创新教程2016年高考数学大一轮复习第七章第3节空间点、直线、平面之间的位置关系课时冲关理新人教A版
- 格式:doc
- 大小:280.00 KB
- 文档页数:7
第3讲 空间点、直线、平面之间的位置关系)1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行. 公理2的三个推论:推论1:经过一条直线和直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2.空间直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2.(3)定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系 (1)空间中直线和平面的位置关系1.辨明三个易误点(1)正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.(2)不共线的三点确定一个平面,一定不能丢掉“不共线”的条件. (3)两条异面直线所成角的范围是(0°,90°]. 2.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上; (2)直接证明这些点都在同一条特定直线上. 3.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内; (2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合.1.已知A ,B ,C 表示不同的点,l 表示直线,α,β表示不同的平面,则下列推理错误的是( )A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈α,A∈l,l⊄α⇒l∩α=AC2.教材习题改编如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( )A.30°B.45°C.60° D.90°C 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求,又B1D1=B1C=D1C,所以∠D1B1C=60°.3.(2016·高考山东卷)已知直线a,b分别在两个不同的平面α,β内.则“直线a 和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A 若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P ∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.4.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成________部分.通过举例说明,如三棱柱三个侧面所在平面满足两两相交,且三条交线互相平行,这三个平面将空间分成7部分.75.教材习题改编给出下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确的为________.经过不共线的三点可以确定一个平面,所以①不正确;两条平行线可以确定一个平面,所以②正确;两两相交的三条直线可以确定一个或三个平面,所以③正确;命题④中没有说清三个点是否共线,所以④不正确.②③平面的基本性质如图所示,在正方体ABCD A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:E 、C 、D 1、F 四点共面.【证明】如图所示,连接CD 1、EF 、A 1B , 因为E 、F 分别是AB 和AA 1的中点, 所以EF ∥A 1B 且EF =12A 1B .又因为A 1D 1綊BC ,所以四边形A 1BCD 1是平行四边形, 所以A 1B ∥CD 1, 所以EF ∥CD 1,所以EF 与CD 1确定一个平面α, 所以E 、F 、C 、D 1∈α, 即E 、C 、D 1、F 四点共面.本例条件不变,如何证明“CE ,D 1F ,DA 交于一点”? 如图,由本例知EF ∥CD 1,且EF =12CD 1,所以四边形CD 1FE 是梯形,所以CE 与D 1F 必相交,设交点为P , 则P ∈CE ,且P ∈D 1F , 又CE ⊂平面ABCD , 且D 1F ⊂平面A 1ADD 1, 所以P ∈平面ABCD , 且P ∈平面A 1ADD 1.又平面ABCD ∩平面A 1ADD 1=AD ,所以P ∈AD , 所以CE 、D 1F 、DA 三线共点.(1)点线共面问题证明的两种方法①纳入平面法:先确定一个平面,再证有关点、线在此平面内;②辅助平面法:先证有关点、线确定平面α,再证其余点、线确定平面β,最后证明平面α,β重合.(2)证明多线共点问题的两步 ①先证其中两条直线交于一点;②再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.如图,空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线. (1)因为E ,F 分别为AB ,AD 的中点, 所以EF ∥BD . 在△BCD 中,BG GC =DH HC =12,所以GH ∥BD , 所以EF ∥GH .所以E ,F ,G ,H 四点共面.(2)因为EG∩FH=P,P∈EG,EG⊂平面ABC,所以P∈平面ABC.同理P∈平面ADC.所以P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线.空间两直线的位置关系如图所示,正方体ABCDA1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.【解】(1)不是异面直线.理由:连接MN,A1C1,AC.因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A綊C1C,所以四边形A1ACC1为平行四边形,所以A1C1∥AC,所以MN∥AC,所以A,M,N,C在同一平面内,故AM和CN不是异面直线.(2)是异面直线.理由如下:因为ABCDA1B1C1D1是正方体,所以B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,所以D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.所以假设不成立,即D1B和CC1是异面直线.1.