天体运动和万有引力总结 (1)
- 格式:docx
- 大小:57.61 KB
- 文档页数:4
天体运动总结一、处理天体运动的基本思路1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mmr 2=ma ,其中a=v 2r =ω2r =(2πT)2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G MmR 2=m g ,gR2=GM ,该公式通常被称为黄金代换式.该式可称为“人间”公式.合起来称为“天上人间”公式.二、对开普勒三定律的理解 开普勒行星运动定律1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不同的星系中,此比值是不同的.(R 3T 2=k )1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小.3.开普勒第三定律的表达式为a 3T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k是一个常量,与行星无关但与中心天体的质量有关.三、开普勒三定律的应用1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转.2.表达式a 3T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关.四、太阳与行星间的引力1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性(1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力.(2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.(3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.五.万有引力和重力的关系1. 万有引力和重力的关系如图6-2、3-3所示,设地球的质量为M,半径为R,A处物体的质量为m,则物体受到地球的吸引力为F,方向指向地心O,由万有引力公式得F=G Mmr2.引力F可分解为F1、F2两个分力,其中F1为物体随地球自转做圆周运动的向心力F n,F2就是物体的重力mg2.近似关系:如果忽略地球的自转,则万有引力和重力的关系为:mg=GMm R2,g为地球表面的重力加速度.关系式2G Mm/Rmg=即2grG M=3.随高度的变化:在高空中的物体所受到的万有引力可认为等于它在高空中所受的重力mg′=GMm(R+h)2,在地球表面时mg=GMmR2,所以在距地面h处的重力加速度g′=R2(R+h)2g.六.天体质量和密度的计算(一).“天体自身求解”:若已知天体(如地球)的半径R和表面的重力加速度g,根据物体的重力近似等于天体对物体的引力,得mg=G MmR2,解得天体质量为M=gR2G,因g、R是天体自身的参量,故称“自力更生法”.(2)“借助外援法”:借助绕中心天体做圆周运动的行星或卫星计算中心天体的质量,常见的情况:G Mmr2=m⎝⎛⎭⎪⎫2πT2r⇒M=4π2r3GT2,已知绕行天体的r和T可以求M.观测行星的运动,计算太阳的质量;观测卫星的运动,计算行星的质量。
高中物理万有引力公式总结
引言
在高中物理学习中,万有引力是一个非常重要的概念。
它描述了所有物体之间的吸引力,是我们理解宇宙中天体运动的关键。
在本文中,我们将对万有引力公式进行总结,包括定义、公式表达和应用等内容。
什么是万有引力
万有引力是由牛顿于17世纪提出的理论,描述了两个物体之间的引力大小与它们的质量和距离的关系。
它适用于任何两个物体之间的吸引力,并且在天体运动和地球上的物体运动中起着重要作用。
万有引力公式
万有引力公式可以用以下公式表示:
$$ F = G \\cdot \\frac{{m_{1} \\cdot m_{2}}}{{r^{2}}} $$
其中,
F是两个物体之间的引力大小,
G是万有引力常量,
m1
和
m2
是两个物体的质量,
r是两个物体之间的距离。
万有引力应用
万有引力的应用非常广泛,其中一些重要的应用包括:
1.天体运动:万有引力是描述行星、卫星等天体之间运动的关键原理,
例如描述地球绕太阳公转、月球绕地球公转等。
2.地球物体运动:地球上的物体也受到万有引力的影响,例如描述抛体
运动、地球上物体的重力等。
3.工程应用:在工程领域,需要考虑到万有引力对物体的影响,例如建
筑物的结构设计、卫星轨道计算等。
结论
万有引力是一个重要的物理概念,通过万有引力公式我们可以计算出物体之间的引力大小。
在天文学、地球科学和工程领域中,万有引力都有着重要的应用。
掌握万有引力的基本原理和公式,有助于我们更好地理解世界和宇宙的运行规律。
专题:万有引力和天体运动[要点提示]1、万有引力定律的应用:○1讨论重力加速度g 随离地面高度h 的变化情况: 物体的重力近似为地球对物体的引力,即mg=G 2)(h R Mm +。
所以重力加速度g= G 2)(h R M +,可见,g 随h 的增大而减小。
○2求天体的质量:通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。
○3求解卫星的有关问题:根据万有引力等于卫星做圆周运动的向心力可求卫星的速度、周期、动能等状态量。
由G 2rMm =m r V 2 得V=r GM ,由G 2r Mm = mr(2π/T)2 得T=2πGM r 3。
由G 2r Mm = mr ω2 得ω=3r GM ,由E k =21mv 2=21G r Mm 。
2、第一宇宙速度V 1=7.9Km/s,人造卫星的最小发射速度;最大的运行速度[课前小练]1.人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为V ,周期为T 。
