高中数学 第二章 推理与证明 2.1.3 推理案例赏析学业分层测评 苏教版
- 格式:doc
- 大小:153.02 KB
- 文档页数:6
2.1.3 推理案例赏析[学习目标] 1.通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的联系.2.尝试用合情推理和演绎推理研究某些数学问题,提高分析问题、探究问题的能力.[知识链接]1.归纳推理的结论是否正确?它在数学活动中有什么作用?答 归纳推理的结论具有猜测的性质,结论不一定正确;它可以为数学活动的结论提供目标和方向. 2.类比推理的结论是否一定正确?答 从类比推理的思维过程可以看出:类比的前提是观察、比较和联想,其结论只是一种直觉的、经验式的推测,它还只是一种猜想,结论的正确与否,有待于进一步论证. 3.合情推理与演绎推理有何异同之处?答 合情推理是从特殊到一般,思维开放,富于创造性,但结论不一定正确,是一种或然推理.演绎推理是从一般到特殊,思维收敛,较少创造性,当前提和推理形式都正确时,结论一定正确,是一种必然推理.合情推理为演绎推理确定了目标和方向,而演绎推理又论证了合情推理结论的正误,二者相辅相成,相互为用,共同推动着发现活动的进程. [预习导引] 1.数学活动与探索数学发现活动是一个探索创造的过程,是一个不断地提出猜想、验证猜想的过程. 2.合情推理和演绎推理的联系在数学活动中,合情推理具有提出猜想、发现结论、提供思路的作用,演绎推理为合情推理提供了前提,对猜想作出“判决”或证明,从而为调控探索活动提供依据.要点一 运用归纳推理探求结论例1 已知数列的前4项为32,1,710,917,试写出这个数列的一个通项公式.解 把已知4项改写为32,55,710,917,记此数列的第n 项为a n ,则有a 1=2×1+112+1,a 2=2×2+122+1,a 3=2×3+132+1,a 4=2×4+142+1,…. 据此猜测a n =2n +1n 2+1.规律方法 运用归纳推理猜测一般结论,关键在于挖掘事物的变化规律和相互关系,可以对式子或命题进行适当转换,使其中的规律明晰化.跟踪演练1 下列各图均由全等的小等边三角形组成,观察规律,归纳出第n 个图形中小等边三角形的个数为________.答案 n 2解析 前4个图中小等边三角形的个数分别为1,4,9,16. 猜测:第n 个图形中小等边三角形的个数为n 2. 要点二 运用类比推理探求结论例2 Rt △ABC 中,∠C =90°,CD ⊥AB 于D ,则BC 2=BD ·BA (如图甲).类比这一定理,在三条侧棱两两垂直的三棱锥P -ABC (如图乙)中,可得到什么结论?解 如图,在三棱锥P -ABC 中,作PO ⊥平面ABC ,连结OB ,OC ,猜想下列结论:S 2△PBC =S △OBC ·S △ABC .证明:连结AO ,并延长交BC 于D ,连结PD .PA ⊥PB ,PA ⊥PC ⇒PA ⊥平面PBC .∵PD ⊂平面PBC ,BC ⊂平面PBC ,∴PA ⊥PD ,PA ⊥BC .∵PO ⊥平面ABC ,AD ⊂平面ABC ,BC ⊂平面ABC , ∴PO ⊥AD ,PO ⊥BC .∴BC ⊥平面PAD . ∴BC ⊥AD ,BC ⊥PD .S 2△PBC =(12BC ·PD )2=14BC 2·PD 2,S △OBC ·S △ABC =12BC ·OD ·12BC ·AD=14BC 2·OD ·AD . ∵PD 2=OD ·AD , ∴S 2△PBC =S △OBC ·S △ABC .规律方法 在类比推理中,要提炼两类事物的共同属性.一般而言,提炼的共同属性越本质,则猜想的结论越可靠.跟踪演练2 如图,设△ABC 中,BC =a ,AC =b ,AB =c ,BC 边上的高AD =h .扇形A 1B 1C 1中,=l ,半径为R ,△ABC 的面积可通过下列公式计算:(1)S =12ah ;(2)S =12bc sin ∠BAC .运用类比的方法,猜想扇形A 1B 1C 1的面积公式,并指出其真假.(1)________________________________________________________________________; (2)________________________________________________________________________. 答案 (1)S =12lR 真命题(2)S =12R 2sin A 1 假命题要点三 运用演绎推理证明结论的正确性例3 在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)求证数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)求证不等式S n +1≤4S n 恒成立(n ∈N *).11B C(1)证明 由a n +1=4a n -3n +1, 得a n +1-(n +1)=4(a n -n ),n ∈N *. ∴a n +1-(n +1)a n -n=4 (n ∈N *).∴数列{a n -n }是以a 1-1,即2-1=1为首项,以4为公比的等比数列. (2)解 由(1)可知a n -n =4n -1,∴a n =n +4n -1.∴S n =a 1+a 2+…+a n=(1+40)+(2+41)+…+(n +4n -1) =(1+2+…+n )+(1+4+…+4n -1)=n (n +1)2+13·4n-13. (3)证明 由(2)知,S n +1-4S n =(n +1)(n +2)2+13·4n +1-13-4[n (n +1)2+13·4n -13]=(n +1)(n +2)2-2n (n +1)+1=-(n -1)(3n +4)2≤0,∴S n +1≤4S n 恒成立(n ∈N *).规律方法 演绎推理的一般形式是三段论,证题时要明确三段论的大前提、小前提和结论,写步骤时常省略大前提或小前提.跟踪演练3 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). ∴y =f (x )为R 上的单调增函数.1.一个数列的第2项到第4项分别是3,15,21,据此可以猜想这个数列的第一项是________. 答案3解析 ∵a 2=9=6×2-3,a 3=15=6×3-3, a 4=21=6×4-3,∴猜想a 1=6×1-3= 3.2.在平面中,圆内接平行四边形一定是矩形.运用类比,可猜想在空间有如下命题:________________________________________________________________________. 答案 球内接平行六面体一定是长方体3.设x i >0 (i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…类比上述结论,对于n 个正数x 1,x 2,…,x n ,猜想有下述结论________________________________. 答案 x 1+x 2+…+x n ≥n nx 1x 2…x n4.已知a ,b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则f (2)f (1)+f (3)f (2)+…+f (2015)f (2014)=________. 答案 4028解析 令b =1,则f (a +1)=f (a )f (1), ∴f (a +1)f (a )=f (1)=2. ∴f (2)f (1)+f (3)f (2)+…+f (2015)f (2014)=2+2+…+2=2×2014=4028.1.数学活动中,合情推理和演绎推理相辅相成,共同推动发现活动的进程.2.合情推理中要对已有事实进行分析,作出猜想,猜想的结论为演绎推理提供了目标和方向.一、基础达标1.有两种花色的正六边形地板砖,按下面的规律拼成若干个图案,则第6个图案中有底纹的正六边形的个数是________.答案 31解析 有底纹的正六边形的个数组成等差数列a 1=6,d =5,∴a 6=6+(6-1)×5=31.2.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,… 由此猜测第n 个等式为________________________________________________________________________(n ∈N *). 答案 1+12+13+…+12n -1>n23.已知数列{a n }的前n 项和为S n ,且S n =n 2+1.则此数列的前4项分别为a 1=________,a 2=________,a 3=________,a 4=________.据此猜测,数列{a n }的通项公式为a n =______________________.答案 2 3 5 7 ⎩⎪⎨⎪⎧2,n =12n -1,n ≥24.正方形ABCD 中,对角线AC ⊥BD .运用类比的方法,猜想正方体ABCD -A 1B 1C 1D 1中,相关结论:______________________. 答案 对角面AA 1C 1C ⊥面BB 1D 1D5.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是__________________. 答案 大前提错误6.已知△ABC 中,AD ⊥BC 于D ,三边是a ,b ,c ,则有a =c cos B +b cos C ;类比上述推理结论,写出下列条件下的结论:四面体P -ABC 中,△ABC ,△PAB ,△PBC ,△PCA 的面积分别是S ,S 1,S 2,S 3,二面角P -AB -C ,P -BC -A ,P -AC -B 的度数分别是α,β,γ,则S =__________________________. 答案 S 1cos α+S 2cos β+S 3cos γ7.已知等式:3tan30°·tan30°+tan30°+tan30°=3, 3tan20°·tan40°+tan20°+tan40°=3, 3tan15°·tan45°+tan15°+tan45°= 3. 据此猜想出一个一般性命题,并证明你的猜想. 解 猜想:3tan α·tan β+tan α+tan β=3, 其中α+β=60°.证明:∵tan(α+β)=tan α+tan β1-tan α·tan β,即3=tan α+tan β1-tan α·tan β.整理,得3tan α·tan β+tan α+tan β= 3. 二、能力提升8.已知等式:(tan5°+1)(tan40°+1)=2;(tan15°+1)·(tan30°+1)=2;(tan25°+1)(tan20°+1)=2.据此可猜想出一个一般性命题:________________________________________________________________________. 答案 (tan α+1)[tan(45°-α)+1]=29.设M 是具有以下性质的函数f (x )的全体:对于任意s >0,t >0,都有f (s )+f (t )<f (s +t ).给出函数f 1(x )=log 2x ,f 2(x )=2x-1.下列判断正确的是________. ①f 1(x )∈M ;②f 1(x )∉M ;③f 2(x )∈M ;④f 2(x )∉M . 