逻辑函数的标准形式及公式化简法
- 格式:ppt
- 大小:1.22 MB
- 文档页数:33
一:布尔代数的基本公式公式名称公式1、0-1律A*0=0 A+1=12、自等律A*1=A A+0=A3、等幂律A*A=A A+A=A4、互补律A*A=0 A+A=15、交换律A*B=B*A A+B=B+A6、结合律A*(B*C)=(A*B)*C A+(B+C)=(A+B)+C7、分配律A(B+C)=AB+AC A+BC=(A+B)(A+C)8、吸收律1(A+B)(A+B)=A AB+AB=A9、吸收律2A(A+B)=A A+AB=A10、吸收律3A(A+B)=AB A+AB=A+B11、多余项定律(A+B)(A+C)(B+C)=(A+B)(A+C)AB+AC+BC=AB+AC12、否否律()=A13、求反律AB=A+B A+B=A*B下面我们来证明其中的两条定律:(1)证明:吸收律1第二式AB+AB=A左式=AB+AB=A(B+B)=A=右式(因为B+B=1)(2)证明:多余项定律AB+AC+BC=AB+AC左式=AB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C)+AC(1+B)=AB+AC=右式证毕注意:求反律又称为摩根定律,它在逻辑代数中十分重要的。
二:布尔代数的基本规则代入法则它可描述为逻辑代数式中的任何变量A,都可用另一个函数Z 代替,等式仍然成立。
对偶法则它可描述为对任何一个逻辑表达式F,如果将其中的“+”换成“*”,“*”换成“+”“1”换成“0”,“0”换成“1”,仍保持原来的逻辑优先级,则可得到原函数F的对偶式G,而且F与G互为对偶式。
我们可以看出基本公式是成对出现的,二都互为对偶式。
反演法则有原函数求反函数就称为反演(利用摩根定律),我们可以把反演法则这样描述:将原函数F中的“*”换成“+”,“+”换成“*”,“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成原变量,长非号即两个或两个以上变量的非号不变,就得到原函数的反函数。
常用逻辑函数表示方法有:1、逻辑真值表2、逻辑表达式3、逻辑图各种表示方法间的相互转换4、工作波形图常用逻辑函数表示形式:1、逻辑函数的八种表示形式2、逻辑函数的标准表示形式标准表示形式间的相互转换= A利用代入规则:五、综合法 合并项法、吸收法、消去法、配项法。
F = AD + A D + AB + AC + BD + ACEF + BEF + DEFG= A(D + D ) + AB + AC + BD + ACEF + BEF = A(1 + B + CEF ) + AC + BD + BEF = A + AC + BD + BEF 加对乘分配率:A + AC = ( A + A)( A + C ) = A + C + BD + BEFF = A( A + B )( A + C )( B + D )( A + C + E + F )(B + F )( D + E + F ) 解:首先将或-与表达式通过求对偶变为与-或表达式,利用 公式法在与-或表达式中进行化简。
(分配率) ' F = A + AB + AC + BD + ACEF + BF + DEF (合并项) = A + AC (1 + EF ) + BD + BF (包含率)= A + AC + BD + BF (分配率) = A + C + BD + BF第二步:将对偶式再次求对偶,得到原函数的最简或-与式。
F = F = AC ( B + D )(B + F )''代数化简法优点 : 不受变量限制。
缺点:化简方向不明确,一般采用试凑法,要有一定技巧。
对于任何一个逻辑函数的功能描述都可以作出真值表,根 据真值表可以写出该函数的最小项之和及最大项之积的形式。
例:F = A ⊕ B真值表A 0 0 1 1 B 0 1 0 1 F F = 1 的输入变量组合有 AB = 01、10 两组。
= m1 + m 2 = ∑ (1.2 ) 最小项之和: F = A B + A B 0 1 F = 0 的输入变量组合有 AB = 00、11 两组。
6、逻辑代数的化简(公式法和卡诺图法)⼀、逻辑函数的化简将⼀个逻辑表达式变得最简单、运算量最少的形式就叫做化简。
由于运算量越少,实现逻辑关系所需要的门电路就越少,成本越低,可靠性相对较⾼,因此在设计逻辑电路时,需要求出逻辑函数的最简表达式。