若要使卫星的周期变为2T ,可以采取的办法是:A 、R 不变,使线速度变为V/2;B 、V 不变,使轨道半径变为2R ;C 、使轨道半径变为R 34;D 、使卫星的高度增加R 。
2.地球赤道上的物体重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上的物体“飘”起来,则地球的转速应为原来的A.g/a 倍。
B.a a g /)(+ 倍。
C.a a g /)(- 倍。
D. a g /倍3.同步卫星离地距离r ,运行速率为V 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为V 2,地球半径为R ,则A 、a 1/a 2=r/R; B.a 1/a 2=R 2/r 2; C.V 1/V 2=R 2/r 2; D.V 1/V 2=r R /. 4、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为A 、1;B 、1/9;C 、1/4;D 、1/16。
万有引力知识点汇总在我们的日常生活中,物体的下落、天体的运行,都离不开万有引力的作用。
万有引力是物理学中一个非常重要的概念,它不仅解释了许多自然现象,也为人类探索宇宙提供了理论基础。
接下来,让我们一起详细了解一下万有引力的相关知识点。
一、万有引力定律的发现万有引力定律是由英国科学家牛顿发现的。
据说,牛顿在看到苹果从树上落下时,开始思考物体下落的原因,并最终得出了万有引力定律。
牛顿的思考是基于对天体运动的观察和研究。
当时,天文学家开普勒已经发现了行星运动的三大定律,但对于行星为什么会按照这样的规律运动,还没有一个合理的解释。
牛顿通过深入的思考和数学推导,得出了万有引力定律,成功地解释了行星的运动规律。
二、万有引力定律的内容万有引力定律的内容是:任何两个物体之间都存在相互吸引的力,这个力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。
用公式表示为:$F = G\frac{m_1m_2}{r^2}$其中,$F$表示两个物体之间的引力,$G$是万有引力常量,其值约为$667×10^{-11} N·m^2/kg^2$,$m_1$和$m_2$分别表示两个物体的质量,$r$表示两个物体质心之间的距离。
三、万有引力常量的测定万有引力常量$G$的测定是一个非常重要的实验。
英国科学家卡文迪许通过巧妙的实验设计,利用扭秤实验测量出了$G$的值。
卡文迪许的实验装置非常精巧。
他将两个小铅球分别固定在一根轻质横杆的两端,横杆中间用一根细丝悬挂起来,形成一个扭秤。
然后,他再用两个大铅球分别靠近两个小铅球,由于万有引力的作用,横杆会发生扭转。
通过测量横杆的扭转角度,就可以计算出万有引力的大小,从而推算出$G$的值。
四、万有引力定律的适用范围万有引力定律适用于两个质点之间的相互作用。
但在实际情况中,大多数物体都不能看作质点。
对于质量分布均匀的球体,可以将其视为质量集中在球心的质点来计算引力。
当两个物体之间的距离远大于物体的尺寸时,也可以近似地将物体看作质点来计算引力。
高中物理天体运动公式大全1. 万有引力定律公式。
- F = G(Mm)/(r^2)- 其中F是两个物体间的万有引力,G = 6.67×10^-11N· m^2/kg^2(引力常量),M和m分别是两个物体的质量,r是两个物体质心之间的距离。
2. 天体做圆周运动的基本公式(以中心天体质量为M,环绕天体质量为m,轨道半径为r)- 向心力公式。
- 根据万有引力提供向心力F = F_向- G(Mm)/(r^2)=mfrac{v^2}{r}(可用于求线速度v=√(frac{GM){r}})- G(Mm)/(r^2) = mω^2r(可用于求角速度ω=√(frac{GM){r^3}})- G(Mm)/(r^2)=m((2π)/(T))^2r(可用于求周期T = 2π√((r^3))/(GM))- G(Mm)/(r^2)=ma(a=(GM)/(r^2),这里的a是向心加速度)3. 黄金代换公式。
- 在地球表面附近(r = R,R为地球半径),mg = G(Mm)/(R^2),可得GM = gR^2。
这个公式可以将GM用gR^2替换,方便计算。
4. 第一宇宙速度公式(近地卫星速度)- 方法一:根据G(Mm)/(R^2) = mfrac{v^2}{R},且mg = G(Mm)/(R^2),可得v=√(frac{GM){R}}=√(gR)(R为地球半径,g为地球表面重力加速度),v≈7.9km/s。
- 第一宇宙速度是卫星绕地球做匀速圆周运动的最大环绕速度,也是卫星发射的最小速度。
5. 第二宇宙速度公式(脱离速度)- v_2=√(frac{2GM){R}},v_2≈11.2km/s,当卫星的发射速度大于等于v_2时,卫星将脱离地球的引力束缚,成为绕太阳运动的人造行星。
6. 第三宇宙速度公式(逃逸速度)- v_3=√((2GM_日))/(r_{地日) + v_地^2}(其中M_日是太阳质量,r_地日是日地距离,v_地是地球绕太阳的公转速度),v_3≈16.7km/s,当卫星的发射速度大于等于v_3时,卫星将脱离太阳的引力束缚,飞出太阳系。
万有引力与天体运动引言:在自然界中,存在着一种无所不在的力量,即万有引力。
万有引力是负责使得天体之间相互吸引的力量,它是牛顿力学的基本法则之一。
本文将探讨万有引力的定义、原理及其与天体运动的关系。
一、万有引力的定义与原理万有引力是指任意两个物体之间存在相互吸引的力量,这种力量与物体的质量和距离有关。
根据牛顿第三定律,相互作用的两个物体之间的引力大小相等,方向相反。
万有引力的存在与质量有关,质量越大的物体,其引力也越大。
而且,两个物体之间的引力与它们之间的距离的平方成反比,即距离越近,引力越强。
二、天体运动的基本规律根据万有引力的原理,天体运动遵循以下基本规律:1. 开普勒定律约翰内斯·开普勒是天体运动领域的重要科学家之一,他总结出三个著名的运动定律。