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为( )A.相交B.平行C.异面而且垂直D.异面但不垂直D 将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.2.在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN 是异面直线的图形有________(填上所有正确答案的序号).图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中GH与MN异面.②④异面直线所成的角(高频考点)从近几年的高考试题来看,异面直线所成的角是高考的热点,题型既有选择题又有填空题,也有解答题,难度为中低档题.高考对异面直线所成的角的考查主要有以下两个命题角度: (1)求异面直线所成的角或其三角函数值; (2)由异面直线所成角求其他量.(2016·高考全国卷乙)平面α过正方体ABCD A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32 B .22C.33D .13【解析】 因为过点A 的平面α与平面CB 1D 1平行,平面ABCD ∥平面A 1B 1C 1D 1,所以m ∥B 1D 1∥BD ,又A 1B ∥平面CB 1D 1,所以n ∥A 1B ,则BD 与A 1B 所成的角为所求角,所以m ,n 所成角的正弦值为32,选A. 【答案】 A角度一 求异面直线所成的角或其三角函数值1.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15 B .25 C.35D .45D 连接BC 1,易证BC 1∥AD 1,则∠A1BC 1即为异面直线A 1B 与AD 1所成的角. 连接A 1C 1,由AB =1,AA 1=2, 则A 1C 1=2,A 1B =BC 1=5, 故cos∠A 1BC 1=5+5-22×5×5=45.角度二 由异面直线所成角求其他量2.四面体A BCD 中,E ,F 分别是AB ,CD 的中点.若BD ,AC 所成的角为60°,且BD =AC =1,则EF 的长为________.如图,取BC 的中点O ,连接OE ,OF ,因为OE ∥AC ,OF ∥BD ,所以OE 与OF 所成的锐角(或直角)即为AC 与BD 所成的角,而AC ,BD 所成角为60°,所以∠EOF =60°或∠EOF =120°.当∠EOF =60°时,EF =OE =OF =12.当∠EOF =120°时.取EF 的中点M ,则OM ⊥EF ,EF =2EM =2×34=32. 12或32——构造模型判断空间线面位置关系已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题: ①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β; ②若m ∥α,n ∥β,m ⊥n ,则α∥β; ③若m ⊥α,n ∥β,m ⊥n ,则α∥β; ④若m ⊥α,n ∥β,α∥β,则m ⊥n . 其中所有正确的命题是( ) A .①④ B .②④ C .①D .④【解析】 借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m ⊥α,α∥β可得m ⊥β,因为n ∥β,所以过n 作平面γ,且γ∩β=g ,如图(4)所示,所以n 与交线g 平行,因为m⊥g,所以m⊥n,故④正确.【答案】 A(1)构造法实质上是结合题意构造合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误;(2)对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.已知空间三条直线l,m,n,若l与m异面,且l与n异面,则( ) A.m与n异面B.m与n相交C.m与n平行D.m与n异面、相交、平行均有可能D 在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B错误;m,n2与l都异面,且m,n2也异面,所以C错误.1.下列命题中,不是公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线A 选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.(2017·赣州四校联考)若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是( )A.AB∥CDB.AD∥CBC.AB与CD相交D.A,B,C,D四点共面D 因为平面α∥平面β,要使直线AC∥直线BD,则直线AC与BD是共面直线,即A,B,C,D四点必须共面.3.(2017·广州市高考模拟)已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件B 若E ,F ,G ,H 四点不共面,则直线EF 和GH 肯定不相交,但直线EF 和GH 不相交,E ,F ,G ,H 四点可以共面,例如EF ∥GH .故选B .4.(2015·高考广东卷)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交D 由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.5.(2017·辽宁省三校协作体联考)如图,四棱锥P ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是等边三角形,则异面直线CD 与PB 所成角的大小为( )A .90°B .75°C .60°D .45°A 延长DA 至E ,使AE =DA ,连接PE ,BE ,因为∠ABC =∠BAD=90°,BC =2AD ,所以DE =BC ,DE ∥BC .所以四边形CBED 为平行四边形.所以CD ∥BE .所以∠PBE (或其补角)就是异面直线CD 与PB 所成的角.在△PAE 中,AE =PA ,∠PAE =120°,由余弦定理得PE =PA 2+AE 2-2·PA ·AE ·cos ∠PAE= AE 2+AE 2-2·AE ·AE ·⎝ ⎛⎭⎪⎫-12=3AE . 在△ABE 中,AE =AB ,∠BAE =90°,所以BE =2AE .因为△PAB 是等边三角形,所以PB =AB =AE .因为PB 2+BE 2=AE 2+2AE 2=3AE 2=PE 2,所以∠PBE =90°.