答案 ②③解析 对于f 1(x )=log 2x ;log 22+log 24>log 2(2+4),所以f 1(x )∉M .对于f 2(x )=2x-1:2s-1+2t-1-(2s +t-1)=-(2s -1)(2t-1)<0,f 2(x )∈M .10.已知命题:平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n2=1(m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e .将该命题类比到双曲线中,给出一个命题:________________________________________________________________________ ________________________________________________________________________.答案 平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n 2=1(m ,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e11.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律. 解 (1)∵a 1=5,d =2, ∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n . ∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39,T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45.由此可知S 1=T 1,当2≤n ≤5,n ∈N 时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .12.在平面中有命题:等腰三角形底边上任一点到两腰距离之和等于一腰上的高.把此结论类比到空间的正三棱锥,猜想并证明相关结论.解 猜想结论:正三棱锥底面上任一点到三个侧面的距离之和等于以侧面为底时三棱锥的高.证明如下:设P 为正三棱锥A -BCD 底面上任一点,点P 到平面ABC ,ACD ,ABD 的距离分别为h 1,h 2,h 3,以侧面ABC 为底时对应的高为h ,则: V P -ABC +V P -ACD +V P -ABD =V D -ABC .即:13S △ABC ·h 1+13S △ACD ·h 2+13S △ABD ·h 3=13S △ABC ·h . ∵S △ABC =S △ACD =S △ABD ,∴h 1+h 2+h 3=h ,此即要证的结论. 三、探究与创新13.记S n 为数列{a n }的前n 项和,给出两个数列: (Ⅰ)5,3,1,-1,-3,-5,-7,… (Ⅱ)-14,-10,-6,-2,2,6,10,14,18,…(1)对于数列(Ⅰ),计算S 1,S 2,S 4,S 5;对于数列(Ⅱ),计算S 1,S 3,S 5,S 7;(2)根据上述结果,对于存在正整数k ,满足a k +a k +1=0的这一类等差数列{a n }的和的规律,猜想一个正确的结论,并加以说明.解 (1)对于数列(Ⅰ),S 1=S 5=5,S 2=S 4=8;对于数列(Ⅱ),S 1=S 7=-14,S 3=S 5=-30. (2)对于等差数列{a n },当a k +a k +1=0时,猜想S n =S 2k -n (n ≤2k ,n ,k ∈N *). 下面给出证明:设等差数列{a n }的前项为a 1,公差为d . ∵a k +a k +1=0,∴a 1+(k -1)d +a 1+kd =0, ∴2a 1=(1-2k )d .又S 2k -n -S n =(2k -n )a 1+(2k -n )(2k -n -1)2d -na 1-n (n -1)2d=[(k -n )(1-2k )+(2k -n )(2k -n -1)2-n (n -1)2]d =0.∴S 2k -n =S n ,猜想正确.。
学业分层测评(十四)(建议用时:45分钟)学业达标]一、填空题1.如图2-1-19所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是________.【导学号:01580042】图2-1-19【解析】 由图形中数字,不难得出每行两头数字均为1,其它数字均为其肩上两数字之和,∴a =3+3=6.【答案】 62.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎨⎧3,5, 33=⎩⎨⎧7,9,11,43=⎩⎨⎧13,15,17,19,….仿此,若m 3的“分裂数”中有一个是2 015,则m =________. 【解析】 根据分裂特点,设最小数为a 1, 则ma 1+m (m -1)2×2=m 3,∴a 1=m 2-m +1. ∵a 1为奇数,又452=2 025, ∴猜想m =45.验证453=91 125=(1 979+2 071)×452.【答案】 453.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:________________________.【解析】 平面几何中的线与立体几何中的面相类比,可得:夹在两个平行平面间的平行线段相等.【答案】 夹在两个平行平面间的平行线段相等4.观察下面不等式:1+122<32,1+122+132<53,1+122+132+142<74,…,猜想第n 个不等式为________.【解析】 当n ≥2时,则不等式左端就为1+122+132+…+1n 2,而右端的分母正好是n ,分子是2n -1,因此可以猜想,n ≥2时,满足的不等式为1+122+132+…+1n 2<2n -1n .故可归纳式子为:1+122+132+…+1n 2<2n -1n (n ≥2). 【答案】 1+122+132+…+1n 2<2n -1n (n ≥2) 5.若a 1,a 2,a 3,a 4∈R +,有以下不等式成立:a 1+a 22≥a 1a 2,a 1+a 2+a 33≥3a 1a 2a 3,a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4.由此推测成立的不等式是_______________________________________________.(要注明成立的条件)【答案】 a 1+a 2+a 3+…+a n n≥n a 1a 2a 3…a n (a 1,a 2,a 3,…,a n ∈R +) 6.观察下列各式:55=3 125,56=15 625,57=78 125,…则52 015的末四位数字为________. 【解析】 ∵55=3 125,56=15 625,57=78 125, 58末四位数字为0 625,59末四位数字为3 125, 510末四位数字为5 625,511末四位数字为8 125, 512末四位数字为0 625,…,由上可得末四位数字周期为4,呈规律性交替出现, ∴52 015=54×503+3末四位数字为8 125. 【答案】 8 1257.(2016·湖北调研)如图2-1-20①②③④所示,它们都是由小圆圈组成的图案.现按同样的排列规则进行排列,记第n 个图形包含的小圆圈个数为f (n ),则图2-1-20(1)f (5)=________;(2)f (2 015)的个位数字为________.【解析】 观察规律可知:f (5)=4×5+1=21,f (2 015)=2 014×2 015+1,它的个位数字是1.【答案】 (1)21 (2)18.(2016·江西稳派调研)将2n 按如表所示的规律填在5列的数表中,设22 015排在数表的第n 行,第m 列,则第m -1列中的前n 个数的和S n =________.【解析】 由于2 015=4504行第4列,所以n =504,m =4.所以S n =22[1-(24)504]1-24=22 018-415.【答案】22 018-415 二、解答题9.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *),证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【导学号:01580043】【证明】 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .故S n +1n +1=2·S nn ,数列⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列. (2)由(1)知S n +1n +1=4·S n -1n -1(n ≥2). ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).又∵a2=3S1=3,S2=a1+a2=4=4a1,∴对任意正整数n,都有S n+1=4a n.10.在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值32a.类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解】类比所得的真命题是:棱长为a的正四面体内任意一点到四个面的距离之和是定值63a.证明:设M是正四面体P-ABC内任意一点,M到面ABC,面P AB,面P AC,面PBC的距离分别为d1,d2,d3,d4.由于正四面体四个面的面积相等,故有:V P-ABC=V M-ABC+V M-P AB+V M-P AC+V M-PBC=13·S△ABC·(d1+d2+d3+d4),而S△ABC =34a2,VP-ABC=212a3,故d1+d2+d3+d4=63a(定值).能力提升]1.(2016·盐城高二期终)已知2+23=223,3+38=338,4+415=4415,…类比这些等式,若6+ab=6ab(a,b均为正实数),则a+b=______.【解析】类比已知的3个等式,知a=6,b=62-1=35.所以a+b=41.【答案】412.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则AGGD=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则AOOM等于________.【解析】如图,设正四面体的棱长为1,则易知其高AM=63,此时点O即为正四面体内切球的球心,设其半径为r ,利用等体积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3.【答案】 33.(2016·湖北宜昌高三模拟)观察下列等式: ①sin 2θ=cos θ·2sin θ; ②sin 4θ=cos θ(4sin θ-8sin 3θ);③sin 6θ=cos θ(6sin θ-32sin 3θ+32sin 5θ);④sin 8θ=cos θ(8sin θ-80sin 3θ+192sin 5θ-128sin 7θ);⑤sin 10θ=cos θ(10sin θ-160sin 3θ+m sin 5θ-1 024sin 7θ+n sin 9θ). 则可以推测(1)n =________,(2)m =________.