第一定律表明天体绕太阳运动的轨道是椭圆形,而不是圆形。
这就意味着天体在其轨道上的位置不是固定的,而是变化的。
2. 第二定律开普勒的第二定律,也称为面积定律,表明天体在相同时间内扫过的面积相等。
换句话说,当天体离太阳较远时,它的速度较慢;当它距离太阳较近时,速度较快。
这个定律说明了天体在椭圆轨道上的运动速度是不均匀的。
3. 第三定律开普勒的第三定律,也称为调和定律,阐述了天体轨道周期与半长轴的关系。
具体来说,天体运动的周期的平方与它的椭圆轨道的半长轴的立方成正比。
这个定律揭示了天体运动的规律性,使得科学家们可以通过研究地球运动来推导出其他天体的运动规律。
三、天体运动和万有引力的关系天体运动与万有引力有着密不可分的关系,万有引力是驱动天体运动的根本力量。
在太阳系中,太阳是最重要的引力中心,其他行星、卫星以及小行星等都围绕太阳进行运动。
1. 行星运动行星绕太阳运动的轨道是椭圆形,行星距离太阳越近,它们的速度越快;相反,距离越远,速度越慢。
这符合开普勒定律中的第二定律。
行星的运动速度与距离有关,而这种变化正是受到万有引力的影响。
2. 月球运动月球是地球的卫星,它也受到地球的引力影响,围绕地球进行运动。
万有引力与天体运动研究报告小结示例文章篇一:《万有引力与天体运动研究报告小结》嘿,你知道吗?咱们生活的这个宇宙啊,就像一个超级神秘又超级有趣的大游乐场,而万有引力和天体运动呢,就像是这个游乐场里最刺激、最神秘的游乐项目。
咱先来说说万有引力吧。
牛顿发现万有引力的时候,那可真是一个超级伟大的时刻,就好像在黑暗中突然点亮了一盏超级亮的灯。
我就想啊,牛顿当时肯定是个超级爱思考的人。
你看啊,苹果从树上掉下来,这事儿在咱平常人眼里,那就是个再平常不过的事儿了,说不定还会想,这苹果熟了不掉下来才怪呢。
可是牛顿他老人家就不一样啊,他就琢磨着,为啥这苹果是往地上掉,而不是往天上飞呢?这一琢磨可不得了,就琢磨出了万有引力这个大宝贝。
万有引力就像是宇宙中的一条看不见的绳子。
你想啊,咱们地球上的东西,不管是大的像山,还是小的像一粒沙子,都被这条看不见的绳子给拴着呢。
而且这绳子的力量可神奇了,它不是乱拴的。
质量越大的东西,它拴得就越紧。
就好比是两个大力士在拔河,力气大的那个肯定能把力气小的那个拉得更靠近自己。
在宇宙里也是一样,像地球这么大质量的星球,就把咱们人啊、动物啊、还有那些花花草草,都紧紧地拽在自己身上。
要是没有万有引力,咱们估计就像气球一样,到处乱飞了。
那可就乱套了,说不定早上一睁眼,人就飘到外太空去了,想想都可怕。
再说说天体运动吧。
那些天体在宇宙里就像是一群舞者,各自有着自己独特的舞步。
行星绕着恒星转,就像孩子围着妈妈转一样。
拿咱们地球来说吧,地球就绕着太阳这个大火球转啊转。
我就常常在想,地球在转的时候,会不会也有累的时候呢?哈哈,这当然是开玩笑啦。
地球的这种运动可是非常有规律的,它就这么一圈又一圈地转着,带来了白天和黑夜,带来了春夏秋冬。
其他的行星也一样啊。
它们在万有引力的作用下,有条不紊地进行着自己的运动。
你看木星,那可是个大家伙,它也乖乖地按照自己的轨道运行。
这就好比是在一个超级大的舞池里,每个舞者都知道自己的位置,都知道自己该怎么跳,谁也不会乱了脚步。
天体运动和万有引力的公式一.比值题型条件:两个天体围绕同一个中心天体运动。
例如火星和地球之间,土星的几个卫星之间等。
公式:r 3=kT 2 比例式:(r 1:r 2)3=(T 1:T 2)2这个公式反应的是轨道半径r 与周期T 的关系,已知r 可以求T ,或已知T 可以求r(1)如果已知r 求线速度V ,就要用线速度V 替换周期Tr 3=kT 2V =2πr T ,T =2πr V (2)如果已知r 求角速度ω,就要用ω替换周期Tr 3=kT 2ω=2πT ,T =2πω(3)如果已知周期T 求线速度V ,就要用线速度V 代替轨道半径rr 3=kT 2 V =2πr T ,r =VT 2π同步练习1.已知土星的两颗卫星,土卫十和土卫八,它们都围绕土星做匀速圆周运动。
土卫十和土卫八轨道半径比为4:1。
求它们周期之比。
2.地球和火星都围绕太阳做匀速圆周运动,火星的公转周期为2年,所以火星上每个季节有6个月。
求火星和地球的线速度比。
3.地球和水星都围绕太阳做匀速圆周运动,地球到太阳的距离是水星到太阳的距离的3倍。
求地球和水星线速度比。
r 3=k______ 化简得______r 3=k______ ______=kT 2 化简得______二.计算题(需要算出具体数值或具体表达式)1.求线速度V ,角速度ω,周期T(1)由 引力等于向心力GMm r 2=mv 2r ,得 v =√GM r(1)如果求的是角速度ω,用公式V=ωr 带入上面式子(1),得_____________,ω=___________。
如果求的是周期T ,用公式 带入上面式子(1),得____________,T=_____________。
用这种方法求线速度V ,角速度ω,周期T 。
题目必须已知引力常量G ,和中心天体的质量M 。
如果G,M 都不知道怎么办?(2)黄金代换式2.同步练习:V =2πr T GM =gR 2用gR 2代替上面式子中的GM 也可以得出答案。
万有引力知识点总结第1篇1.开普勒第三定律:t2/r3=k(=42/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:f=gm1m2/r2(g=,方向在它们的连线上)3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2{r:天体半径(m),m:天体质量(kg)}4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;=(gm/r3)1/2;t=2(r3/gm)1/2{m:中心天体质量}5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=;v2=;v3=6.地球同步卫星gmm/(r地+h)2=m42(r地+h)/t2{h36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的xxx力由万有引力提供,f向=f万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发*速度均为。