故选A.6.(2017·郑州模拟)如图所示,ABCD A 1B 1C 1D 1是正方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面A 连接A 1C 1,AC (图略),则A 1C 1∥AC ,所以A 1,C 1,A ,C 四点共面,所以A 1C ⊂平面ACC 1A 1.因为M ∈A 1C ,所以M ∈平面ACC 1A 1.又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.所以A ,M ,O 三点共线.7.如图所示,在三棱锥A BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则当AC ,BD 满足条件________时,四边形EFGH 为菱形,当AC ,BD 满足条件________时,四边形EFGH 是正方形.易知EH ∥BD ∥FG ,且EH =12BD =FG ,同理EF ∥AC ∥HG ,且EF =12AC =HG ,显然四边形EFGH 为平行四边形.要使平行四边形EFGH 为菱形需满足EF =EH ,即AC =BD ;要使四边形EFGH 为正方形需满足EF =EH 且EF ⊥EH ,即AC =BD 且AC ⊥BD .AC =BDAC =BD 且AC ⊥BD8.如图,正方体ABCD A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).直线AM 与CC 1是异面直线,直线AM 与BN 也是异面直线,故①②错误.③④9.如图所示,正方体的棱长为1,B ′C ∩BC ′=O ,则AO 与A ′C ′所成角的度数为________.连接AC .因为A ′C ′∥AC ,所以AO 与A ′C ′所成的角就是∠OAC (或其补角).因为OC ⊥OB ,AB ⊥平面BB ′C ′C ,所以OC ⊥AB .又AB ∩BO =B ,所以OC ⊥平面ABO .又OA ⊂平面ABO ,所以OC ⊥OA .在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12, 所以∠OAC =30°.即AO 与A ′C ′所成角的度数为30°.30°10.如图所示,在正三棱柱ABC A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为________.如图,取A1C 1的中点D 1,连接B 1D 1,因为点D 是AC 的中点,所以B 1D 1∥BD ,所以∠AB 1D 1即为异面直线AB 1与BD 所成的角.连接AD 1,设AB =a ,则AA 1=2a ,所以AB 1=3a ,B 1D 1=32a , AD 1= 14a 2+2a 2=32a . 所以,在△AB 1D 1中,由余弦定理得,cos ∠AB 1D 1=AB 21+B 1D 21-AD 212AB 1·B 1D 1=3a 2+34a 2-94a 22×3a ×32a =12,所以∠AB 1D 1=60°. 60°11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綊12AD ,BE 綊12FA ,G ,H 分别为FA ,FD 的中点. (1)求证:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明:由题设知,FG =GA ,FH =HD ,所以GH 綊12AD .又BC 綊12AD , 故GH 綊BC .所以四边形BCHG 是平行四边形.(2)C ,D ,F ,E 四点共面.理由如下:由BE 綊12FA ,G 是FA 的中点知,BE 綊GF , 所以EF 綊BG .由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.。
【创新教程】2016年高考数学大一轮复习第七章第3节空间点、直线、平面之间的位置关系课时冲关理新人教A版对应学生用书课时冲关理三十五/第301页文三十四/第267页一、选择题1.下列命题正确的个数为( )①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3解析:经过不共线的三点可以确定一个平面,∴①不正确;两条平行线可以确定一个平面,∴②正确;两两相交的三条直线可以确定一个或三个平面,∴③正确;命题④中没有说清三个点是否共线,∴④不正确.答案:C2.(2015·台州模拟)以下四个命题中:①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.正确命题的个数是( )A.0 B.1 C.2 D.3解析:①中显然是正确的;②中若A、B、C三点共线则A、B、C、D、E五点不一定共面.③构造长方体或正方体,如图显然b、c异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.答案:B3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是( )①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇔b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①② B.②③ C.①④ D.③④解析:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图,∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.答案:D4.(2015·东城模拟)设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC解析:A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;C中,若AB=AC,DB=DC,AD不一定等于BC;D中,若AB=AC,DB=DC,可以证明AD⊥BC.答案:C5.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点A B.点BC.点C但不过点M D.点C和点M解析:∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.答案:D6.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN 与直线PB的位置关系为( )A.