逻辑函数的化简方法
- 格式:pdf
- 大小:327.26 KB
- 文档页数:3
用代数法化简逻辑函数一、引言逻辑函数是计算机科学中的重要概念之一,它是由一个或多个逻辑变量构成的表达式。
在实际应用中,我们需要对逻辑函数进行化简,以便更好地理解和优化电路设计。
本文将介绍代数法化简逻辑函数的方法。
二、基本概念1. 逻辑变量:指只能取两个值(真或假)的变量。
2. 逻辑运算:指对逻辑变量进行操作的运算符,包括非(NOT)、与(AND)、或(OR)等。
3. 逻辑表达式:由逻辑变量和逻辑运算符组成的表达式。
三、代数法化简方法1. 布尔代数定律布尔代数定律包括以下几种:(1)结合律:A AND (B AND C) = (A AND B) AND C;A OR (B OR C) = (A OR B) OR C。
(2)交换律:A AND B = B AND A;A OR B = B OR A。
(3)分配律:A AND (B OR C) = (A AND B) OR (A AND C);A OR (B AND C) = (A OR B) AND (A OR C)。
(4)吸收律:A OR (A AND B) = A;(A OR B) AND A = A。
(5)恒等律:A AND 1 = A;A OR 0 = A。
(6)补充律:A OR NOT A = 1;A AND NOT A = 0。
2. 化简步骤化简逻辑函数的基本步骤如下:(1)将逻辑函数写成标准形式;(2)应用布尔代数定律进行化简;(3)使用代数运算法则进行化简;(4)使用卡诺图进行化简。
四、例子假设有一个逻辑函数F(A,B,C)=AB+BC+AC,要将其化简为最简形式。
步骤如下:(1)将逻辑函数写成标准形式:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)。
(2)应用布尔代数定律进行化简:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)=(A AND B) OR (B AND C)=(B AND (A OR C)) OR (A AND B)(3)使用代数运算法则进行化简:F(A,B,C)=(B AND (A OR C)) OR (A AND B)=(AB OR BC) OR AC=AB+BC+AC因此,原来的逻辑函数F可以被化简为最简形式AB+BC+AC。
逻辑函数化简方法
逻辑函数化简是将复杂的逻辑函数简化为更简洁的形式的过程。
以下是常见的逻辑函数化简方法:
1. 真值表方法:通过构造逻辑函数的真值表,观察不同输入值下函数值的变化规律来推导简化逻辑函数的形式。
2. 化简定律:通过逻辑运算的各种定律来对逻辑函数进行化简,常见的包括德摩根定律、分配律、结合律、交换律等。
3. 卡诺图方法:利用卡诺图来进行逻辑函数的化简。
卡诺图是一种用来表示逻辑函数的图表,通过观察卡诺图的模式,可以找到逻辑函数的最小项和最大项,并将其化简为更简单的形式。
4. 斯芬克斯化简方法:适用于较复杂的逻辑函数。
斯芬克斯化简方法是一种将逻辑函数分解为多个子函数,并利用分解后的子函数进行化简的方法。
这些方法可以单独使用,也可以结合使用,根据具体情况选择合适的方法来进行逻辑函数的化简。
逻辑函数的公式化简法
公式化简法的原理就是反复使用规律代数的基本公式和常用公式消去函数式中多余的乘积项和多余的因式,以求得函数式的最简形式。
公式化简法没有固定的步骤。
现将常常使用的方法归纳如下:
一、并项法
二、汲取法
利用公式A+AB=A,汲取掉(即除去)多余的项。
A和B同样也可以是任何一个简单的规律式。
【例】试用汲取法化简下列规律函数:
三、消项法利用公式AB+ C+BC=AB+ C及AB+ C+BCD=AB+ C,将BC或BCD消去。
其中A、B、C、D都可以是任何简单的规律式。
【例】用消项法化简下列规律函数:
四、消因子法利用公式A+B=A+B,可消去多余的因子。
A、B均可以是任何简单的规律式。
【例】试用消因子法化简下列规律函数
五、配项法1、依据基本公式A+A=A可以在规律函数式中重复写入某一项,有时能获得更加简洁的化简结果。
2、依据基本公式A+=1,可以在函数式中乘以(A+ ),然后拆成两项分别与其他项合并,有时能得到更加简洁的化简结果。
在化简简单的规律函数时,往往需要敏捷、交替地运用上述方法,才能得到最终的化简结果。
【例】化简规律函数。
逻辑函数化简公式大全逻辑函数化简是在布尔代数中常用的一种方法,它通过应用逻辑运算规则和布尔代数定律,将复杂的逻辑函数简化为更简洁的形式。
这种简化可以减少逻辑电路的复杂性,提高计算机系统的效率。