万有引力知识点总结第2篇定义:万有引力是由于物体具有质量而在物体之间产生的一种相互作用。
它的大小和物体的质量以及两个物体之间的距离有关。
物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。
其中G代表引力常量,其值约为×10的负11次方单位N·m2/kg2。
为英国科学家卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期)如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小mrω^2=mr(4π^2)/T^2另外,由开普勒第三定律可得r^3/T^2=常数k'那么沿太阳方向的力为mr(4π^2)/T^2=mk'(4π^2)/r^2由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。
一, 知识归纳(1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供,即: Gr v m rMm 22==mω2r=mr T 224π (2).估算天体的质量和密度由G 2r Mm =mr T 224π得:M=2324Gt r π. 即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量.由ρ=V M ,V=34πR3得: ρ=3233RGT r π.R 为中心天体的星体半径 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=23GT π (3)行星表面重力加速度、轨道重力加速度问题表面重力加速度g 0,由02GMm mg R = 得:02GM g R = 轨道重力加速度g ,由2()GMm mg R h =+ 得:220()()GM R g g R h R h==++ (4)卫星的绕行速度、角速度、周期与半径的关系(1)由Gr v m rMm 22=得:v=r GM . 即轨道半径越大,绕行速度越小 (2)由G2r Mm =mω2r得:ω=3r GM 即轨道半径越大,绕行角速度越小(3)由2224Mm G m r r T π=得:2T =即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h .由: G2224()Mm m R h Tπ=+(R+h) 得:h R ==3.6×104km=5.6R R表示地球半径1.2010·重庆·16月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,他们都围绕月球连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动生物线速度大小之比约为A.1:6400 B.1:80C. 80:1 D:6400:12. 2010·天津·6探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比A.轨道半径变小B.向心加速度变小C.线速度变小D.角速度变小3.2010·全国卷Ⅱ·21已知地球同步卫星离地面的高度约为地球半径的6倍。
高考物理天体运动公式总结高考物理天体运动公式1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}强调: (1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
高考物理分子动理论、能量守恒定律公式1.阿伏加德罗常数NA=6.021023/mol;分子直径数量级10-10米2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)(3)rr0,f引f斥,F分子力表现为引力(4)r10r0,f引=f斥0,F分子力0,E分子势能05.热力学第一定律W+Q=U{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),U:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}6.热力学第二定律克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;(2)温度是分子平均动能的标志;3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;(5)气体膨胀,外界对气体做负功W0;温度升高,内能增大U0;吸收热量,Q0(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;(7)r0为分子处于平衡状态时,分子间的距离;(8)其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。
物理万有引力知识点物理万有引力知识点在学习中,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
还在苦恼没有知识点总结吗?下面是店铺为大家整理的物理万有引力知识点,希望能够帮助到大家。
物理万有引力知识点篇11、参考系:运动是绝对的,静止是相对的。
一个物体是运动的还是静止的,都是相对于参考系在而言的。
通常以地面为参考系。
2、质点:(1)定义:用来代替物体的有质量的点。