相交B.平行C.异面D.重合解析:将表面展开图折起还原为正方体,如图,故MN与PB异面.答案:C7.已知空间中有三条线段AB、BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( )A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:若三条线段共面,如果AB、BC、CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线,故选D.答案:D8.以下四个命题中,正确命题的个数是( )①有三个角是直角的四边形一定是矩形;②不共面的四点可以确定四个面;③空间四点不共面的充要条件是其中任意三点不共线;④若点A、B、C∈平面M,且点A、B、C∈平面N,则平面M与平面N重合.A.0 B.1 C.2 D.3解析:如图(1),平面α内∠ABC为直角,P∉α,过P作PD⊥AB,PE⊥BC,则四边形PDBE有三个直角,故①错误;在图(2)的平面α内,四边形ABCD中任意三点不共线,知③错误;图(3)中,M∩N=l,A、B、C都在l上,知④错误,只有②正确.答案:B9.(2015·天津和平模拟)已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线D 1C 与BE 所成角的余弦值为( ) A.15 B.31010 C.1010 D.35解析:连结A 1B .由题意知A 1D 1綊BC ,所以四边形A 1D 1CB 为平行四边形,故D 1C ∥A 1B .所以∠A 1BE 为异面直线D 1C 与BE 所成的角.不妨设AA 1=2AB =2,则A 1E =1,BE =2,A 1B =5,在△A 1BE 中,cos ∠A 1BE =A 1B 2+EB 2-AE 22A 1B ·EB =5+2-12×5×2=31010,故选B. 答案:B10.已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则下列判断:①MN ≥12(AC +BD );②MN >12(AC +BD );③MN =12(AC +BD ); ④MN <12(AC +BD ). 其中正确的是( )A .①③B .②④C .②D .④解析:如图,取BC 的中点O ,连接MO ,NO ,则OM =12AC ,ON =12BD .在△MON中,MN<OM+ON=12(AC+BD),∴④正确.答案:D11.如图,ABCDA 1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:连接A1C1,AC,则A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线.故选A.答案:A12.(2015·惠州模拟)如图是三棱锥DABC的三视图,点O在三个视图中都是所在边的中点,则异面直线DO和AB所成角的余弦值等于( )A.33B.12C. 3D.2 2解析:由题意得如图的直观图,从A出发的三条线段AB,AC,AD 两两垂直且AB=AC=2,AD=1,O是BC中点,取AC中点E,连接DE,DO,OE,则OE=1.又可知AE=1,由于OE∥AB,故∠DOE即为所求两异面直线所成的角或其补角.在直角三角形DAE中,DE=2由于O是中点,在直角三角形ABC中可以求得AO=2在直角三角形DAO中可以求得DO=3在三角形DOE中,由余弦定理得cos∠DOE=1+3-22×1×3=33,故所求余弦值为33故选A.答案:A二、填空题13.正方体ABCDA1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点.那么,正方体的过P、Q、R的截面图形是________边形.解析:延长PQ或(QP)分别交BC延长线于E,交CD延长线于F,取C1D1中点M,连接RM,连接RE交BB1于S,连接MF交DD1于N,连接NQ,PS,则六边形PQNMRS即为正方体ABCDA1B1C1D1的过P、Q、R三点的截面图形.答案:六14.(2015·景德镇质检)如图所示,在正方体ABCDA1B1C1D1中,M,N分别是棱C1D1,C1C的中点,给出以下四个结论:①直线AM与直线C1C相交;②直线AM与直线BN平行;③直线AM与直线DD1异面;④直线BN与直线MB1异面.其中正确结论的序号为________.(把你认为正确的结论的序号都填上)解析:AM与C1C异面,故①错;AM与BN异面,故②错.易知③④正确.答案:③④15.已知正方体ABCDA1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F 所成角的余弦值为________.解析:如图,连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a,则D1D=a,DF=52a,D 1F =52a ,∴cos ∠D 1FD = ⎝ ⎛⎭⎪⎫52a 2+⎝ ⎛⎭⎪⎫52a 2-a 22·52a ·52a =35. 答案:35[备课札记]。
【与名师对话】2016版高考数学一轮复习 7.3空间点、直线、平面之间的位置关系随堂训练文1.和两条异面直线都相交的两条直线的位置关系是( )A.异面 B.相交 C.平行 D.异面或相交解析:当两条直线无公共点时,可知两直线异面;当两异面直线中的一条直线与两条直线交于一点时,可知两直线相交,选D.答案:D2.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点A B.点BC.点C但不过点M D.点C和点M解析:∵AB⊂γ,M∈AB,∴M∈γ.又C∈γ,M,C∈β,∴γ与β的交线必通过点C和点M.选D.答案:D3.若P是两条异面直线l、m外的任意一点,则( )A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面解析:对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾;对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线;对于选项C,过点P与l、m都相交的直线有一条或零条;对于选项D,过点P与l、m都异面的直线可能有无数条.答案:B4.在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC,则直线PC与AB所成角的大小是________.解析:分别取PA,AC,CB的中点F,D,E,连接FD,DE,EF,AE,则∠FDE是直线PC 与AB所成角或其补角.设PA=AC=BC=2a,在△FDE中,易求得FD=2a,DE=2a,FE=6a,根据余弦定理,得cos∠FDE=2a2+2a2-6a2 2×2a×2a =-12,所以∠FDE=120°.所以PC与AB所成角的大小是60°.答案:60°。