以下是一些常见的逻辑函数化简公式大全:1. 与运算的化简:- 与运算的恒等律:A∧1 = A,A∧0 = 0- 与运算的零律:A∧A' = 0,A∧A = A- 与运算的吸收律:A∧(A∨B) = A,A∧(A∧B) = A∧B- 与运算的分配律:A∧(B∨C) = (A∧B)∨(A∧C)- 与运算的交换律:A∧B = B∧A2. 或运算的化简:- 或运算的恒等律:A∨1 = 1,A∨0 = A- 或运算的零律:A∨A' = 1,A∨A = A- 或运算的吸收律:A∨(A∧B) = A,A∨(A∨B) = A∨B- 或运算的分配律:A∨(B∧C) = (A∨B)∧(A∨C)- 或运算的交换律:A∨B = B∨A3. 非运算的化简:- 非运算的双重否定律:(A) = A- 非运算的德摩根定律:(A∧B) = A∨B,(A∨B) = A∧B4. 异或运算的化简:- 异或运算的恒等律:A⊕0 = A,A⊕1 = A- 异或运算的自反律:A⊕A = 0- 异或运算的结合律:A⊕(B⊕C) = (A⊕B)⊕C- 异或运算的交换律:A⊕B = B⊕A5. 条件运算的化简:- 条件运算的恒等律:A→1 = 1,A→0 = A- 条件运算的零律:A→A' = 0,A→A = 1- 条件运算的反转律:A→B = A∨B- 条件运算的分配律:A→(B∧C) = (A→B)∧(A→C)这些公式是逻辑函数化简中常用的基本规则,通过灵活应用它们,可以将复杂的逻辑表达式简化为更简单的形式。
使用这些规则,我们可以提高逻辑电路的效率和简洁性,并降低硬件成本。
逻辑函数化简公式逻辑函数化简是一种将复杂的逻辑表达式简化为更简洁形式的方法。
通过化简,我们可以减少逻辑电路的复杂性,提高电路的性能和效率。
公式化简的过程涉及到逻辑运算的规则和性质。
下面是一些常见的逻辑函数化简公式:1. 同一律:A + 0 = A,A * 1 = A。
这表示在逻辑表达式中,与0相或的结果是原始信号本身,与1相与的结果是原始信号本身。
2. 吸收律:A + A * B = A,A * (A + B) = A。
这表示当一个信号与另一个信号的与运算结果相或,或者一个信号的与运算结果与另一个信号相与时,结果都是原始信号本身。
3. 分配律:A * (B + C) = A * B + A * C,A + (B * C) = (A + B) * (A + C)。
这表示在逻辑表达式中,可以将与运算分配到相或的运算中,或者将相或的运算分配到与运算中。
4. 德摩根定律:(A + B)' = A' * B',(A * B)' = A' + B'。
这表示在逻辑表达式中,如果一个信号取反后与另一个信号相与,或者一个信号取反后与另一个信号相或,相当于原始信号分别与另一个信号取反后的结果相或相与。
通过运用这些公式,我们可以逐步将复杂的逻辑表达式进行化简,从而得到更简洁的形式。
这有助于我们设计更简单、更高效的逻辑电路,并且减少电路的成本和功耗。
然而,化简过程也需要谨慎进行,需要根据具体情况来选择最优的化简策略。
有时候,过度地化简可能会导致逻辑电路的复杂性增加,或者引入一些错误。
因此,在进行逻辑函数化简时,我们需要充分理解逻辑运算的规则和性质,并结合具体的应用场景来进行合理化简。
逻辑函数的代数(公式)化简法代数化简法的实质就是反复使用逻辑代数的基本公式和常用公式消去多余的乘积项和每个乘积项中多余的因子,以求得函数式的最简与或式。
因此化简时,没有固定的步骤可循。
现将经常使用的方法归纳如下:①吸收法:根据公式A+AB=A 可将AB 项消去,A 和B 同样也可以是任何一个复杂的逻辑式。
()F A A BC A BC D BC =+⋅⋅+++例:化简()()()()()()F A A BC A BC D BCA A BC A BC D BCA BC A BC A BC D A BC=+⋅⋅+++=+++++=+++++=+解:现将经常使用的方法归纳如下:②消因子法:利用公式A+AB=A +B 可将AB 中的因子A 消去。
A 、B 均可是任何复杂的逻辑式。
1F A AB BEA B BE A B E=++=++=++例:2()F AB AB ABCD ABCDAB AB AB AB CDAB AB AB ABCDAB AB CD=+++=+++=+++=++现将经常使用的方法归纳如下:③合并项法(1):运用公式A B +AB=A 可以把两项合并为一项,并消去B 和B 这两个因子。
根据代入规则,A 和B 可以是任何复杂的逻辑式。
例:化简F BCD BCD BCD BCD=+++()()()()F BCD BCD BCD BCDBCD BCD BCD BCD BC D D BC D D BC BC B=+++=+++=+++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。
