数电1-6_公式化简法
- 格式:ppt
- 大小:1.73 MB
- 文档页数:74
1 逻辑代数基础一、 数制和码制1.二进制和十进制、十六进制的相互转换 2.补码的表示和计算 3.8421码表示 二、 逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、非 2.逻辑代数的基本公式和常用公式 逻辑代数的基本公式(P10) 逻辑代数常用公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ∙=+ B A AB B A B A +=+ 三、 逻辑函数的三种表示方法及其互相转换 ★逻辑函数的三种表示方法为:真值表、函数式、逻辑图 会从这三种中任一种推出其它二种,详见例1-6、例1-7 逻辑函数的最小项表示法 四、 逻辑函数的化简: ★1、 利用公式法对逻辑函数进行化简2、 利用卡诺图队逻辑函数化简3、 具有约束条件的逻辑函数化简 例1.1利用公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利用卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章 集成门电路一、 三极管如开、关状态 1、饱和、截止条件:截止:be T V V < 饱和:CSBS B Ii I β>=2、反相器饱和、截止判断 二、基本门电路及其逻辑符号 ★与门、或非门、非门、与非门、OC 门、三态门、异或、传输门 (详见附表:电气图用图形符号 P321 ) 二、 门电路的外特性★1、电阻特性:对TTL 门电路而言,输入端接电阻时,由于输入电流流过该电阻,会在电阻上产生压降,当电阻大于开门电阻时,相当于逻辑高电平。
第1章 数字电路基础– 19 – 简的形式,因此,经常需要通过化简的手段找出逻辑函数的最简形式。
因为与或表达式是比较常见的,同时与或表达式可以容易同其他形式的表达式相互转换,所以本节所谓化简,一般是指化为最简的与或表达式。
最简与或表达式的标准是:首先应是乘积项的数目最少,其次是每个乘积项中的变量个数最少。
因为乘积项的数目最少,对应的逻辑电路所用的与门个数就最少;乘积项中变量的个数最少,对应逻辑电路所用的与门输入端个数就最少。
所以如果逻辑函数表达式是最简的,则实现它所用的电路也是最简的,即经济又可靠。
1.5.2 常用的代数化简方法代数化简法又称公式化简法,它是直接运用基本定律及规则化简逻辑函数,常用的方法有下述几种。
1.并项法利用基本公式A + A =1将两项合并为一项,并消去一个变量。
A 可以是任何一个复杂的逻辑式。
例如1Y ABC ABC =+()AC B B AC =+=2Y ABC AB AC =++ ()A BC B C =++ ()A BC BC A =+=2.吸收法利用公式A +AB=A 消去多余的乘积项。
A 、B 可以是任何一个复杂的逻辑式。
例如1Y B ABD B =+= 2()[1()]Y AB ABC D E AB C D E AB=++=++=3.消去法(消因子法) 利用A+AB =A+B 消去多余的因子。
A 、B 也可以是任何一个复杂的逻辑式。
例如1Y B ABC B AC =+=+ 2()Y AB AC BCAB A B C AB ABCAB C=++=++=+=+4.消项法 利用AB AC BC AB AC AB +AC BCD AB +AC ++=++及=将BC 或BCD 消去。
其中A 、B 、。
数字电路与系统-逻辑运算与简化(常⽤三个公式)
常⽤公式
这些个公式实际上就是教⼈如何利⽤前⾯所述的定律,规则来进⾏简化或论证逻辑函数。
1.并项公式
从名字可以看出,⽅便逻辑运算时简化式⼦。
AB+A'B=B, (A+A'=1,A'是A变量的反变量,逻辑变量是⼆值逻辑,只能是0或者1),此处这种等式还可以进⾏对偶的扩展,
(A+B)(A'+B)=B,这样也侧⾯说明对偶对于公式的论证是有帮助的。
并项顾名思义,并的各部分先得有相同的因⼦,然后合并的部分互成反量即可。
并项也能反应出吸收率A+AB=A(1+B)=A
2.销冗余因⼦公式
消除冗余因⼦定义中主要有两部分组成,从两项到三项。
A+A'B=A+B,从公式看确实是消除了左式中的⼀项的因⼦,证明过程:(A+A')(A+B)=A+B,这步是⽤了分配律的知识,逻辑运算中的分配律挺奇怪,尤其是本式中出现的分配律,⼀个变量“或”两个变量就是可以采⽤逻辑运算中的分配律来进⾏,“或”的这种分配律是貌似算术运算中的分配律。
数电例题:一、公式化简法1、化简函数L=EAB++ABD解:先用摩根定理展开:AB=BA+再用吸收法L=D++=E++BA+ABD=)++((D+)=)A++D+A1()1(EBB=BA+2、化简函数L=ABCA++B+BBAEA解:L=ABCA+++BBEABA=)B+E++(ABC()=)A+B+E+BA)((BCB=)BCBA+B++++))(A)((BBB(C=)BA+++CBA)(C(=AC+B++=CA+B+BA3、化简函数L=B A++A+BBCBC解:L=BBA+++CACBB=)+A++BB⋅⋅+C+C(C)(BAABCA=CA+CB+++⋅+⋅BABCBACABBCA=)++⋅⋅A+++)(()(BCBBA=)()1()1(B B C A A C B C B A +++++⋅ =C A C B B A ++⋅4、将下列函数化简成最简的与-或表达式 1)L=A D DCE BD B A +++ 2) L=AC C B B A ++ 3) L=ABCD B AB +++ 解:1)L=A D DCE BD B A +++ =DCE A B D B A +++)( =DCE A B D B A ++ =DCE B A D B A ++ =DCE D +++))(( =DCE D B A ++ =D B A + 2) L=AC C B B A ++ =AC C B C C B A +++)( =AC A A +++ =)1()1(A C B B AC +++ =C B AC +3) L=ABCD C B C A AB +++=ABCD A A C B C A AB ++++)( =ABCD AB ++++ =)()(ABCD AB ++++=)+++AB+1()1(BCD=CAB+A二、逻辑函数的化简—卡诺图化简法:卡诺图是由真值表转换而来的,在变量卡诺图中,变量的取值顺序是按循环码进行排列的,在与—或表达式的基础上,画卡诺图的步骤是:1.画出给定逻辑函数的卡诺图,若给定函数有n个变量,表示卡诺图矩形小方块有n2个。