第3节空间点、直线、平面之间的位置关系基础巩固(时间:30分钟)1.已知空间三条直线l,m,n,若l与m异面,且l与n异面,则( D )(A)m与n异面(B)m与n相交(C)m与n平行(D)m与n异面、相交、平行均有可能解析:在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B错误;m,n2与l都异面,且m,n2也异面,所以C错误.2.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是( D )解析: 在A图中分别连接PS,QR,易证PS∥QR,所以P,Q,R,S共面;在C图中分别连接PQ,RS,易证PQ∥RS,所以P,Q,R,S共面;在B图中过P,Q,R,S可作一正六边形,故四点共面;D图中PS与QR为异面直线,所以四点不共面,故选D.3.如图是某个正方体的侧面展开图,l1,l2是两条侧面对角线,则在正方体中,l1与l2( D )(A)互相平行(B)异面且互相垂直(C)异面且夹角为(D)相交且夹角为解析:将侧面展开图还原成正方体如图所示,则B,C两点重合.故l1与l2相交,连接AD,△ABD为正三角形,所以l1与l2的夹角为.故选D.ABCD中,M,N分别为AB,CD的中点,则下列判断:①MN≥(AC+BD);②MN> (AC+BD);③MN= (AC+BD);④MN< (AC+BD).其中正确的是( D )(A)①③ (B)②④ (C)② (D)④解析:如图,取BC的中点O,连接MO,NO,则OM=AC,ON=BD.在△MON中,MN<OM+ON= (AC+BD),所以④正确.5.在正方体ABCDA1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体过P,Q,R的截面图形是( D )(A)三角形(B)四边形(C)五边形(D)六边形解析:如图所示,作RG∥PQ交C1D1于G,连接QP并延长与CB延长线交于M,且QP反向延长线与CD延长线交于N,连接MR交BB1于E,连接PE,则PE,RE为截面与正方体的交线,同理连接NG交DD1于F,连接QF,FG,则QF,FG为截面与正方体的交线,所以截面为六边形PQFGRE.DABC的三视图,点O在三个视图中都是所在边的中点,则异面直线DO和AB所成角的余弦值等于( A )(A)(B) (C)(D)解析:由题意得如图的直观图,从A出发的三条线段AB,AC,AD两两垂直且AB=AC=2,AD=1,O是BC中点,取AC中点E,连接DE,DO,OE,则OE=1.又可知AE=1,由于OE∥AB,故∠DOE或其补角即为所求两异面直线所成的角.在直角三角形DAE中,DE=,由于O是中点,在直角三角形ABC中可以求得AO=.在直角三角形DAO中可以求得DO=,又EO=1,所以△DOE为直角三角形,cos∠DOE==,故所求余弦值为,故选A.7.如图所示,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则当AC,BD满足条件时,四边形EFGH为菱形,当AC,BD满足条件时,四边形EFGH是正方形.解析:易知EH∥BD∥FG,且EH=BD=FG,同理EF∥AC∥HG,且EF=AC=HG,显然四边形EFGH为平行四边形.要使平行四边形EFGH为菱形需满足EF=EH,即AC=BD;要使平行四边形EFGH为正方形需满足EF=EH且EF⊥EH,即AC=BD且AC⊥BD.答案:AC=BD AC=BD且AC⊥BD·安庆市二模)正四面体ABDC中,E,F分别为边AB,BD的中点,则异面直线AF,CE所成角的余弦值为.解析:如图,连接CF,取BF的中点M,连接CM,EM,则ME∥AF,故∠CEM(或其补角)即为所求的异面直线所成的角.设这个正四面体的棱长为2,在△ABD中,AF==CE=CF,EM=,CM=.所以cos∠CEM==.答案:能力提升(时间:15分钟)9.如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( A )(A)A,M,O三点共线(B)A,M,O,A1不共面(C)A,M,C,O不共面(D)B,B1,O,M共面解析:连接A1C1,AC,则A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,又A在平面ACC1A1和平面AB1D1的交线上.所以A,M,O三点共线.B,C不正确,BB1与AO异面,所以D不正确.故选A.10.长方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为( C )(A)4 (B)(C)4或(D)4或5解析:设AE=x,则BC=,AC=.因为A1C1∥AC,所以∠ACE为异面直线A1C1与CE所成的角,由余弦定理得=,所以x4-7x2+6=0,所以x2=1或6,所以x=1或.设球O的半径为R,则2R===4或.故选C.11.如图所示,在正方体ABCDA1B1C1D1中,M,N分别是棱C1D1,C1C的中点,给出以下四个结论:①直线AM与直线C1C相交;②直线AM与直线BN平行;③直线AM与直线DD1异面;④直线BN与直线MB1异面.其中正确结论的序号为.(把你认为正确的结论的序号都填上)解析:AM与C1C异面,故①错;AM与BN异面,故②错.易知③④正确.答案:③④12.在正三棱柱ABCA1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为.解析:如图,取A1C1的中点D1,连接B1D1,因为D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=a,所以AB1=a,B1D1=a,AD1==a.所以,在△AB1D1中,由余弦定理得cos∠AB1D1===,所以∠AB1D1=60°.答案:60°,在体积为的正三棱锥ABCD中,BD长为2,E为棱BC的中点,求:(1)异面直线AE与CD所成角的余弦值;(2)正三棱锥ABCD的表面积.解:(1)过点A作AO⊥平面BCD,垂足为O,则O为△BCD的中心,由××22×3×AO=,得AO=1.又在正三角形BCD中得OE=1,所以AE=.取BD中点F,连接AF,EF,故EF∥CD,所以∠AEF就是异面直线AE与CD所成的角.在△AEF中,AE=AF=,EF=.所以cos∠AEF==.所以,异面直线AE与CD所成的角的余弦值为.(2)由AE=可得正三棱锥ABCD的侧面积为S=3··BC·AE=×2×=3,所以正三棱锥ABCD的表面积为S=3+·BC2=3+3.。