【解析】 由给定等式的规律可知奇数式的最后一项系数为正数.数值为2n ,n 的值与sin θ的次数相同,所以式子⑤中n =29=512.另一特征为括号中所有系数的和奇数式与θ的系数相等,偶数式与θ的系数相反,所以⑤式中10-160+m -1 024+512=10,∴m =672.【答案】 512 672【答案】 145.设f (x )=a x +a -x 2,g (x )=a x -a -x 2(其中a >0,a ≠1).(1)请你推测g (5)能否用f (2),f (3),g (2),g (3)来表示. (2)如果(1)中获得一个结论,请你推测能否推广并加以证明.【解】 (1)由题意可得f (2)=a 2+a -22,f (3)=a 3+a -32,g (2)=a 2-a -22,g (3)=a 3-a -32. 则f (3)·g (2)+g (3)·f (2)=a 5-a +a -1-a -5+a 5+a -a -1-a -54=a 5-a -52.又g(5)=a5-a-52,因此,g(5)=f(3)·g(2)+g(3)·f(2).(2)g(5)=f(3)·g(2)+g(3)·f(2),即g(3+2)=f(3)·g(2)+g(3)·f(2).于是猜测g(x+y)=f(x)·g(y)+g(x)·f(y).证明:∵f(x)=a x+a-x2,g(x)=a x-a-x2,∴g(x+y)=a(x+y)-a-(x+y)2,g(y)=a y-a-y2,f(y)=a y+a-y2,所以f(x)·g(y)+g(x)·f(y)=a x+a-x2·a y-a-y2+a x-a-x2·a y+a-y2=a(x+y)-a-(x+y)2=g(x+y).故g(x+y)=f(x)·g(y)+g(x)·f(y).。
高中数学第二章推理与证明2-1-3推理案例赏析学案苏教版选修2_21(1)数学发现活动是一个探索创造的过程.这是一个不断地________________的过程.合情推理和演绎推理相辅相成,相互为用,共同推动着发现活动的进程.(2)________是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.(3)________是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据.2.数学命题推理数学命题推理有合情推理和演绎推理,__________和________是常用的合情推理.从推理形式上看,________是由部分到整体、个别到一般的推理,________是由特殊到特殊的推理,而演绎推理是由一般到特殊的推理;从推理所得的结论来看,________的结论不一定正确,有待于进一步证明,________在前提和推理形式都正确的前提下,得到的结论一定正确.预习交流1做一做:在数列{an}中,a1=1,Sn,Sn+1,2S1成等差数列(不必证明)(Sn表示{an}的前n项和),则S2,S3,S4分别为________,由此猜想Sn=________.预习交流2做一做:从大、小正方形的数量关系上,观察下图,归纳得出的结论是__________.预习交流3做一做:已知P>Q.答案:预习导引1.(1)提出猜想、验证猜想(2)合情推理(3)演绎推理2.归纳推理类比推理归纳推理类比推理合情推理演绎推理预习交流1:提示:∵Sn,Sn+1,2S1成等差数列,∴2Sn+1=Sn+2S1.∵S1=a1=1,∴2Sn+1=Sn+2.∴当n=1,2,3时,依次得S2=,S3=,S4=.猜想Sn=.预习交流2:提示:从大、小正方形的数量关系上,容易发现1=12,1+3=2×2=22,1+3+5=3×3=32,1+3+5+7=4×4=42,1+3+5+7+9=5×5=52,1+3+5+7+9+11=6×6=62.观察上述算式的结构特征,我们可以猜想:1+3+5+7+…+(2n-1)=n2.预习交流3:证明:当a>1时,a3+1>a2+1,∴loga(a3+1)>loga(a2+1).当0<a<1时,a3+1<a2+1,∴loga(a3+1)>loga(a2+1).综上,P>Q.一、利用合情推理提出猜想设k棱柱有f(k)个对角面,则k+1棱柱对角面的个数为f(k+1)=f(k)+________.思路分析:注意几何图形参数在由k变到k+1时,发生了哪些变化,增加了多少.1.观察下列各等式:+=2,+=2,+=2,+=2,依照以上各式成立的规律,得到一般性的等式为__________.2.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是____________________________________________________________________________________________ ____.合情推理和演绎推理的关系是:(1)联系:两个推理是相辅相成的,演绎推理是证明数学结论,建立数学体系的重要思维过程,但数学结论、证明思路的发现,主要靠合情推理.(2)区别:合情推理的前提为真时,结论不一定为真,而演绎推理的前提为真时,结论必定为真.二、利用演绎推理证明已知{an}为等差数列,首项a1>1,公差d>0,n>1且n∈N*.求证:lg an+1lg an-1<(lg an)2.思路分析:对数之积不能直接运算,必须由均值不等式转化为对数之和进行运算.如图所示,在梯形ABCD中AB=DC=DA,AC和BD是梯形的对角线.求证:AC平分。
2.1.3 推理案例赏析学习目标 1.进一步认识合情推理和演绎推理的作用、特点以及两者之间的紧密联系,利用合情推理和演绎推理进行简单的推理.2.掌握两种推理形式的具体格式.知识点合情推理与演绎推理思考1 合情推理的结论不一定正确,我们为什么还要学习合情推理?答案合情推理是富于创造性的或然推理.在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.思考2 “演绎推理是由一般到特殊的推理,因此演绎推理所得结论一定正确”,这种说法对吗?答案不对,演绎推理只有在大、小前提和推理形式都正确的前提下,得到的结论才一定正确.梳理合情推理与演绎推理的比较1.演绎推理的一般模式是“三段论”的形式.( √)2.演绎推理得到的结论的正误与大前提、小前提和推理形式有关.( √)3.演绎推理是由一般到特殊的推理,归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.( √)类型一归纳推理的应用例1 观察如图所示的“三角数阵”:记第n行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)a2=________,a3=________,a4=________,a5=________;(3)a n+1=a n+________.答案(1)6 16 25 25 16 6(2)2 4 7 11(3)n(n≥2,n∈N*)反思与感悟对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.跟踪训练1 下列四个图形中,阴影三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________.答案 a n =3n -1(n ∈N *)解析 a 1=1=30,a 2=3=31,a 3=9=32,a 4=27=33,…, 由此猜想a n =3n -1(n ∈N *).类型二 类比推理的应用 例2 通过计算可得下列等式: 23-13=3×12+3×1+1; 33-23=3×22+3×2+1; 43-33=3×32+3×3+1; …;(n +1)3-n 3=3×n 2+3×n +1. 将以上各等式两边分别相加,得(n +1)3-13=3×(12+22+…+n 2)+3×(1+2+3+…+n )+n , 即12+22+32+…+n 2=16n (n +1)(2n +1)(n ∈N *).类比上述求法,请你求出13+23+33+…+n 3的值. 解 ∵24-14=4×13+6×12+4×1+1; 34-24=4×23+6×22+4×2+1; 44-34=4×33+6×32+4×3+1; …;(n +1)4-n 4=4n 3+6n 2+4n +1. 将以上各式两边分别相加,得(n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n , ∴13+23+…+n 3=14⎣⎢⎡⎦⎥⎤(n +1)4-14-6×16n (n +1)·(2n +1)-4×n (n +1)2-n =14n 2(n +1)2(n ∈N *). 反思与感悟 (1)解答类比推理的应用题的关键在于弄清原题解题的方法,将所要求值的式子与原题的条件相类比,从而产生解题方法上的迁移.(2)解答类比推理的应用问题要先弄清两类对象之间的类比关系及其差别,然后进行推测或证明.跟踪训练2 已知在Rt△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD2=1AB2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确,并给出理由. 考点 类比推理的应用题点 平面几何与立体几何之间的类比解 类比AB ⊥AC ,AD ⊥BC ,可以猜想在四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD 2.猜想正确.理由如下:如图所示,连结BE ,并延长交CD 于F ,连结AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A ,∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF .在Rt△ABF 中,AE ⊥BF ,∴1AE2=1AB2+1AF 2.在Rt△ACD 中,AF ⊥CD , ∴1AF2=1AC2+1AD 2.∴1AE2=1AB2+1AC2+1AD 2,故猜想正确.类型三 演绎推理的综合应用例3 已知椭圆具有性质:若M ,N 是椭圆x 2a 2+y 2b 2=1(a >b >0)上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值,试对双曲线x 2a 2-y 2b 2=1(a >0,b >0)写出类似的性质,并加以证明.解 类似性质:若M ,N 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则点N 的坐标为(-m ,-n ).因为点M (m ,n )在已知双曲线上,所以n 2=b 2a2m 2-b 2,同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).故k PM 与k PN 之积是与点P 的位置无关的定值.反思与感悟 合情推理是提出猜想、提供解题的思路,而演绎推理则是证明猜想、判断猜想的正确性,通过合情推理得到的猜想缺少证明过程,是不完整的,平时解题都是二者的结合.跟踪训练3 已知{a n }为等差数列,首项a 1>1,公差d >0,n >1且n ∈N *.求证:lg a n +1lg a n -1<(lg a n )2.证明 ∵{a n }为等差数列,d >0, ∴a n -1a n +1=(a n -d )(a n +d )=a 2n -d 2<a 2n . ∵a 1>1,d >0,∴a n =a 1+(n -1)d >1. ∴lg a n >0.