., et al., “Design and Technology Development of Solid Breeder BlanketCooled by Supercritical Water in Japan”, Nucl. Fusion 43 (2003)1837.[2] YANAGI, Y., et al., “Nuclear and Thermal Analyses of Supercritical-water-cooled SolidBreeder Blanket for Fusion DEMO Reactor”, J. Nucl. Sci. Technol. 38 (2001) 1014.[3] OCHIAI, K., et al., “Neutronics Experiment of 6Li-enriched Breeding Blanket withLi2TiO3/Be/F82H Assembly Using D-T Neutrons”, J. Nucl. Sci. Technol. Suppl.2 (2002) 1147.[4] KLIX, A., et al., “Tritium Measurement for 6Li-Enriched Li2TiO3 Breeding BlanketExperiments with D-T Neutrons”, Fusion Sci. Technol., 41 (2002) 1040.[5] SATO, S., et al., “Neutronics Experiments for DEMO Blanket at JAERI/FNS”, Nucl.Fusion 43 (2003) 527.[6] SATO, S., et al., “Experimental Studies on Tungsten-armor Impact on Nuclear Responsesof Solid Breeding Blanket”, Nucl. Fusion 45 (2005) 656.[7] SATO, S., et al., “Neutronics Experiments Using Small Partial Mockups of the ITER TestBlanket Module with a Solid Breeder”, Fusion Sci. Technol., 47 (2005) 1046.[8] http://fnshp.tokai-sc.jaea.go.jp/[9] BRIESMEISTER, J. F., “MCNP - A General Monte Carlo N-Particle Transport Code,Version 4C”, LA-13709-M, LANL, Los Alomos (2000).[10] WIENKE, H., HERMAN, M., “FENDL/MG-2.0 and FENDL/MC-2.0, The ProcessedCross Section Libraries for Neutron-photon Transport Calculations, Version 1 of February 1998”, IAEA-NDS-176 Rev 0, IAEA, Vienna (1998).[11] NAKAGAWA, T., et al., “Japanese Evaluated Nuclear Data Library Version 3reversion-2: JENDL-3.2”, J. Nucl. Sci. Technol. 32 (1995) 1259.[12] SHIBATA, K., et al., “Japanese Evaluated Nuclear Data Library Version 3 Revision-3:JENDL-3.3”, J. Nucl. Sci. Technol. 39 (2002) 1125.。