7.3 空间点、直线、平面之间的位置关系[基础送分提速狂刷练]一、选择题1.(2016·浙江高考)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析对于A,m与l可能平行或异面,故A错误;对于B,D,m与n可能平行、相交或异面,故B,D错误;对于C,因为n⊥β,l⊂β,所以n⊥l,故C正确.故选C.2.若l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面答案 B解析当l1⊥l2,l2⊥l3时,l1与l3也可能相交或异面,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.故选B.3.(2016·雅安期末)已知正方体ABCD-A1B1C1D1,则过点A与AB,BC,CC1所成角均相等的直线有( )A.1条B.2条C.4条D.无数条答案 C解析若直线和AB,BC所成角相等,得直线在对角面BDD1B1内或者和对角面平行,同时和CC 1所成角相等,此时在对角面内只有体对角线BD 1满足条件.此时过A 的直线和BD 1平行即可,同理体对角线A 1C ,AC 1,DB 1也满足条件.则过点A 与AB ,BC ,CC 1所成角均相等的直线只要和四条体对角线平行即可,共有4条.故选C.4.(2017·宁德期末)如图是正方体的平面展开图,则在这个正方体中,AM 与BN 所成角的大小为( )A .0°B .45°C .60°D .90°答案 D解析 如图,把正方体的平面展开图还原成正方体ADNE -CMFB , ∵CD ∥BN ,CD ⊥AM , ∴AM ⊥BN ,∴在这个正方体中,AM 与BN 所成角的大小为90°.故选D.5.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.故选D.6.(2018·江西景德镇模拟)将图1中的等腰直角三角形ABC 沿斜边BC 上的中线AD 折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直答案 C解析 在题图1中,AD ⊥BC ,故在题图2中,AD ⊥BD ,AD ⊥DC ,又因为BD ∩DC =D ,所以AD ⊥平面BCD ,又BC ⊂平面BCD ,D 不在BC 上,所以AD ⊥BC ,且AD 与BC 异面.故选C.7.(2017·河北唐山模拟)已知P 是△ABC 所在平面外一点,M ,N 分别是AB ,PC 的中点,若MN =BC =4,PA =43,则异面直线PA 与MN 所成角的大小是 ( )A .30°B .45°C .60°D .90° 答案 A解析 取AC 的中点O ,连接OM ,ON ,则ON ∥AP, ON =12AP, OM ∥BC, OM =12BC ,所以异面直线PA 与MN 所成的角为∠ONM (或其补角),在△ONM 中,OM =2,ON =23,MN =4,由勾股定理的逆定理得OM ⊥ON ,则∠ONM =30°.故选A.8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n =( )A .8B .9C .10D .11答案 A解析 如图,CE ⊂平面ABPQ ,从而CE ∥平面A 1B 1P 1Q 1,易知CE 与正方体的其余四个面所在平面均相交,∴m =4;∵EF ∥平面BPP 1B 1,EF ∥平面AQQ 1A 1,且EF 与正方体的其余四个面所在平面均相交,∴n =4,故m +n =8.故选A.9.下列各图是正方体和正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点不共面的图形是( )答案 D解析①在A中易证PS∥QR,∴P,Q,R,S四点共面.②在C中易证PQ∥SR,∴P,Q,R,S四点共面.③在D中,∵QR⊂平面ABC,PS∩面ABC=P且P∉QR,∴直线PS与QR为异面直线.∴P,Q,R,S四点不共面.④在B中P,Q,R,S四点共面,证明如下:取BC中点N,可证PS,NR交于直线B1C1上一点,∴P,N,R,S四点共面,设为α,可证PS∥QN,∴P,Q,N,S四点共面,设为β.∵α,β都经过P,N,S三点,∴α与β重合,∴P,Q,R,S四点共面.故选D.10.(2018·广东惠州三调)如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE ⊥平面PAD.其中正确的有( )A.1个B.2个C.3个D.4个答案 B解析将展开图还原为几何体(如图),因为四边形ABCD为正方形,E,F分别为PA,PD 的中点,所以EF∥AD∥BC,则直线BE与CF共面,①错误;因为AF⊂平面PAD,B∉平面PAD,E∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错误.故选B.二、填空题11.如图所示,是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN 与BE 是异面直线; ③CN 与BM 成60°角; ④DM 与BN 垂直.以上四个命题中,正确命题的序号是________. 答案 ③④解析 如图所示,把正方体的平面展开图还原成原来的正方体,显然BM 与ED 为异面直线,故命题①不成立;而CN 与BE 平行,故命题②不成立.∵BE ∥CN ,∴CN 与BM 所成角为∠MBE .∵∠MBE =60°,故③正确;∵BC ⊥面CDNM , ∴BC ⊥DM ,又∵DM ⊥NC ,∴DM ⊥面BCN , ∴DM ⊥BN ,故④正确,故填③④.12.(2017·仙桃期末)在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若AC =BD =2,且AC 与BD 成60°,则四边形EFGH 的面积为________.答案32解析 如图所示,∵E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, ∴EH ∥FG ∥BD, EH =FG = 12BD =1. ∴四边形EFGH 是平行四边形, 同理可得EF =GH =12AC =1,∴四边形EFGH 是菱形.