例:1()1F ABC ABC BCA A BC BCBC BC =++=++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。
例:2()()()()F A BC BC A BC BC ABC ABC ABC ABCAB C C AB C C AB AB A=+++=+++=+++=+=现将经常使用的方法归纳如下:例:1()()()()()(1)(1)()F AB AB BC BCAB AB C C BC A A BCAB ABC ABC BC ABC ABCAB ABC BC ABC ABC ABC AB C BC A AC B B AB BC AC=+++=+++++=+++++=+++++=+++++=++④配项法:将式中的某一项乘以A+A 或加A A ,然后拆成两项分别与其它项合并,进行化简。
6、逻辑代数的化简(公式法和卡诺图法)⼀、逻辑函数的化简将⼀个逻辑表达式变得最简单、运算量最少的形式就叫做化简。
由于运算量越少,实现逻辑关系所需要的门电路就越少,成本越低,可靠性相对较⾼,因此在设计逻辑电路时,需要求出逻辑函数的最简表达式。
由此可以看到,函数化简是为了简化电路,以便⽤最少的门实现它们,从⽽降低系统的成本,提⾼电路的可靠性。
通常来说,我们化简的结果会有以下五种形式为什么是这五种情况,这个跟我们实现的逻辑电路的元器件是有关系的。
在所有的逻辑电路中,都是通过与、或、⾮三种逻辑电路来实现的,之前说过逻辑“与或”、“或与”、“与或⾮”组合逻辑电路是具有完备性的,也就是说能够通过它们不同数量的组合能够实现任何电路。
通过不同的“与或”电路组成的电路,最后化简的表达式就是“与或”表达式,其他同理。
⼆、将使⽤“与或”表达式的化简表达式中乘积项的个数应该是最少的表达了最后要⽤到的与门是最少的,因为每⼀个乘积项都需要⼀个与门来实现。
同时也对应了或门输⼊端的个数变少,有2个与项或门就有2个输⼊端,有3个与项或门就有3个输⼊端。
所以第⼀个条件是为了我们的与门和或门最少。
每⼀个乘积项中所含的变量个数最少它是解决每⼀个与门的输⼊端最少。
逻辑函授的化简有三种⽅法三、逻辑函数的代数化简法3.1 并项法并项法就是将两个逻辑相邻(互补)的项合并成⼀个项,这⾥就⽤到了“合并律”将公因⼦A提取出来合并成⼀项,b和b⾮相或的结果就等于1,所以最后的结果就是A。
吸收法是利⽤公式“吸收律”来消去多余的项3.3 消项法消项法⼜称为吸收律消项法3.4 消因⼦法(消元法)3.4 配项法左边的例⼦⽤到了⽅法1,右边的例⼦⽤到了⽅法2。
3.5 逻辑函数的代数法化简的优缺点优点:对变量的个数没有限制。
在对定律掌控熟练的情况下,能把⽆穷多变量的函数化成最简。
缺点:需要掌握多个定律,在使⽤时需要能够灵活应⽤,才能把函数化到最简,使⽤门槛较⾼。
逻辑函数的公式化简法(经典实用)逻辑函数公式化简法是一种在数字逻辑设计中常用的方法,用于简化逻辑函数表达式,以便更有效地进行逻辑电路设计。
以下是一些经典实用的逻辑函数公式化简法:
1.摩根定律
摩根定律可以将两个逻辑函数表达式进行等价转换。
它有两个版本:
① 0-1律:¬(A+B) = ¬A * ¬B
② A律:¬(A*B) = ¬A + ¬B
使用摩根定律可以将复杂的逻辑函数表达式转换为更简单的形式。
2.吸收律
吸收律可以用来简化逻辑函数表达式中的冗余项。
它有两个版本:
① A+AB=A
② A+A'B=A+B
使用吸收律可以消除逻辑函数表达式中的冗余项,使表达式更简洁。
3.分配律
分配律可以将逻辑函数表达式中的括号展开,使表达式更易于分析。
它有两个版本:
① A*(B+C)=AB+AC
② A+(B C)=(A+B)(A+C)
使用分配律可以简化逻辑函数表达式中的括号,使表达式更简洁。
4.反演律
反演律可以用来求得一个逻辑函数的反函数。
它在数字逻辑设计中非常有用,因为它允许我们在一个逻辑函数和它的反函数之间进行转换。
反演律的公式为:A' * (A * B) = B。
通过使用以上经典实用的逻辑函数公式化简法,我们可以将复杂的逻辑函数表达式转换为更简单的形式,从而更有效地进行逻辑电路设计。
1.3.4 逻辑函数的化简•对逻辑函数进行化简,可以求得最简逻辑表达式,也可以使实现逻辑函数的逻辑电路得以简化,这样既有利于节省元器件,也有利于提高可靠性。
•逻辑函数有如下三种化简方法:•公式化简法:利用逻辑代数的基本公式和规则来化简逻辑函数。
•图解化简法:又称卡诺图(Karnaugh Map)化简法。
•表格法:又称Q-M(Quine-McCluskey)化简法。