∴lg a n +1·lg a n -1≤⎝⎛⎭⎪⎫lg a n +1+lg a n -122=⎣⎢⎡⎦⎥⎤12lg (a n -1a n +1)2<⎝ ⎛⎭⎪⎫12lg a 2n 2=(lg a n )2, 即lg a n +1·lg a n -1<(lg a n )2.1.设x i >0(i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…,类比上述结论,对于n 个正数x 1,x 2,…,x i ,…,x n ,猜想有下述结论:__________.答案 x 1+x 2+…+x n ≥n nx 1x 2…x n2.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则对于任意n (n ∈N *)有不等式__________________成立.答案 f (2n +1)>n +32解析 由所给不等式可得:f (4)=f (22)=1+12+ (14)1+32, f (8)=f (22+1)=1+12+ (18)2+32, f (16)=f (23+1)=1+12+ (116)3+32,f (32)=f (24+1)=1+12+ (132)4+32,…,f (2n +1)=1+12+…+12n +1>n +32.即f (2n +1)>n +32.3.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论: ①垂直于同一条直线的两条直线互相平行;②垂直于同一平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是________.(填序号) 答案 ②③解析 根据空间直线、平面的平行与垂直的判定与性质定理知,②③正确,①④错误. 4.如图(甲)是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列{a n }的通项公式为a n =________.考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案n (n ∈N *)解析 根据OA 1=A 1A 2=A 2A 3=…=A 7A 8=1和图(乙)中的各直角三角形,由勾股定理,可得a 1=OA 1=1,a 2=OA 2=OA 21+A 1A 22=12+12=2,a 3=OA 3=OA 22+A 2A 23=(2)2+12=3,…,故可归纳推测出a n =n (n ∈N *).5.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e =________.答案5+12解析 根据“黄金椭圆”的性质是FB →⊥AB →,可以得到“黄金双曲线”也满足这个性质,设“黄金双曲线”的方程为x 2a 2-y 2b2=1,则B (0,b ),F (-c,0),A (a,0).在“黄金双曲线”中,∵FB→⊥AB →,∴FB →·AB →=0.又FB →=(c ,b ),AB →=(-a ,b ),∴-ac +b 2=0.又b 2=c 2-a 2,∴c 2-a 2=ac ,等号两边同除以a 2求得e =5+12.1.归纳推理和类比推理是常用的合情推理.从推理形式上看,归纳推理是由部分到整体、特殊到一般的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理. 2.从推理形式和所得结论的正确性讲,演绎推理与合情推理存在差异.从数学发现与认识事物的过程发挥的作用看,合情推理与演绎推理是相辅相成、相互为用的,合情推理提出猜想、发现结论,为演绎推理确定了目标和方向.演绎推理不仅为合情推理提供了前提,而且对合情推理的结果进行“判决”和证明.两者的综合运用才能推动人们对事物的认识不断向前发展.一、填空题 1.给出下列推理:①由A ,B 为两个不同的定点,动点P 满足|PA -PB |=2a <AB ,得点P 的轨迹为双曲线; ②由a 1=1,a n =3n -1(n ≥2),求出S 1,S 2,S 3,猜想出数列{a n }的前n 项和S n 的表达式; ③科学家利用鱼的沉浮原理制造潜艇. 其中是归纳推理的是________.(填序号) 答案 ②解析 ①是演绎推理,②是归纳推理,③是类比推理.2.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为________.(填序号) ①nn -4+8-n (8-n )-4=2; ②n +1(n +1)-4+(n +1)+5(n +1)-4=2;③nn -4+n +4(n +4)-4=2; ④n +1(n +1)-4+n +5(n +5)-4=2.答案 ①解析 观察分子中2+6=5+3=7+1=10+(-2)=8.3.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是________. 答案 大前提错误解析 如果f (x )是奇函数,并且在x =0处有定义,那么f (0)=0,因此这段三段论推理中大前提是错误的,导致结论也是错误的.4.设k 棱柱有f (k )个对角面,则k +1棱柱对角面的个数为f (k +1)=f (k )+________. 答案 k -1解析 当k 棱柱增加一条侧棱时,这条侧棱和与之不相邻的k -2条侧棱可构成k -2个对角面,而当增加一条侧棱时也使一个侧面变成了对角面. 所以f (k +1)=f (k )+k -2+1=f (k )+k -1. 5.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中的不等式为________________________________.答案1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *) 解析 不等式左边和式个数分别为3,4,5,…时,不等式右边的数依次为9π,162π,253π,…,其分子依次为32,42,52,…,分母依次为(3-2)π,(4-2)π,(5-2)π,….故当不等式左边和式个数为n 时,归纳猜想右边应为n 2(n -2)π(n ≥3,n ∈N *),故所求不等式为1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *).6.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝(图中圆圈表示珠宝)构成如图①所示的六边形,第三件首饰是由15颗珠宝构成如图②所示的六边形,第四件首饰是由28颗珠宝构成如图③所示的六边形,第五件首饰是由45颗珠宝构成如图④所示的六边形,以后每件首饰都在前一件上按照这种规律增加一定数量的珠宝.使其构成更大的六边形,依此推断第六件首饰上应有________颗珠宝,第n 件首饰上应有________颗珠宝.(结果用n 表示,n ∈N *)答案 66 2n 2-n解析 设第n 件首饰上所用珠宝数为a n 颗,据题意可知,a 1=1,a 2=6,a 3=15,a 4=28,a 5=45,即a 2=2×3,a 3=3×5,a 4=4×7,a 5=5×9,a 6=6×11,由此猜测,a n =n (2n -1)=2n 2-n .7.将自然数按如下规则排列在平面直角坐标系中:①每一个自然数对应一个整点(横、纵坐标均为整数的点);②0在原点,1在(0,1),2在(1,1),3在(1,0),4在(1,-1),5在(0,-1),9在(-1,2),…,所有自然数按顺序顺时针“缠绕”在以“0”为中心的“桩”上且所有整点上均有自然数,则数字(2n +1)2(n ∈N *)的坐标为__________. 答案 (-n ,n +1)解析 9的坐标为(-1,2),且9=(2×1+1)2,25的坐标为(-2,3),且25=(2×2+1)2,49的坐标为(-3,4),且49=(2×3+1)2,…,所以(2n +1)2的坐标为(-n ,n +1). 8.观察以下等式:sin 230°+cos 290°+3sin30°·cos90°=14;sin 225°+cos 285°+3sin25°·cos85°=14;sin 210°+cos 270°+3sin10°·cos70°=14.推测出反映一般规律的等式:_____________________________________________________. 答案 sin 2α+cos 2(60°+α)+3sin α·cos(60°+α)=14解析 ∵90°-30°=60°,85°-25°=60°,70°-10°=60°, ∴其一般规律为sin 2α+cos 2(60°+α)+3sin α·cos(60°+α)=14.9.从大、小正方形的数量关系上,观察下图,归纳得出关于n (n ∈N *)的结论是______________ _____________.答案 1+3+5+7+…+(2n -1)=n 2解析 从大、小正方形的数量关系上,容易发现 1=12,1+3=2×2=22, 1+3+5=3×3=32,1+3+5+7=4×4=42, 1+3+5+7+9=5×5=52, 1+3+5+7+9+11=6×6=62.观察上述算式的结构特征,我们可以猜想: 1+3+5+7+…+(2n -1)=n 2.10.四个小动物换座位,开始是鼠,猴,兔,猫分别坐1,2,3,4号位子,第1次前后排动物互换座位,第2次左右列动物互换座位,…,这样交替进行下去,那么2012次互换座位后,小兔的座位对应的是编号________.答案 3解析 通过第1次、第2次、第3次、第4次互换后得到的结果与开始时一样,所以周期为4,又2012能被4整除,所以经过第2012次互换座位后,应为开始时的结果,即小兔的座位对应的是编号3.11.已知命题:在平面直角坐标系xOy 中,△ABC 的顶点A (-p ,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n 2=1(m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e.将该命题类比到双曲线中,给出一个命题:_______________________________________________________.答案 在平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n2=1(m >0,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e.解析 本题应是并列式类比,把椭圆方程x 2m 2+y 2n 2=1(m >n >0)改为x 2m 2-y 2n2=1(m >0,n >0),把p =m 2-n 2改为p =m 2+n 2, 把sin A +sin C sin B =1e 改为sin A -sin C sin B =1e.注意到双曲线定义sin C -sin A sin B =1e 也应成立,从而|sin A -sin C |sin B =1e .二、解答题12.定义在实数集R 上的函数f (x ),对任意x ,y ∈R ,有f (x -y )+f (x +y )=2f (x )f (y ),且f (0)≠0.求证:f (x )是偶函数. 