∵AC 与BD 成60°,∴∠FEH =60°或120°. ∴四边形EFGH 的面积=2×12EF 2sin60°=32.13.(2018·湖北武昌调研)若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,则________(写出所有正确结论的编号).①四面体ABCD 每组对棱相互垂直; ②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°; ④连接四面体ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长. 答案 ②④⑤解析 对于①,把四面体ABCD 放置在如图所示的长方体中,显然命题①错误;对于②,因四个面对应的三角形的三边分别对应相等,即它们为全等的三角形,所以②正确;对于③,当四面体ABCD 为正四面体时,夹角之和等于180°,所以③错误;对于④,因每组对棱中点的连线分别与长方体的棱平行,且都经过长方体的中心,所以④正确;又命题⑤显然成立,故填②④⑤.14.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H 分别为DE ,AF 的中点,将△ABC 沿DE ,EF ,DF 折成正四面体P -DEF ,则四面体中异面直线PG 与DH 所成的角的余弦值为________.答案 23解析折成的正四面体,如图,连接HE ,取HE 的中点K ,连接GK ,PK ,则GK ∥DH ,故∠PGK (或其补角)即为所求的异面直线所成的角.设这个正四面体的棱长为2, 在△PGK 中,PG =3,GK =32, PK =12+⎝⎛⎭⎪⎫322=72, 故cos ∠PGK =PG 2+GK 2-PK 22·PG ·GK=32+⎝⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫7222×3×32=23, 即异面直线PG 与DH 所成的角的余弦值为23.三、解答题15.(2018·普宁市校级期末)如图,直三棱柱ABC -A 1B 1C 1中,D 是AB 的中点.(1)在A 1C 上是否存在一点Q ,使BC 1∥DQ?(2)设AA 1=AC =CB =2,AB =22,求异面直线AB 1与CD 所成角的大小. 解 (1)连接AC 1交A 1C 于Q ,连接DQ ,∴DQ 为△ABC 1的中位线,DQ ∥BC 1,∴A 1C 上存在一点Q ,使BC 1∥DQ ,Q 为A 1C 的中点.(2)解法一:连接AB 1,取BB 1中点M ,连接DM 、CM ,则DM 是△ABB 1的中位线, ∴DM ∥AB 1,∴∠CDM 就是所求异面直线所成角(或补角), ∵AA 1=AC =CB =2,AB =22, ∴CM =5,DM =3,CD =2,∴DM 2+CD 2=CM 2,满足勾股定理,∴∠CDM =90°, 故异面直线AB 1与CD 所成角为90°.解法二:易证CD ⊥平面ABB 1A 1,从而证明CD ⊥AB 1,故异面直线AB 1与CD 所成角为90°. 16.(2017·江西七校联考)如图,四边形ABCD 是梯形,AB ∥CD ,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,∠BAD =∠CDA ,AB =AD =DE =12CD =2,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,求平面MDF 将几何体ADE -BCF 分成的较小部分与较大部分的体积比. 解 (1)当M 是线段AE 的中点时,AC ∥平面MDF . 理由如下:连接CE 交DF 于N ,连接MN ,因为四边形CDEF 是矩形,所以N 为CE 的中点,又M 为AE的中点,所以MN ∥AC ,又MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)如图,将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,由题意知三棱柱ADE -B ′CF 是直三棱柱,其体积V =S △ADE ·CD =12×2×2×4=8, 则几何体ADE -BCF 的体积V ADE -BCF =V 三棱柱ADE -B ′CF -V F -BB ′C =8-13×12×2×2×2=203,又V 三棱锥F -DEM =V 三棱锥M -DEF=13×⎝ ⎛⎭⎪⎫12×2×4×1=43, ∴平面MDF 将几何体ADE -BCF 分成的较小部分与较大部分的体积比为43∶⎝ ⎛⎭⎪⎫203-43=14.。
【创新教程】2016年高考数学大一轮复习 第七章 第3节 空间点、直线、平面之间的位置关系课时冲关 理 新人教A 版对应学生用书课时冲关 理 三十五 /第301页 文 三十四 /第267页一、选择题1.下列命题正确的个数为( )①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3解析:经过不共线的三点可以确定一个平面,∴①不正确;两条平行线可以确定一个平面,∴②正确;两两相交的三条直线可以确定一个或三个平面,∴③正确;命题④中没有说清三个点是否共线,∴④不正确.答案:C2.(2015·台州模拟)以下四个命题中:①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则点A 、B 、C 、D 、E 共面; ③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面;④依次首尾相接的四条线段必共面.正确命题的个数是( )A .0B .1C .2D .3解析:①中显然是正确的;②中若A 、B 、C 三点共线则A 、B 、C 、D 、E五点不一定共面.③构造长方体或正方体,如图显然b 、c 异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.答案:B3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是( )①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇔b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①② B.②③ C.①④ D.③④解析:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图,∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.