1.逻辑函数的公式化简法同一个逻辑函数,可以用不同类型的表达式表示,主要有以下五类:“与或”表达式、“或与”表达式、“与非”-“与非”表达式、“或非”-“或非”表达式、“与或非”表达式。
例如函数:=+Z AC AB“与或”表达式A B A C“或与”表达=++()()式AC AB“与非”-“与非”表达=⋅式=+++A B A C“或非”-“或非”表达式“与或非”表达式判断最简“与或”表达式的条件如下:(1)乘积项(即与项)个数最少的“与或”表达式;(2)当乘积项个数相等,则每个乘积项中因子(即变量)的个数最少的“与或”表达式。
例1-5 以下4个“与或”表达式是相等的,即它们表示同一个函数:(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 试判断哪一个是最简“与或”表达式。
(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 解:根据判断条件(1),式(1)含有4个与项,而式(2)~(4)都含有3个与项,因此,式(2)~(4)有可能最简;进一步比较与项中个数,式(3)和式(4)中,各与项都含2个变量,而式(2)中有一个与项含3个变量。
结论:式(3)和式(4)同为该函数的最简“与或”表达式。
公式法化简:借助定律和定理化简逻辑函数,常用以下几种方法。
(1)并项法利用互补率1A A +=()+=+=A BC A BC A B C C A B()()+++=⋅⊕+⋅⊕=A BC BC A BC BC A B C A B C A+=B ABD B,将两项合并为一项,合并时消去一个变量,如:(2)吸收法利用定理1(A + AB = A ),吸收掉(即除去)多余的项,如:(3)消去法利用定理2(+=+A AB A B ()++=++=+=+AB A C BC AB A B C AB ABC AB C(4)配项法根据互补律,利用()=+B A A B +A A ()()+++=+++++AB BC BC AB AB BC A A BC AB C C =+++++AB BC ABC A BC ABC ABC()()()=+++++AB ABC BC ABC A BC ABC =++AB BC A C),消去多余的因子,如:,先添上()作配项用,以便最后消去更多的项。
一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消
因子。
常用方法有:
①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其
中的一个变量。
②吸收法利用公式A+AB=A 吸收多余的与项。
③消因子法利用公式A+A’B=A+B 消去与项多余的因子
④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多
的与项。
⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。
二、卡诺图化简法
逻辑函数的卡诺图表示法
将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。
逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。
1.表示最小项的卡诺图
将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。
具有逻辑相邻性的最小项在位置上也相邻地排列。
用卡诺图表示逻辑函数:
方法一:1、把已知逻辑函数式化为最小项之和形式。
2、将函数式中包含的最小项在卡诺图对应的方格中填 1,其余方格中填 0。
方法二:根据函数式直接填卡诺图。
用卡诺图化简逻辑函数:
化简依据:逻辑相邻性的最小项可以合并,并消去因子。
化简规则:能够合并在一起的最小项是2n个。
如何最简:圈数越少越简;圈内的最小项越多越简。
注意:卡诺图中所有的 1 都必须圈到,不能合并的 1 单独画圈。
说明,一逻辑函数的化简结果可能不唯一。
合并最小项的原则:
1)任何两个相邻最小项,可以合并为一项,并消去一个变量。
2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。
3)任何8个相邻最小项,可以合并为一项,并消去3个变量。
卡诺图化简法的步骤:
画出函数的卡诺图;
画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小
项仅被圈过一次,以免出现多余项。
写出最简与或表达式。
三、具有无关项的逻辑函数及其化简
逻辑函数中的无关项:约束项和任意项可以写入函数式,也可不包含在函数式中,因此统称为无关项。