解 令x =y =0,则有f (0)+f (0)=2f (0)×f (0), 因为f (0)≠0,所以f (0)=1, 令x =0,则有f (-y )+f (y )=2f (0)f (y )=2f (y ), 所以f (-y )=f (y ), 因此,f (x )是偶函数.13.设a >0,且a ≠1,f (x )=1a x+a.(1)求值:f (0)+f (1),f (-1)+f (2);(2)由(1)的结果归纳概括对所有实数x 都成立的一个等式,并加以证明. 解 (1)f (0)+f (1)=11+a +1a +a =1a =aa,f (-1)+f (2)=1a -1+a +1a 2+a=1a=aa. (2)由(1)归纳得对一切实数x ,有f (x )+f (1-x )=a a. 证明:f (x )+f (1-x )=1a x +a +1a 1-x +a =1a x +a +a x a (a +a x )=a +a x a (a +a x )=1a =aa.三、探究与拓展14.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5,33=⎩⎪⎨⎪⎧7,9,11,43=⎩⎪⎨⎪⎧13,15,17,19,…仿此,若m 3的“分裂数”中有一个数是2015,则m =________. 答案 45解析 根据分裂特点,设最小数为a 1,则ma 1+m (m -1)2×2=m 3,∴a 1=m 2-m +1.∵a 1为奇数,又452=2025, ∴猜想m =45.验证453=91125=(1981+2069)×452,故a 1=1981,满足a 1=m 2-m +1.15.如图所示,点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N.(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理DE 2=DF 2+EF 2-2DF ·EF cos∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系,并予以证明.(1)证明 ∵CC 1∥BB 1,∴CC 1⊥PM ,CC 1⊥PN ,又∵PM ∩PN =P ,PM ,PN ⊂平面PMN , ∴CC 1⊥平面PMN .又MN ⊂平面PMN ,∴CC 1⊥MN . (2)解 在斜三棱柱ABC -A 1B 1C 1中有112ABB A S =112BCC B S +112ACC A S -211BCC B S ·11ACC A S cos x ,其中x 为平面BCC 1B 1与平面ACC 1A 1所成的二面角的大小. 证明如下:∵CC 1⊥平面PMN ,∴x =∠MNP .在△PMN 中,PM 2=PN 2+MN 2-2PN ·MN cos∠MNP .∴PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos∠MNP . ∵11BCC B S =PN ·C 1C ,11ACC A S =MN ·CC 1,11ABB A S =PM ·BB 1,∴112ABB A S =112BCC B S +112ACC AS -211BCC B S ·11ACC A S cos x .。
2.1.3 推理案例赏析明目标、知重点 1.通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的联系.2.尝试用合情推理和演绎推理研究某些数学问题,提高分析问题、探究问题的能力.1.数学活动与探索数学活动是一个探索创造的过程,是一个不断地提出猜想、验证猜想的过程. 2.合情推理和演绎推理的联系在数学活动中,合情推理具有提出猜想、发现结论、提供思路的作用,演绎推理为合情推理提供了前提,对猜想作出“判决”和证明,从而为调控探索活动提供依据.[情境导学]合情推理和演绎推理之间具有怎样的联系和差别?合情推理和演绎推理是怎样推进数学发展活动的?下面通过几个案例进一步来熟悉. 探究点一 运用归纳推理探求结论思考1 在数学活动中,归纳推理一般有几个步骤?答 (1)实验、观察:列举几个特别的例子,并推演出相应的结论.(2)概括、推广:分析上述实验的共性,如位置关系、数量关系及变化规律,找出通性. (3)猜测一般性结论:由上述概括出的通性,推广出一般情形下的结论,此结论就涵盖所有特例的结论.思考2 归纳推理的结论是否正确?它在数学活动中有什么作用?答 归纳推理的结论具有猜测的性质,结论不一定正确;它可以为数学活动的结论提供目标和方向.例1 已知数列的前4项为32,1,710,917,试写出这个数列的一个通项公式.解 把已知4项改写为32,55,710,917,记此数列的第n 项为a n ,则有a 1=2×1+112+1;a 2=2×2+122+1;a 3=2×3+132+1, a 4=2×4+142+1,….据此猜测a n =2n +1n 2+1.反思与感悟 运用归纳推理猜测一般结论,关键在于挖掘事物的变化规律和相互关系,可以对式子或命题进行适当转换,使其中的规律明晰化.跟踪训练1 下列各图均由全等的小等边三角形组成,观察规律,归纳出第n 个图形中小等边三角形的个数为________.答案 n 2解析 前4个图中小三角形个数分别为1,4,9,16. 猜测:第n 个图形中小等边三角形的个数为n 2. 探究点二 运用类比推理探求结论思考1 在数学活动中,类比推理一般有几个步骤?答 (1)观察、比较:对比两类对象,挖掘它们之间的相似(同)点和不同点.(2)联想、类推:提炼出两类对象的本质的共同的属性,并根据一类对象所具有的性质推测另一类对象也具有某种类似的性质.(3)猜测新的结论:把猜测的某种结论用相关语言确切地表述出来. 思考2 类比推理的结论是否一定正确?答 从类比推理的思维过程可以看出:类比的前提是观察、比较和联想,其结论只是一种直觉的、经验式的推测,它还只是一种猜想,结论的正确与否,有待于进一步论证. 例2 Rt△ABC 中,∠C =90°,CD ⊥AB 于D ,则BC 2=BD ·BA .(如图甲)类比这一定理,在三条侧棱两两垂直的三棱锥P —ABC (如图乙)中,可得到什么结论?解如图在三棱锥P —ABC 中,作PO ⊥平面ABC , 连结OB 、OC 猜想下列结论:S 2△PBC =S △OBC ·S △ABC .证明:连结AO ,并延长交BC 于D ,连结PD .PA ⊥PB ,PA ⊥PC ⇒PA ⊥平面PBC .∵PD ⊂平面PBC ,BC ⊂平面PBC , ∴PA ⊥PD ,PA ⊥BC .∵PO ⊥平面ABC ,AD ⊂平面ABC ,BC ⊂平面ABC , ∴PO ⊥AD ,PO ⊥BC .∴BC ⊥平面PAD . ∴BC ⊥AD ,BC ⊥PD .S 2△PBC =⎝ ⎛⎭⎪⎫12BC ·PD 2=14BC 2·PD 2S △OBC ·S △ABC =12BC ·OD ·12BC ·AD=14BC 2·OD ·AD . ∵PD 2=OD ·AD ,∴S 2△PBC =S △OBC ·S △ABC .反思与感悟 在类比推理中,要提炼两类事物的共同属性.一般而言,提炼的共同属性越本质,则猜想的结论越可靠.跟踪训练2 如图,设△ABC 中,BC =a ,AC =b ,AB =c ,BC 边上的高AD =h .扇形A 1B 1C 1中,B 1C 1=l ,半径为R ,△ABC 的面积可通过下列公式计算:(1)S =12ah ;(2)S =12bc sin∠BAC .运用类比的方法,猜想扇形A 1B 1C 1的面积公式,并指出其真假.(1)________________________________________________________________________; (2)________________________________________________________________________. 答案 (1)S =12lR 真命题(2)S =12R 2sin A 1 假命题探究点三 运用演绎推理证明结论的正确性思考1 合情推理与演绎推理有何异同之处?答 合情推理是从特殊到一般,思维开放,富于创造性,但结论不一定正确,是一种或然推理.演绎推理是从一般到特殊,思维收敛,较少创造性,当前提和推理形式都正确时,结论一定正确,是一种必然推理.合情推理为演绎推理确定了目标和方向,而演绎推理又论证了合情推理结论的正误,二者相辅相成,相互为用,共同推动着发现活动的进程.思考2 应用三段论推理时,一定要严格按三段论格式书写吗?答 在实际应用三段论推理时,常常采用省略大前提或小前提的表述方式.前一个三段论的结论往往作为下一个三段论的前提.例3 在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)求证数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)求证不等式S n +1≤4S n 恒成立(n ∈N *). (1)证明 由a n +1=4a n -3n +1, 得a n +1-(n +1)=4(a n -n ),n ∈N *. ∴a n +1-n +a n -n=4 (n ∈N *).∴数列{a n -n }是以a 1-1,即2-1=1为首项,以4为公比的等比数列. (2)解 由(1)可知a n -n =4n -1,∴a n =n +4n -1.∴S n =a 1+a 2+…+a n =(1+40)+(2+41)+…+(n +4n -1)=(1+2+…+n )+(1+4+…+4n -1)=n n +2+13·4n -13. (3)证明 由(2)知,S n +1-4S n =n +n +2+13·4n +1-13- 4⎣⎢⎡⎦⎥⎤n n +2+13·4n -13 =n +n +2-2n (n +1)+1 =-n -n +2≤0,∴S n +1≤4S n 恒成立(n ∈N *).反思与感悟 演绎推理的一般形式是三段论,证题时要明确三段论的大前提、小前提和结论,写步骤时常省略大前提或小前提.跟踪训练3 已知函数f (x )对任意的x ,y ∈R 都有f (x +y )=f (x )+f (y ).求证:f (x )是奇函数.证明 ∵对任意x ,y ∈R , 有f (x +y )=f (x )+f (y ).∴当x =y =0时,f (0)=2f (0),∴f (0)=0. 又令y =-x ,则f (-x )+f (x )=f (0)=0. ∴f (-x )=-f (x ),∴f (x )为奇函数.1.一个数列的第2项到第4项分别是3,15,21,据此可以猜想这个数列的第一项是________. 答案3解析 ∵a 2=9=6×2-3,a 3=15=6×3-3,a 4=21=6×4-3,∴猜想a 1=6×1-3= 3.2.在平面中,圆内接平行四边形一定是矩形.运用类比,可猜想在空间有如下命题:________________________________. 答案 球内接平行六面体一定是长方体3.设x i >0 (i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…类比上述结论,对于n 个正数x 1,x 2,…,x n ,猜想有下述结论______________________. 答案 x 1+x 2+…+x n ≥n nx 1x 2…x n4.已知a 、b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则ff+f f+…+ff=________. 