质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。
且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能、当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;路程是质点运动轨迹的长度,是标量。
5、速度:用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。
平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。
瞬时速度的大小简称速率,它是一个标量。
物理万有引力知识点篇2一、知识点(一)行星的运动1、地心说、日心说:内容区别、正误判断2、开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律1、万有引力定律:内容、表达式、适用范围2、万有引力定律的科学成就(1)计算中心天体质量(2)发现未知天体(海王星、冥王星)(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、环绕速度;脱离地球引力绕太阳运动;脱离太阳系)(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)二、重点考察内容、要求及方式1、地心说、日心说:了解内容及其区别,能够判断其科学性(选择)2、开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择)3、万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)4、计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算)5、宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)6、计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)7、经典力学的局限性:了解其局限性所在,适用范围(选择)物理学专业介绍物理学是研究物质运动最一般规律和物质基本结构的学科,它揭示物质产生、演化、转化和相互作用等方面的基本规律,涉及从微观、宏观到宇观,从少体到多体,从简单到复杂的各种系统,是自然科学的核心和工程技术的基础,并与社会学科具有很强的交叉性;本专业旨在培养掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力,能发展成为在物理学及其相关交叉学科的不同专业领域继续深造或在相应的科学技术领域中从事科研、教学、技术、应用和管理等方面的创新性人才。
第12讲万有引力与天体运动一、开普勒三定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个上.2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的相等.3.开普勒第三定律:所有行星的轨道的的三次方跟的二次方的比值都相等.二、万有引力定律1.内容:自然界中任何两个物体都互相吸引,引力的大小与物体的质量的乘积成,与它们之间距离的二次方成.2.公式:(其中引力常量G=6.67×10-11 N·m2/ kg2).3.适用条件:公式适用于质点之间以及均匀球体之间的相互作用,对均匀球体来说,r是两球心间的距离.三、天体运动问题的分析1.运动学分析:将天体或卫星的运动看成运动.2.动力学分析:(1)由万有引力提供,即F向=G Mmr2=man=m v2r=mω2r=m(2πT)2r.(2)在星球表面附近的物体所受的万有引力近似等于,即G Mmr2=mg(g 为星球表面的重力加速度).【辨别明理】(1)牛顿利用扭秤实验装置比较准确地测出了引力常量.()(2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小.()(3)近地卫星距离地球最近,环绕速度最小.()(4)地球同步卫星根据需要可以定点在北京正上空.()(5)极地卫星通过地球两极,且始终和地球某一经线平面重合.()(6)发射火星探测器的速度必须大于11.2 km/s.()考点一万有引力及其与重力的关系例1 (多选)设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R.宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2=F02.假设第三次在赤道平面内深度为R2的隧道底部,示数为F3;第四次在距星表高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是()A.F3=F04 B.F3=15F04C.F4=0D.F4=F04■题根分析1.万有引力与重力的关系地球对物体的万有引力F表现为两个效果:一是重力mg,二是提供物体随地球自转的向心力F向,如图12-1所示.图12-1(1)在赤道处:G MmR2=mg1+mω2R.(2)在两极处:G MmR2=mg2.(3)在一般位置:万有引力G MmR2等于重力mg与向心力F向的矢量和.越靠近南、北两极,g值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即G MmR2=mg.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g(不考虑地球自转):mg=G MmR2,得g=GMR2.(2)在地球上空距离地心r=R+h处的重力加速度g':mg'=G Mm(R+ℎ)2,得g'=GM(R+ℎ)2,所以gg'=(R+ℎ)2R2.