由此可以看到,函数化简是为了简化电路,以便⽤最少的门实现它们,从⽽降低系统的成本,提⾼电路的可靠性。
通常来说,我们化简的结果会有以下五种形式为什么是这五种情况,这个跟我们实现的逻辑电路的元器件是有关系的。
在所有的逻辑电路中,都是通过与、或、⾮三种逻辑电路来实现的,之前说过逻辑“与或”、“或与”、“与或⾮”组合逻辑电路是具有完备性的,也就是说能够通过它们不同数量的组合能够实现任何电路。
通过不同的“与或”电路组成的电路,最后化简的表达式就是“与或”表达式,其他同理。
⼆、将使⽤“与或”表达式的化简表达式中乘积项的个数应该是最少的表达了最后要⽤到的与门是最少的,因为每⼀个乘积项都需要⼀个与门来实现。
同时也对应了或门输⼊端的个数变少,有2个与项或门就有2个输⼊端,有3个与项或门就有3个输⼊端。
所以第⼀个条件是为了我们的与门和或门最少。
每⼀个乘积项中所含的变量个数最少它是解决每⼀个与门的输⼊端最少。
逻辑函授的化简有三种⽅法三、逻辑函数的代数化简法3.1 并项法并项法就是将两个逻辑相邻(互补)的项合并成⼀个项,这⾥就⽤到了“合并律”将公因⼦A提取出来合并成⼀项,b和b⾮相或的结果就等于1,所以最后的结果就是A。
吸收法是利⽤公式“吸收律”来消去多余的项3.3 消项法消项法⼜称为吸收律消项法3.4 消因⼦法(消元法)3.4 配项法左边的例⼦⽤到了⽅法1,右边的例⼦⽤到了⽅法2。
3.5 逻辑函数的代数法化简的优缺点优点:对变量的个数没有限制。
在对定律掌控熟练的情况下,能把⽆穷多变量的函数化成最简。
缺点:需要掌握多个定律,在使⽤时需要能够灵活应⽤,才能把函数化到最简,使⽤门槛较⾼。
1.3.4 逻辑函数的化简•对逻辑函数进行化简,可以求得最简逻辑表达式,也可以使实现逻辑函数的逻辑电路得以简化,这样既有利于节省元器件,也有利于提高可靠性。
•逻辑函数有如下三种化简方法:•公式化简法:利用逻辑代数的基本公式和规则来化简逻辑函数。
•图解化简法:又称卡诺图(Karnaugh Map)化简法。
•表格法:又称Q-M(Quine-McCluskey)化简法。
1.逻辑函数的公式化简法同一个逻辑函数,可以用不同类型的表达式表示,主要有以下五类:“与或”表达式、“或与”表达式、“与非”-“与非”表达式、“或非”-“或非”表达式、“与或非”表达式。
例如函数:=+Z AC AB“与或”表达式A B A C“或与”表达=++()()式AC AB“与非”-“与非”表达=⋅式=+++A B A C“或非”-“或非”表达式“与或非”表达式判断最简“与或”表达式的条件如下:(1)乘积项(即与项)个数最少的“与或”表达式;(2)当乘积项个数相等,则每个乘积项中因子(即变量)的个数最少的“与或”表达式。
例1-5 以下4个“与或”表达式是相等的,即它们表示同一个函数:(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 试判断哪一个是最简“与或”表达式。
(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 解:根据判断条件(1),式(1)含有4个与项,而式(2)~(4)都含有3个与项,因此,式(2)~(4)有可能最简;进一步比较与项中个数,式(3)和式(4)中,各与项都含2个变量,而式(2)中有一个与项含3个变量。
结论:式(3)和式(4)同为该函数的最简“与或”表达式。
公式法化简:借助定律和定理化简逻辑函数,常用以下几种方法。
(1)并项法利用互补率1A A +=()+=+=A BC A BC A B C C A B()()+++=⋅⊕+⋅⊕=A BC BC A BC BC A B C A B C A+=B ABD B,将两项合并为一项,合并时消去一个变量,如:(2)吸收法利用定理1(A + AB = A ),吸收掉(即除去)多余的项,如:(3)消去法利用定理2(+=+A AB A B ()++=++=+=+AB A C BC AB A B C AB ABC AB C(4)配项法根据互补律,利用()=+B A A B +A A ()()+++=+++++AB BC BC AB AB BC A A BC AB C C =+++++AB BC ABC A BC ABC ABC()()()=+++++AB ABC BC ABC A BC ABC =++AB BC A C),消去多余的因子,如:,先添上()作配项用,以便最后消去更多的项。