答案 4 024解析 令b =1,则f (a +1)=f (a )f (1), ∴f a +f a =f (1)=2.∴f f+f f+…+f f=2+2+…+2=2×2 012=4 024. [呈重点、现规律]1.数学活动中,合情推理和演绎推理相辅相成,共同推动发现活动的进程.2.合情推理中要对已有事实进行分析,作出猜想,猜想的结论为演绎推理提供了目标和方向.一、基础过关1.有两种花色的正六边形地板砖,按下面的规律拼成若干个图案,则第6个图案中有底纹的正六边形的个数是________.答案 31解析 有底纹的正六边形的个数组成等差数列a 1=6,d =5,∴a 6=6+(6-1)×5=31. 2.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,… 由此猜测第n 个等式为______________________(n ∈N *). 答案 1+12+13+…+12n -1>n23.已知数列{a n }的前n 项和为S n ,且S n =n 2+1.则此数列的前4项分别为a 1=________,a 2=________,a 3=________,a 4=________.据此猜测,数列{a n }的通项公式为a n =_______.答案 2 3 5 7 ⎩⎪⎨⎪⎧2, n =12n -1, n ≥24.正方形ABCD 中,对角线AC ⊥BD .运用类比的方法,猜想正方体ABCD —A 1B 1C 1D 1中,相关结论:________________________. 答案 对角面AA 1C 1C ⊥BB 1D 1D5.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是______________. 答案 大前提错误6.已知△ABC 中,AD ⊥BC 于D ,三边是a ,b ,c ,则有a =c cos B +b cos C ;类比上述推理结论,写出下列条件下的结论:四面体P —ABC 中,△ABC ,△PAB ,△PBC ,△PCA 的面积分别是S ,S 1,S 2,S 3,二面角P —AB —C ,P —BC —A ,P —AC —B 的度数分别是α,β,γ,则S =____________________________________.答案 S 1cos α+S 2cos β+S 3cos γ7.已知等式:(tan 5°+1)(tan 40°+1)=2; (tan 15°+1)(tan 30°+1)=2; (tan 25°+1)(tan 20°+1)=2;据此可猜想出一个一般性命题:______________________________. 答案 (tan α+1)[tan(45°-α)+1]=2 二、能力提升8.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n n +2,易知f (14)=119,f (15)=135,故n =14.9.设M 是具有以下性质的函数f (x )的全体:对于任意s >0,t >0,都有f (s )+f (t )<f (s +t ).给出函数f 1(x )=log 2x ,f 2(x )=2x -1.下列判断正确的是________.①f 1(x )∈M ;②f 1(x )∉M ;③f 2(x )∈M ;④f 2(x )∉M . 答案 ②③解析 对于f 1(x )=log 2x ;log 22+log 24>log 2(2+4), 所以f 1(x )∉M .对于f 2(x )=2x-1:2s-1+2t-1-(2s +t-1)=-(2s-1)(2t -1)<0,f 2(x )∈M .10.已知命题:平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n 2=1 (m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e. 将该命题类比到双曲线中,给出一个命题:________________________________________.答案 平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n2=1 (m ,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e11.已知命题:“若数列{a n }是等比数列,且a n >0,则数列b n =na 1a 2…a n (n ∈N *)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.解 类比等比数列的性质,可以得到等差数列的一个性质是:若数列{a n }是等差数列,则数列b n =a 1+a 2+…+a nn也是等差数列.证明:设等差数列{a n }的公差为d ,则b n =a 1+a 2+…+a nn=na 1+n n -d2n=a 1+d2(n -1),所以数列{b n }是以a 1为首项,d2为公差的等差数列.12.在平面中有命题:等腰三角形底边上任一点到两腰距离之和等于一腰上的高.把此结论类比到空间的正三棱锥,猜想并证明相关结论.解 猜想结论:正三棱锥底面上任一点到三个侧面的距离之和等于以侧面为底时三棱锥的高.证明如下:设P 为正三棱锥A —BCD 底面上任一点,点P 到平面ABC 、ACD 、ABD 的距离分别为h 1、h 2、h 3,以侧面ABC 为底时对应的高为h ,则:V P —ABC +V P —ACD +V P —ABD =V D —ABC .即:13S △ABC ·h 1+13S △ACD ·h 2+13S △ABD ·h 3=13S △ABC ·h . ∵S △ABC =S △ACD =S △ABD∴h 1+h 2+h 3=h ,此即要证的结论. 三、探究与拓展13.记S n 为数列{a n }的前n 项和,给出两个数列: (Ⅰ)5,3,1,-1,-3,-5,-7,… (Ⅱ)-14,-10,-6,-2,2,6,10,14,18,… (1)对于数列(Ⅰ),计算S 1,S 2,S 4,S 5; 对于数列(Ⅱ),计算S 1,S 3,S 5,S 7;(2)根据上述结果,对于存在正整数k ,满足a k +a k +1=0的这一类等差数列{a n }的和的规律,猜想一个正确的结论,并加以说明.解 (1)对于数列(Ⅰ),S 1=S 5=5,S 2=S 4=8; 对于数列(Ⅱ),S 1=S 7=-14,S 3=S 5=-30. (2)对于等差数列{a n },当a k +a k +1=0时,猜想S n=S2k-n(n≤2k,n,k∈N*).下面给出证明:设等差数列{a n}的首项为a1,公差为d. ∵a k+a k+1=0,∴a1+(k-1)d+a1+kd=0,∴2a1=(1-2k)d.又S 2k-n-S n=(2k-n)a1+k-n k-n-2d-na1-n n-2d=[(k-n)(1-2k)+k-n k-n-2-n n-2]d=0.∴S2k-n=S n,猜想正确.。
2.1.3 推理案例赏析课时目标 1.了解和认识合情推理和演绎推理的含义.2.进一步认识合情推理和演绎推理的作用、特点以及两者之间的紧密联系.3.利用合情推理和演绎推理进行简单的推理.1.数学命题推理的分类数学命题推理有合情推理和演绎推理,__________和____________是常用的合情推理.从推理形式上看,____________是由部分到整体、个别到一般的推理,________是由特殊到特殊的推理,而演绎推理是由一般到特殊的推理;从推理所得的结论来看,________的结论不一定正确,有待于进一步证明,__________在前提和推理形式都正确的前提下,得到的结论一定正确.2.合情推理的作用合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有______________、______________、______________的作用.合情推理是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想,要合乎情理地进行推理,充分挖掘已给的事实,寻求规律,类比则要比较类比源和类比对象的共有属性,不能盲目进行类比.3.演绎推理的作用演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了________,而且可以________________________和________,从而为调控探索活动提供依据.一、填空题1.下面几种推理是合情推理的是________. ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; ③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)×180°.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33=_____________________________.3.已知f 1(x )=cos x ,f 2(x )=f ′1(x ),f 3(x )=f 2′(x ),f 4(x )=f ′3(x ),…,f n (x )=f n -1′(x ),则f 2 011(x )=________.4.如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是______________.5.如图所示,图(1)有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图(2)有体积关系:V P —A ′B ′C ′V P —ABC=______________.6.f (n )=1+12+13+…+1n (n ∈N +).计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有__________.7.已知两个圆:x 2+y 2=1, ① 与x 2+(y -3)2=1.②则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题要成为所推广命题的一个特例,推广的命题为________________________________________________________________________________________________________________________________________________. 8.下列图形中的线段有规则地排列,猜出第6个图形中线段的条数为________.二、解答题9.已知11×2+12×3+13×4+…+1n n +,写出n =1,2,3,4的值,归纳并猜想出结果,你能证明你的结论吗?10.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.能力提升11.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n12.在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系.1.归纳推理和类比推理都具有猜测的性质,要注意观察所给资料的规律性或两类事物具有的属性,得到可靠的结论.2.