■变式网络变式题1 (多选)火箭载着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器,如图12-2所示.火箭从地面起飞时,以加速度g02竖直向上做匀加速直线运动(g0为地面附近的重力加速度),已知地球半径为R,升到某一高度时,测试仪器对平台的压力刚好是起飞时压力的1727,此时火箭离地面的高度为h,所在位置重力加速度为g,则()图12-2A.g=2g03B.g=4g09C.h=RD.h=R2变式题2 假设地球是一半径为R、质量分布均匀的球体,一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为()A.1-dR B.1+dRC.(R-dR )2D.(RR-d)2变式题3 假设地球可视为质量均匀分布的球体.已知地球表面的重力加速度在两极的大小为g0,在赤道的大小为g,地球自转的周期为T,引力常量为G,则地球的密度为()A.3π(g0-g)GT2g0B.3πg0GT2(g0-g)C.3πGT2D.3πg0GT2g考点二天体质量及密度的计算(1)利用卫(行)星绕中心天体做匀速圆周运动求中心天体的质量计算天体的质量和密度问题的关键是明确中心天体对它的卫星(或行星)的引力就是卫星(或行星)绕中心天体做匀速圆周运动的向心力.由G Mmr2=m4π2T2r,解得M=4π2r3GT2;ρ=MV=M43πR3=3πr3GT2R3,R为中心天体的半径,若为近地卫星,则R=r,有ρ=3πGT2.由上式可知,只要用实验方法测出卫星(或行星)做圆周运动的半径r及运行周期T,就可以算出中心天体的质量M.若再知道中心天体的半径,则可算出中心天体的密度.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G,天体密度ρ=MV =M43πR3=3g4πGR.例2[2017·北京卷]利用引力常量G和下列某一组数据,不能计算出地球质量的是()A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离变式题1 我国成功地进行了“嫦娥三号”的发射和落月任务,进一步获取月球的相关数据.该卫星在月球上空绕月球做匀速圆周运动时,经过时间t,卫星的路程为s,卫星与月球中心连线扫过的角度是θ弧度,引力常量为G,月球半径为R,则可推知月球密度的表达式是()A.3t 2θ4πGs3R3B.4θπR3Gt23s3C.3s 34θπGt2R3D.4πR3Gs33θt2变式题2 已知“慧眼”卫星绕地球做匀速圆周运动,其轨道半径为r,运动周期为T,地球半径为R,引力常量为G,则下列说法正确的是()A.“慧眼”卫星的向心加速度大小为4π2rT2B.地球的质量大小为4π2R3GT2C.地球表面的重力加速度大小为4π2RT2D.地球的平均密度大小为3πGT2■要点总结天体质量和密度的估算问题是高考命题热点,解答此类问题时,首先要掌握基本方法(两个等式:①由万有引力提供向心力;②天体表面物体受到的重力近似等于万有引力),其次是记住常见问题的结论,主要分两种情况:(1)利用卫星的轨道半径r和周期T,可得中心天体的质量M=4π2r3GT2,并据此进一步得到该天体的密度ρ=MV =M43πR3=3πr3GT2R3(R为中心天体的半径),尤其注意当r=R时,ρ=3πGT2.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G ,天体密度ρ=MV=M43πR3=3g4πGR.考点三黑洞与多星系统1.双星系统系统可视天体绕黑洞做圆周运动黑洞与可视天体构成的双星系统两颗可视天体构成的双星系统图示向心力的来源黑洞对可视天体的万有引力彼此给对方的万有引力彼此给对方的万有引力2.多星系统系统 三星系统(正三角形排列)三星系统(直线等间距排列)四星系统图示向心力 的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力例3 天文学家们推测,超大质量黑洞由另外两个超大质量黑洞融合时产生的引力波推射出该星系核心区域.在变化过程中的某一阶段,两个黑洞逐渐融入到新合并的星系中央并绕对方旋转,这种富含能量的运动产生了引力波.假设在合并前,两个黑洞互相绕转形成一个双星系统,如图12-3所示,若黑洞A 、B 的总质量为1.3×1032 kg ,球心间的距离为2×105 m ,产生的引力波周期和黑洞做圆周运动的周期相当,则估算该引力波周期的数量级为(G=6.67×10-11 N ·m 2/kg 2) ( )图12-3A .10-1sB .10-2sC .10-3sD .10-4s变式题 [2018·江西新余二模] 天文观测中观测到有三颗星位于边长为l 的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T 的匀速圆周运动.已知引力常量为G ,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是 ( )图12-4A.它们两两之间的万有引力大小为16π4l49GT4B.其中一颗星的质量为3GT 24π2l3C.三颗星的质量可能不相等D.它们的线速度大小均为2√3πlT■要点总结多星问题的解题技巧(1)挖掘一个隐含条件:在圆周上运动的天体的角速度(或周期)相等.(2)重视向心力来源分析:双星做匀速圆周运动的向心力由它们之间的万有引力提供,三星或多星做圆周运动的向心力往往是由多个星的万有引力的合力提供. (3)区别两个长度关系:圆周运动的轨道半径和万有引力公式中两天体的距离是不同的,不能误认为一样.完成课时作业(十二)。
天体运动2025年万有引力物理知识点详解在探索宇宙的奥秘中,天体运动一直是令人着迷的领域。
而万有引力定律则是理解天体运动的关键。
到了 2025 年,我们对于万有引力的理解也更加深入和全面。
接下来,让我们一同走进这个充满魅力的物理世界。
万有引力定律是由牛顿在 17 世纪提出的,它表明任何两个质点都存在通过其连心线方向上的相互吸引的力。