第一章绪论一、填空题1、根据集成度的不同,数字集成电路分位以下四类:小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路。
2、二进制数是以2为基数的计数体制,十六体制数是以16为基数的计数体制。
3、二进制数只有0和1两个数码,其计数的基数是2,加法运算的进位规则为逢二进一。
4、十进制数转换为二进制数的方法是:整数部分用除2取余法,小数部分用乘2取整法,十进制数23.75对应的二进制数为10111.11。
5、二进制数转换为十进制数的方法是各位加权系数之和,二进制数10110011对应的十进制数为179。
6、用8421BCD码表示十进制时,则每位十进制数可用四位二进制代码表示,其位权值从高位到低位依次为8、4、2、1。
7、十进制数25的二进制数是11001,其对应的8421BCD码是00100101。
8、负数补码和反码的关系式是:补码=反码+1。
9、二进制数+1100101的原码为01100101,反码为01100101,补码为01100101。
-1100101的原码为11100101,反码为10011010,补码为10011011。
10、负数-35的二进制数是-100011,反码是1011100,补码是1011101。
二、判断题1、二进制数有0~9是个数码,进位关系为逢十进一。
()2、格雷码为无权码,8421BCD码为有权码。
(√)3、一个n位的二进制数,最高位的权值是2^n+1。
(√)4、十进制数证书转换为二进制数的方法是采用“除2取余法”。
(√)5、二进制数转换为十进制数的方法是各位加权系之和。
(√)6、对于二进制数负数,补码和反码相同。
()7、有时也将模拟电路称为逻辑电路。
()8、对于二进制数正数,原码、反码和补码都相同。
(√)9、十进制数45的8421BCD码是101101。
()10、余3BCD码是用3位二进制数表示一位十进制数。
()三、选择题1、在二进制技术系统中,每个变量的取值为(A)A、0和1B、0~7C、0~10D、0~F2、二进制权值为(B )A、10的幂B、2的幂C、8的幂D、16的幂3、连续变化的量称为(B )A、数字量B、模拟量C、二进制量D、16进制量4、十进制数386的8421BCD码为(B)A、0011 0111 0110B、0011 1000 0110C、1000 1000 0110D、0100 1000 01105、在下列数中,不是余3BCD码的是(C )A、1011B、0111C、0010D、10016、十进制数的权值为(D )A、2的幂B、8的幂C、16的幂D、10的幂7、负二进制数的补码等于(D )A、原码B、反码C、原码加1D、反码加18、算术运算的基础是 ( A )A 、加法运算B 、减法运算C 、乘法运算D 、除法运算9、二进制数-1011的补码是 ( D )A 、00100B 、00101C 、10100D 、1010110、二进制数最高有效位(MSB )的含义是 ( A )A 、最大权值B 、最小权值C 、主要有效位D 、中间权值第二章 逻辑代数基础一、填空题1、逻辑代数中三种最基本的逻辑运算是与运算、或运算、非运算。
思考题与习题1-1 将下列二进制数转化为十进制数。
(1)(100101100)2=(300)10 (2)(101011)2=(43)10(3)(1111111)2=(127)10 (4)(1011110)2=(94)101-2 将下列十进制数转化为二进制数。
(1)(28)10=(11100)2 (2) (100)10=(1100100)2(3)(210)10=(11010010)2 (4)(321)10=(101000001)2 1-3 将八进制数34、567、4633转化为二进制数。
(34)8=(11100)2 (567)8=(101110111)2(4633)8=(100110011011)21-4 将二进制数转化为八进制数。
(1011010)2=(132)8 (11010011)2=(323)8 1-5 将二进制数转化为十六进制数。
(100100110101)2=(935)16 (1010110011)2=(2B3)16 1-6 将十六进制数转化为二进制数。
(7AF4)16=( 111101*********)2 (F9DE )16=(1111100111011110)2 1-7 将十进制数691用8421BCD 码表示。
(691)10=(0110 1001 0001)8421BCD1-8 写出如图T1-8所示逻辑函数的逻辑表达式。
图T1-8BC)C B (A C B )C B (A G CB A )C B (A H +⊕⋅=⋅+⊕⋅=⊕⊕=⊕⊕= 1-9 用真值表证明下列等式成立:(1)A B + A B = (A +B )(A+B)可见,左式=右式,得证。
(2)A ⊕B =A ⊕B可见,左=右,得证。
(3)A ⊕0 = A可见,左式=右式,得证。
(4)A ⊕1 = A可见,左式=右式,得证。
1-10 利用公式和运算规则证明下列等式:(1)ABC + A BC + A B C = BC + AC证明:左=(ABC + A BC ) +( A B C +ABC )= BC + AC =右(2)C AB = AB + C证明:左=C AB C AB +=+=右(3)(A +B)(A + C)(B + C + D) = (A + B)(A + C)证明:将以上等式两边作对偶变换,可得到以下公式:AB +A C +BCD =AB +A C由常用公式四可知该式是成立的,则由对偶定理可知,对偶等式成立,则原等式也成立。