三段论是演绎推理的常用形式,在实际应用时往往省略大前提.2.1.3 推理案例赏析答案知识梳理1.归纳类比归纳类比合情推理演绎推理2.提出猜想发现结论提供思路3.前提对猜想作出“判决”证明作业设计1.①②④2.3解析a3=3,a4=-3,a5=-6,a6=-3,a7=3,a8=6,…,故{a n}是以6个项为周期循环出现的数列,a33=a3=3.3.-cos x解析由已知,有f1(x)=cos x,f2(x)=-sin x,f3(x)=-cos x,f4(x)=sin x,f5(x)=cos x,…可以归纳出:f4n(x)=sin x,f4n+1(x)=cos x,f4n+2(x)=-sin x,f4n+3(x)=-cos x (n∈N+),∴f2 011(x)=f3(x)=-cos x.4.a n=2·3n解析 当n =1时,a 1=32a 1-3,∴a 1=6,由S n =32a n -3,当n ≥2时,S n -1=32a n -1-3,∴当n ≥2时,a n =S n -S n -1=32a n -32a n -1,∴a n =3a n -1.∴a 1=6,a 2=3×6,a 3=32×6. 猜想:a n =6·3n -1=2·3n.5.PA ′·PB ′·PC ′PA ·PB ·PC6.f (2n)>n +227.设圆的方程为(x -a )2+(y -b )2=r 2③ (x -c )2+(y -d )2=r2④其中a ≠c 或b ≠d ,则由③式减去④式可得两圆的对称轴方程 8.125解析 第一个图只一条线段,第二个图比第一个图增加4条线段,即线段的端点上各增加2条,第三个图比第二个图增加4×2=23条线段.第4个图比第三个图增加23×2=24条线段,因此猜测第6个图的线段的条数为1+22+23+24+25+26=1+225-2-1=27-3=125.9.解 n =1时,11×2=12;n =2时,11×2+12×3=12+16=23; n =3时,11×2+12×3+13×4=23+112=34; n =4时,11×2+12×3+13×4+14×5=34+120=45. 观察所得结果:均为分数,且分子恰好等于和式的项数,分母都比分子大1. 所以猜想11×2+12×3+13×4+…+1n n +=nn +1.证明如下: 由11×2=1-12,12×3=12-13,…, 1nn +=1n -1n +1.∴原式=1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1. 10.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知EF ∥BC .因为EF ⊄平面ABC ,BC ⊂平面ABC . 所以EF ∥平面ABC .(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1.又A 1D ⊂A 1B 1C 1,故CC 1⊥A 1D . 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , 故A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C . 11.n 2+n解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是n 2+n .12.解 猜想正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直, 则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD ”.事实上,本题还需要严格意义上的证明:如图所示,作AO ⊥平面BCD 于点O ,由三个侧面两两互相垂直可知三条侧棱AB 、AC 、AD 两两互相垂直,故O 为△BCD 的垂心,在Rt △DAE 中,AO ⊥DE ,有AE 2=EO ·ED ,S 2△ABC =14BC 2·AE 2=⎝ ⎛⎭⎪⎫12BC ·EO ⎝ ⎛⎭⎪⎫12BC ·ED =S △OBC ·S △BCD ,同理S 2△ACD =S △BCD ·S △OCD ,S 2△ABD =S △BCD ·S △OBD , 故S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD .。
【课堂新坐标】 2016-2017 学年高中数学 第二章 推理与证明2.3数学归纳法学业分层测评 苏教版选修 2-2( 建 用 : 45 分 )学 达 ]一、填空1 11*1. f ( n ) = 1+ 2+ 3+⋯+ 3n - 1( n ∈ N ) ,那么 f ( n + 1) - f ( n ) 等于 ________.【分析】f ( n +1) -( )=1+ 1 + 1 +⋯+1 + 1 + 1 + 1 - ( n ) = 1 +fn 2 33n - 1 3n 3n +1 3n + 2 f 3n1 13n + 1+3n + 2.111【答案】3n+3n + 1 + 3n +22.(2016 ·无 高二期末) 用数学 法 明不等式“1111n + 1++ 2++3+⋯+3 +1>nnn2512”,当 n =1 ,不等式左 的 :________.【分析】不等式左 分子是 1,分母是从 n + 1 向来到3n + 1 的分数之和, 当 n =1 ,1 11n + 1= 2,3 n + 1= 4,左 2+ 3+ 4.1 1 1【答案】+ + 2 3 4n23. 用数学 法 明: “2> n + 1 于 n ≥ n 0 的正整数 n 都成立” , 第一步 明中的初步 n 0 取 ________.【 学号: 01580053】【分析】∵当 =1 ,21= 12 + 1;当n =2 , 22 < 22+ 1,当 n =3 , 23<32+1;n当 n = 4 , 24< 42+ 1;当 n ≥5 ,2n > n 2+ 1 恒成立 .∴ n 0= 5.【答案】 54. 若 f ( n ) = 12+ 22+32+⋯+ (2 n ) 2, n ∈N * , f ( k +1) - f ( k ) =______________.【分析】f ( k ) = 12+ 22+ 32 +⋯+ (2 k ) 2 ,f ( k + 1) = 12+ 22+ 32+⋯+ (2 k ) 2+ (2 k + 1) 2+(2 k +2) 2,f ( k + 1) - f ( k ) = (2 k +1) 2+ (2 k +2) 2.【答案】(2 k + 1) 2+ (2 k + 2) 25. 已知数列 {} 的前和= 2( ≥2) ,而=1,通 算, , ,猜想=a n S n a aaa a annn 12 3 4 n________.【分析】a1=1=2, a2=2, a3=2, a4=2,猜想 a n=2.n n+1×22×33×44×5【答案】2n n+n n+6. 用数学法明 a + b ≥a b n( a,b是非数,n∈ N* ) ,假n=k命成立22以后,明 n= k+1命也成立的关是两同乘以________.k+k++b,右也出了要的a+b k+【分析】要想法出 a1+b1,两同乘以a221.【答案】a+ b 27. 以下是用数学法明“∈N*, 2n>n 2”的程,明: (1)当n= 1 , 21> 12,n 不等式然成立 .(2) 假当n=k( k∈ N* ) 不等式成立,即k2 >k2.那么,当n =+1 ,2k+ 1k k kk2+k2≥k2+ 2+1=(k+1)2.=2×2= 2 + 2 >k k即当 n= k+1不等式也成立 .依据 (1) 和 (2),可知任何n∈N*不等式都成立.此中的步________( 填序号 ).【分析】在k+1k k k222+ 2k+ 122=2×2=2+ 2 >k +k ≥k顶用了 k≥2k+1,是一个不确立的 . 如k= 2 ,k2< 2k+ 1.【答案】(2)8. 用数学法明12+ 22+⋯+ ( n- 1) 2+n2+ ( n-1)2+⋯+ 22+ 12=nn2+,3由 n= k 的假到明n= k+1,等式左增添的式子是_____.【分析】当=k ,左=12+ 22+⋯+ (k- 1)2+k2+ (k-1) 2+⋯+ 22+ 12.n 当 n=k+1 ,左=22222k-222 1 +2+⋯+ k +( k+1) +k+ (1) +⋯+2+ 1 ,因此左增添的式子( k+ 1)2+ k2.【答案】( k+1) 2+k2二、解答9. 用数学法明:当*23n n n∈N, 1+2+ 3+⋯+ n< ( n+1) .【明】(1) 当n= 1 ,左=1,右= 2,1 < 2,不等式成立 .(2) 假当n=k( k∈ N* ) 不等式成立,即1+ 22+33+⋯+k k<( k+ 1) k,那么,当n= k+1,左=1+23k k +1<( k+ 1)k k+ 12+ 3 +⋯+k+ ( k+1)+ ( k+1)= ( k+1) k( k+ 2) <( k+ 2) k+1= ( k+ 1) + 1] k+1=右,即左<右,即当 n= k+1不等式也成立 .依据 (1) 和 (2),可知不等式任意∈ N*都成立 .n110. 已知数列 { a n } 足 a n + 1=,a 1= 0. 猜想 { a n } 的通 公式, 并用数学 法 明 .2- a n【解】由 a +1=1 , a 1= 0,得n2- a n21 131241 3a = 2- 0= 2, a =1= 3, a = 2= 4,2- 22- 3a 5= 142-3= 5,⋯.4n - 1上述 果,可得猜想a n = n ( n = 1,2,3 ,⋯).下边用数学 法 明 个猜想:(1) 当 n = 1 ,猜想 然成立.k - 1(2) 假 当 n = k 猜想成立,即 a k = k ,那么,当 n = k + 1 , a k + 1=11=kk + - 1,=k=k +12-a-1k + 1k2- k即当 n = k + 1 ,猜想也成立 .- 1依据 (1) 和 (2)nnn,可知猜想 a =n 全部正整数都成立,即 数列{ a } 的通 公式 .能力提高 ]1. 用数学 法 明“当n 正偶数 x n - y n 能被 x + y 整除”第一步n =________ ,命 成立;第二步 假 写成________.【分析】 因为 n 正偶数,第一步n = 2 ,命 成立 第二步, 假 **n = 2k ( k ∈ N ) 命 成立,即 n = 2k ( k ∈N )【答案】2假 n = 2k ( k ∈ N * ) x 2 k - y 2k 能被 x + y 整除.x 2k - y 2k 能被 x + y 整除 .2. 用数学 法 明: 凸n 形 角 的条数f ( n ) = 1 ( - 3)( n≥4) , (k +1)与f ( k )2n nf的关系是 _______________________________________________.*1【分析】 假 n = k ( k ≥4, k ∈ N ) 成立, f ( k ) = 2k ( k - 3) ,当 n =k + 1 ,多出一条 , 上增添的 角 条数k + 1- 2= k -1 条,因此 f ( k+ 1) = f ( k ) + k - 1.【答案】f ( k + 1) = f ( k ) + k - 13. 