这个力的大小与它们质量的乘积成正比、与它们距离的平方成反比。
用公式表示就是:$F =G\frac{m_1m_2}{r^2}$,其中$F$ 是两个物体之间的引力,$G$ 是万有引力常量,约为$667×10^{-11} N·m^2/kg^2$,$m_1$ 和$m_2$ 分别是两个物体的质量,$r$ 是它们之间的距离。
在天体运动中,万有引力定律起着至关重要的作用。
比如,地球围绕太阳的公转,就是因为太阳对地球的引力提供了地球做圆周运动所需的向心力。
同样,月球围绕地球的转动也是由于地球对月球的引力作用。
我们先来探讨一下行星的运动。
开普勒通过对大量天文观测数据的分析,总结出了行星运动的三大定律。
开普勒第一定律,也称为轨道定律,指出行星绕太阳运动的轨道是椭圆,太阳位于椭圆的一个焦点上。
开普勒第二定律,又称面积定律,指行星和太阳的连线在相等的时间内扫过相等的面积。
开普勒第三定律,也叫周期定律,表明各个行星绕太阳公转周期的平方和它们各自与太阳的平均距离的立方成正比。
这些定律与万有引力定律紧密相连。
通过万有引力定律,我们可以计算出行星受到太阳的引力大小,进而推导出行星绕太阳运动的速度、周期等重要参数。
再来说说卫星的运动。
人造卫星的发射和运行也是基于万有引力定律。
当我们将一颗卫星发射到太空中时,它会受到地球的引力作用。
如果卫星的速度恰到好处,它就能够在特定的轨道上稳定运行。
比如,近地卫星的轨道高度相对较低,其运行速度较快;而同步卫星的轨道高度较高,其运行周期与地球自转周期相同,都约为 24 小时。
天体运动总结1. 开普勒三定律所有绕太阳运动的行星轨道都是椭圆,太阳在椭圆的一个焦点上(后简化为所有轨道都是圆,太阳在圆心上),注意:第一定律只是描述了一个图像,并没有需要计算的东西,而且太阳究竟在哪个焦点上还得看第二定律 对于某一颗行星来说,它的扫面速度是恒定的。
这句话也可以说成是:离太阳越近,速度越大。
这是判断近日点远日点的根据。
第二定律有个计算是研究近日点远日点速度与到太阳距离关系的。
a b根据扫面速度相同就有这样的关系 a b v a v b =对于所有绕太阳运动的行星来说,轨道半长轴的三次方与周期的平方的比值都一样简化之后为:所有绕太阳运动的行星,其轨道半径的三次方与周期的平方的比值都一样 32r k T= 这里需要注意的是,这些天体所围绕的“中心天体”必须为同一个天体,这个定律可以在后面的推导中证明。
2. 万有引力万有引力公式只要是两个有质量的物体,两者之间必定有万有引力的作用,公式为:记住:G 为引力常量,是由“卡文迪许”通过“扭秤实验”得来的,其目的就是为了测出地球质量。
这里要记住两个和地球有关的常数:质量6×1024kg ,半径6400km 。
m 1,m 2是这两个物体的质量r 为两个物体质心之间的距离,对于两个质点来说就是之间的距离。
而对于形状规则、质量均匀的几何体来说,质心就在几何中心。
关于万有引力公式需要说明几点:A. 万有引力公式是本章的基础,对于一个天体来说,它的运动状态就是由万有引力定律来支配B. 万有引力公式最常见的错误就是把公式写成12m m F G r=,把r 的平方给丢掉这是一个致命的错误,将会直接导致后面计算错误。
C. 万有引力的方向肯定在两物体之间的连线上而指向对方D. 甲对乙的引力和乙对甲的引力是一对作用力反作用力万有引力的规律从公式上来看,当两个物体质量一定时,万有引力随着距离的增大而减小,并且和距离的“平方”成反比。
所以一定要养成这样的意识,距离是原来n 倍,力就变为原来的n 2分之一倍,或者,力变为原来的n 分之一倍,这样会缩短做题时间,一般做题的时候不要在这方面浪费时间。
地球对地球表面的物体都有吸引力,这个力就表现在重力上,但要清楚,重力只是万有引力的一个分力。
可以这么想:万有引力首先得提供物体由于随地球自转而所需的向心力,剩下来的那部分就是重力。
这样就需要注意,向心力指向自转轴,所以重力就不能指向地心了。
又由于这个向心力很小,所以重力很接近万有引力。
当然,地球不同纬度所需向心力是不同的,赤道所需向心力最大,两极点不需要向心力,所以赤道表面的重力加速度最小,两极点重力加速度最大。
一个物体受到另一个物体的吸引力和第三个物体无关,所以太空中一个物体所受吸引力应为所有其他物体对它的吸引力的矢量和,只不过我们现在所考虑的都是吸引力最大的那个力(其他的引力比起这个引力小的不是一点半点)。
不过也有例外情况,最常见的就是在地球和月球的连线上,肯定v av b会有那么一个点,使得地球和月球对这一点上的物体的吸引力大小相等方向相反。
3. 天体运动在这里我们先介绍圆轨道,而我们常见的问题也是圆形轨道。
圆轨道的天体运动的特点一定要知道:A. 角速度ω,周期T ,速度大小v ,向心加速度大小a 都是固定的B. 万有引力完全的提供向心力2n Mm G F r =,我们以后所有的计算都是从这个公式推导过来的,其中M 表示中心天体,m 为绕中心天体运动的行星、飞船、卫星等的质量。
下面探讨绕“同一个中心天体”运动的那些行星、卫星、飞船的各个物理量之间的关系角速度ω和半径r 的关系万有引力提供向心力:22n Mm G F m r rω==可得:ω=也就是说半径越大(离中心天体越远),角速度越小线速度v 和半径r 的关系万有引力提供向心力:22n Mm v G F m r r==可得v =对于绕地球做匀速圆周运动的卫星来说,速度最快的那个轨道是沿地球表面的那颗,速度为第一宇宙速度s ,越往外速度越小也就是说半径越大(离中心天体越远),线速度越小;或者说越远速度越小周期T 和半径r 的关系万有引力提供向心力:222n Mm G F m r r T π⎛⎫== ⎪⎝⎭可得T =也就是说半径越大(离中心天体越远),周期越大;或者说越远的话,转一周用的时间越长。
参阅八大行星的公转周期。