答案:D4.(2015·东城模拟)设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC解析:A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;C中,若AB=AC,DB=DC,AD不一定等于BC;D中,若AB=AC,DB=DC,可以证明AD⊥BC.答案:C5.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点A B.点BC.点C但不过点M D.点C和点M解析:∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.答案:D6.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN 与直线PB的位置关系为( )A.相交B.平行C.异面D.重合解析:将表面展开图折起还原为正方体,如图,故MN与PB异面.答案:C7.已知空间中有三条线段AB、BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( )A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:若三条线段共面,如果AB、BC、CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线,故选D.答案:D8.以下四个命题中,正确命题的个数是( )①有三个角是直角的四边形一定是矩形;②不共面的四点可以确定四个面;③空间四点不共面的充要条件是其中任意三点不共线;④若点A 、B 、C ∈平面M ,且点A 、B 、C ∈平面N ,则平面M 与平面N 重合.A .0B .1C .2D .3解析:如图(1),平面α内∠ABC 为直角,P ∉ α,过P 作PD ⊥AB ,PE ⊥BC ,则四边形PDBE 有三个直角,故①错误;在图(2)的平面α内,四边形ABCD 中任意三点不共线,知③错误;图(3)中,M ∩N =l ,A 、B 、C 都在l 上,知④错误,只有②正确.答案:B9.(2015·天津和平模拟)已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线D 1C 与BE 所成角的余弦值为( )A.15B.31010C.1010D.35解析:连结A 1B .由题意知A 1D 1綊BC ,所以四边形A 1D 1CB 为平行四边形,故D 1C ∥A 1B .所以∠A 1BE 为异面直线D 1C 与BE 所成的角.不妨设AA 1=2AB =2,则A 1E =1,BE =2,A 1B =5,在△A 1BE 中,cos ∠A 1BE =A 1B 2+EB 2-AE 22A 1B ·EB =5+2-12×5×2=31010,故选B. 答案:B10.已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则下列判断:①MN ≥12(AC +BD );②MN >12(AC +BD );③MN =12(AC +BD ); ④MN <12(AC +BD ). 其中正确的是( )A .①③B .②④C .②D .④解析:如图,取BC 的中点O ,连接MO ,NO ,则OM =12AC ,ON =12BD . 在△MON 中,MN <OM +ON =12(AC +BD ), ∴④正确.答案:D11.如图,ABCD A1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面解析:连接A 1C 1,AC ,则A 1C 1∥AC ,所以A 1,C 1,C ,A 四点共面,所以A 1C ⊂平面ACC 1A 1,因为M ∈A 1C ,所以M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 在平面ACC 1A 1与平面AB 1D 1的交线上,所以A ,M ,O 三点共线.故选A.答案:A12.(2015·惠州模拟)如图是三棱锥D ABC 的三视图,点O 在三个视图中都是所在边的中点,则异面直线DO 和AB 所成角的余弦值等于( )A.33B.12C. 3D.22解析:由题意得如图的直观图,从A 出发的三条线段AB ,AC ,AD两两垂直且AB =AC =2,AD =1,O 是BC 中点,取AC 中点E ,连接DE ,DO ,OE ,则OE =1.又可知AE =1,由于OE ∥AB ,故∠DOE 即为所求两异面直线所成的角或其补角.在直角三角形DAE 中,DE =2由于O 是中点,在直角三角形ABC 中可以求得AO =2在直角三角形DAO 中可以求得DO =3在三角形DOE 中,由余弦定理得cos ∠DOE =1+3-22×1×3=33,故所求余弦值为33故选A. 答案:A二、填空题13.正方体ABCD A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点.那么,正方体的过P 、Q 、R 的截面图形是________边形.解析:延长PQ 或(QP )分别交BC 延长线于E ,交CD 延长线于F ,取C 1D 1中点M ,连接RM ,连接RE 交BB 1于S ,连接MF 交DD 1于N ,连接NQ ,PS ,则六边形PQNMRS 即为正方体ABCD A 1B 1C 1D 1的过P 、Q 、R 三点的截面图形.答案:六14.(2015·景德镇质检)如图所示,在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱C 1D 1,C 1C 的中点,给出以下四个结论:①直线AM 与直线C 1C 相交;②直线AM 与直线BN 平行;③直线AM 与直线DD 1异面;④直线BN 与直线MB 1异面.其中正确结论的序号为________.(把你认为正确的结论的序号都填上)解析:AM 与C 1C 异面,故①错;AM 与BN 异面,故②错.易知③④正确.答案:③④15.已知正方体ABCD A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为________.解析:如图,连接DF ,则AE ∥DF ,∴∠D 1FD 即为异面直线AE 与D 1F 所成的角.设正方体棱长为a ,则D 1D =a ,DF =52a , D 1F =52a ,∴cos ∠D 1FD = ⎝ ⎛⎭⎪⎫52a 2+⎝ ⎛⎭⎪⎫52a 2-a 22·52a ·52a =35. 答案:35[备课札记]。