用数学 法 明: “1+1+ 1+⋯+n1< n ( n >1) ”, 由 n = k ( k >1) 不等式成立,2 32 - 1推 n= k+1,左增添的的数是________.当 n= k+1,左是111111【分析】1+2+3+⋯+2k-1+2k+⋯+2k+1-1增添的是2k+11k+ 1k+1= 2k,故左增添的的数是2k.k+⋯+ k + 1,共有 2 -1-22 +12-1【答案】2k4. 用数学法明34n+ 22n+1整除的程中,当4( k+ 1) +22( k++ 5能被 14n= k+1,3+ 51) +1形 __________.【学号:01580054】【分析】当n=k+1,34( k+ 1) + 2+52(k + 1) +1=81·34k+ 2+25·52k+ 1=25(3 4k + 2+52k + 1)+4k + 256·3 .【答案】25(34k+ 22k+ 14k +2+ 5) +56·35.函数 y= f ( x)任意数 x, y 都有 f ( x+ y)= f ( x)+ f ( y)+2xy.(1) 求f (0) 的;(2)若 f (1)=1,求 f (2), f (3),f (4)的;(3)在 (2)的条件下,猜想 f ( n)( n∈N*)的表达式,并用数学法加以明.【解】(1) 令x=y= 0,得f (0 +0) =f (0) +f (0) +2×0×0? f (0) = 0.(2) f (1) = 1,f (2) =f (1 + 1) = 1+1+ 2= 4,f(3) =f (2 + 1) = 4+ 1+2×2×1= 9,f(4) =f (3 + 1) = 9+ 1+2×3×1= 16.(3)猜想 f ( n)=n2,下边用数学法明.当 n=1, f (1)=1足条件.假当n = (∈N*) 成立,即f() =k2,当=+1,( +1)=() +(1) +2 k k k n k f k f k f k=k2+1+2k=( k+1)2,从而可适合 n= k+1足条件,因此任意的正整数n,都有 f ( n)=n2.。
【课堂新坐标】2016-2017学年高中数学 第二章 推理与证明 2.1.3推理案例赏析学业分层测评 苏教版选修2-2(建议用时:45分钟)学业达标]一、填空题1.如图2119所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是________.【导学号:01580042】图2119【解析】 由图形中数字,不难得出每行两头数字均为1,其它数字均为其肩上两数字之和,∴a =3+3=6.【答案】 62.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5, 33=⎩⎪⎨⎪⎧7,9,11,43=⎩⎪⎨⎪⎧13,15,17,19,….仿此,若m 3的“分裂数”中有一个是2 015,则m =________. 【解析】 根据分裂特点,设最小数为a 1, 则ma 1+m m -12×2=m 3,∴a 1=m 2-m +1.∵a 1为奇数,又452=2 025, ∴猜想m =45.验证453=91 125= 1 979+2 071 ×452.【答案】 453.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:________________________.【解析】 平面几何中的线与立体几何中的面相类比,可得:夹在两个平行平面间的平行线段相等.【答案】 夹在两个平行平面间的平行线段相等4.观察下面不等式:1+12<32,1+12+13<53,1+12+13+14<74,…,猜想第n 个不等式为________.【解析】 当n ≥2时,则不等式左端就为1+122+132+…+1n 2,而右端的分母正好是n ,分子是2n -1,因此可以猜想,n ≥2时,满足的不等式为1+122+132+…+1n 2<2n -1n.故可归纳式子为:1+122+132+…+1n 2<2n -1n (n ≥2).【答案】 1+12+13+…+1n <2n -1n (n ≥2)5.若a 1,a 2,a 3,a 4∈R +,有以下不等式成立:a 1+a 22≥a 1a 2,a 1+a 2+a 33≥3a 1a 2a 3,a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4.由此推测成立的不等式是_______________________________________________.(要注明成立的条件) 【答案】a 1+a 2+a 3+…+a n n≥n a 1a 2a 3…a n (a 1,a 2,a 3,…,a n ∈R +)6.观察下列各式:55=3 125,56=15 625,57=78 125,…则52 015的末四位数字为________.【解析】 ∵55=3 125,56=15 625,57=78 125, 58末四位数字为0 625,59末四位数字为3 125, 510末四位数字为5 625,511末四位数字为8 125, 512末四位数字为0 625,…,由上可得末四位数字周期为4,呈规律性交替出现, ∴52 015=54×503+3末四位数字为8 125.【答案】 8 1257.(2016·湖北调研)如图2120①②③④所示,它们都是由小圆圈组成的图案.现按同样的排列规则进行排列,记第n 个图形包含的小圆圈个数为f (n ),则图2120(1)f (5)=________;(2)f (2 015)的个位数字为________.【解析】 观察规律可知:f (5)=4×5+1=21,f (2 015)=2 014×2 015+1,它的个位数字是1.【答案】 (1)21 (2)18.(2016·江西稳派调研)将2n按如表所示的规律填在5列的数表中,设22 015排在数表的第n 行,第m 列,则第m -1列中的前n 个数的和S n =________.【解析】 由于2 015行第4列,所以n =504,m =4.所以S n =22[1- 24504]1-24=22 018-415. 【答案】22 018-415二、解答题9.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *),证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【导学号:01580043】【证明】 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,数列⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列. (2)由(1)知S n +1n +1=4·S n -1n -1(n ≥2). ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2). 又∵a 2=3S 1=3,S 2=a 1+a 2=4=4a 1, ∴对任意正整数n ,都有S n +1=4a n .10.在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a 的正三角形内任意一点到各边的距离之和是定值32a .类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解】 类比所得的真命题是:棱长为a 的正四面体内任意一点到四个面的距离之和是定值63a . 证明:设M 是正四面体P ABC 内任意一点,M 到面ABC ,面PAB ,面PAC ,面PBC 的距离分别为d 1,d 2,d 3,d 4.由于正四面体四个面的面积相等,故有:V P ABC =V M ABC +V M PAB +V M PAC +V M PBC =13·S △ABC ·(d 1+d 2+d 3+d 4), 而S △ABC =34a 2,V P ABC =212a 3, 故d 1+d 2+d 3+d 4=63a (定值). 能力提升]1.(2016·盐城高二期终)已知2+23=223,3+38=338,4+415=4415,…类比这些等式,若6+a b =6ab(a ,b 均为正实数),则a +b =______. 【解析】 类比已知的3个等式,知a =6,b =62-1=35.所以a +b =41. 【答案】 412.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AO OM等于________.【解析】 如图,设正四面体的棱长为1,则易知其高AM =63,此时点O 即为正四面体内切球的球心,设其半径为r ,利用等体积法有4×13×34r =13×34×63⇒r =612,故AO=AM -MO =63-612=64,故AO ∶OM =64∶612=3. 【答案】 33.(2016·湖北宜昌高三模拟)观察下列等式: ①sin 2θ=cos θ·2sin θ;②sin 4θ=cos θ(4sin θ-8sin 3θ);③sin 6θ=cos θ(6sin θ-32sin 3θ+32sin 5θ);④sin 8θ=cos θ(8sin θ-80sin 3θ+192sin 5θ-128sin 7θ);⑤sin 10θ=cos θ(10sin θ-160sin 3θ+m sin 5θ-1 024sin 7θ+n sin 9θ). 则可以推测(1)n =________,(2)m =________.【解析】 由给定等式的规律可知奇数式的最后一项系数为正数.数值为2n,n 的值与sin θ的次数相同,所以式子⑤中n =29=512.另一特征为括号中所有系数的和奇数式与θ的系数相等,偶数式与θ的系数相反,所以⑤式中10-160+m -1 024+512=10,∴m =672.【答案】 512 672【答案】 14 5.设f (x )=a x +a -x2,g (x )=a x -a -x2(其中a >0,a ≠1).(1)请你推测g (5)能否用f (2),f (3),g (2),g (3)来表示. (2)如果(1)中获得一个结论,请你推测能否推广并加以证明. 【解】 (1)由题意可得f (2)=a 2+a -22,f (3)=a 3+a -32,g (2)=a 2-a -22,g (3)=a 3-a -32.则f (3)·g (2)+g (3)·f (2) =a 5-a +a -1-a -5+a 5+a -a -1-a -54=a 5-a -52.又g (5)=a 5-a -52,因此,g (5)=f (3)·g (2)+g (3)·f (2). (2)g (5)=f (3)·g (2)+g (3)·f (2), 即g (3+2)=f (3)·g (2)+g (3)·f (2).于是猜测g (x +y )=f (x )·g (y )+g (x )·f (y ). 证明:∵f (x )=a x +a -x2,g (x )=a x -a -x2,∴g (x +y )=a x +y -a - x +y2,g (y )=a y -a -y2,f (y )=a y +a -y2,所以f (x )·g (y )+g (x )·f (y ) =a x +a -x 2·a y -a -y 2+a x -a -x 2·a y +a -y2=a x +y -a - x +y2=g (x +y ).故g (x +y )=f (x )·g (y )+g (x )·f (y ).。