关于开普勒第三定律 上面三个公式推导过程都是用了万有引力提供向心力,从222Mm G m r r T π⎛⎫= ⎪⎝⎭可知:3224r GM T π=,只要中心天体质量M 一样,那么轨道半径的三次方和周期平方只比就是固定值,这也就是为什么第三定律在应用时必须绕同一中心天体。
其实我们可以推导出这样的定律:对于所有绕同一中心天体运动的行星来说,轨道半径的三次方与角速度的平方的乘积是固定值对于所有绕同一中心天体运动的行星来说,速度的平方与半径的比值是固定值 实际上开普勒在研究行星运动规律的时候,周期是很好测的量,所以就研究出32r k T=的规律,其实它和上面两个式子是一样的意思。
而且,把上面两个式子联立的话就会出来最基本的圆周运动公式v r ω=双星系统双星系统的特点:万有引力提供向心力,由于两个天体受到的万有引力相等,所以向心力相等;绕连线上一点O 转动,并且角速度相同。
221122m r m ωω=L ,这样就能分别求出两个半径,将结果带回到“万有引力提供向心力”这个公式里就可以求出周期,角速m 1 m 2度,线速度等物理量。
其实双星系统的问题就是由下面三个方程决定也就是说对于一个双星问题来说,只要从上述三个方程里解出所需要的未知量即可。
4 天体质量和密度两种求法的主体思想还是找出“万有引力和所给物理量之间的关系”卫星法根据绕“中心天体”运动的一颗卫星、飞船、行星的“轨道参数”来求“中心天体”的质量。
原则还是:万有引力提供向心力222Mm G m r r T π⎛⎫= ⎪⎝⎭得 2324r M GT π= 由公式可知,要求M ,必须知道周期和半径,而m 消掉了。
所以只要知道这个卫星的周期和轨道半径即可求出中心天体的质量。
注意:这个卫星的质量对于求中心天体的质量没有任何用处,而且通过卫星的轨道半径和周期也无法求出卫星的质量。
当周期和半径已知的时候,就是运行速度和角速度已知,那么其他两个公式就不写了,可以推导后手写在旁边空白处。
要求得密度的话,得知道中心天体的半径,所以求中心天体密度的时候需要知道卫星的运行参数(自己回想)和中心天体的半径也就是说比求质量要多知道一个参数。
如果这个卫星是在近地轨道,r R ≈时,就有23GT πρ=,这样只需要知道近地轨道卫星的周期即可求出天体密度,但是注意:虽然能求得密度但不能求出质量,如果求质量的话,还是需要知道半径的。
总之,卫星法求天体质量必须知道卫星的轨道半径和周期,求密度的话还得知道天体半径,但可以通过近地卫星来简便的计算密度重力加速度法根据天体表面的重力加速度来求得天体质量,原则仍然是万有引力提供向心力,但是得加上一条前提条件:忽略自转影响,也就是认为重力等于万有引力2Mm G mg R= 得2gR M G = 求天体质量得知道表面重力加速度和天体半径 同样的,要求密度的话,得除以体积,得34g GRρπ=,也就是说知道重力加速度和天体半径之后就可以求得天体的质量和密度,卡文迪许当年也是这么做的。
顺便说明一下已学过的重力加速度的求法:打点计时器,自由落体,平抛运动,以及机械能守恒。
5 变轨问题A. 从低轨道到达一个高轨道,必须加速,这样才能做离心运动,才能上升。
我们前面学过,轨道半径越大,做圆周运动的速度越小,但是不要担心卫星不能在高轨道稳定,因为在往高轨道运动的过程当中,动能要转化为势能,速度会减少,这样也就能在高轨道稳定运行了B. 从高轨道到一个低轨道,必须减速,这样万有引力大于向心力,物体做向心运动,才能向低轨道运动。
也不要担心卫星由于速度小而不能在低轨道运行,因为轨道下降时势能会转化为动能,卫星的速度会增加,也就有可能在低轨道运行了C. 同轨道追及问题,根据前面可知:不可能在这个轨道上加速追,那样会升到高轨道,也不能先升到高轨道再回来,那样太费时间,比较合适的选择就是:先减速到低轨道(当然在低轨道运行的速度要比高轨道大),等快追上的时候再加速度升到原轨道。
具体原理结合前面两条D. 其实大家可以证明一下,轨道越高机械能越大,这就是我们为什么要升到高轨道的时候要加速6 关于各个轨道上卫星速度的问题三个卫星轨道1、2、3的关系如图所示,其中1、3为圆形轨道。
A. 卫星1的速度大于卫星3,这个规律我们前面已经推导过Q在P点,卫星2的速度大于卫星1 的速度,这样才能作离心运动到达高轨道B. 在Q点,卫星2的速度小于卫星3的速度,这样才能作向心运动到低轨道C. 从上可以看出,卫星2在近地点和远地点的速度差很大,这就涉及到动能和势能之间的转换了对于椭圆轨道的卫星来说,速度是可以大于第一宇宙速度s的,但肯定小于第二宇宙速度7 关于同步卫星问题对同步卫星的要求就是相对于地面来说卫星的位置不变,所以首先轨道必须在赤道上方,一旦有倾角的话肯定就不能相对于地面静止;其次,周期和地球自转周期一样,这样才不会比地球转的快或慢。
其中T为卫星公转周期,对于同步卫星来说就是地球自转周期,这样就可以求出同步卫星轨道半径r,这是一个固定值,最好能记住。
8 注意问题A. 注意符号r一般用来表示轨道半径或天体之间距离,而R一般只表示天体自身的半径B. 涉及到卫星问题的时候,一定要注意题目当中给出的是轨道半径r还是距地面高度h,这个很容易出错C. 万有引力公式和向心力公式一定要写对,这是解题的关键,一般这里错了,后面就一定错D. 熟练掌握一些推论很有好处,比如本总结里的E. 宇宙航行的内容就不在这里赘述,要明白三个宇宙速度分别指什么,要知道第一宇宙速度的推导和数值,尤其是第一宇宙速度的“数量级”F. 同步卫星没什么特殊的,无非就是周期正好是一天,这样还是根据万有引力提供向心力就能算出半径,最好记住它的半径ω=是不行的G. 大题中一定要写原始公式,不要直接用推论,比如直接写23r GMH. 结果一定要用常识进行检验,比如要是算出某个卫星的运行速度是90m/s的话,那就要检查计算的准确性了,一般错在这几个方面:1. 基本公式书写错误;2. 公式推导的过程中丢掉某些量或者把这些量写错,比如把平方丢掉;3. 数值计算错误;4. 代入数值的时候用的不是国际单位,比如把km当成m带入。
I. 无论天体运动的题有多难,都是在找寻天体运动的关键物理量:周期,半径,角速度,线速度之间的关系。