万有引力定律与天体运动知识总结
- 格式:doc
- 大小:114.50 KB
- 文档页数:2
万有引力与天体运动的关系引力是自然界中一种基本的物理现象。
而万有引力则是描述天体之间相互作用的重要力量。
它是由于质量而产生的,是一种吸引力,使得天体之间相互靠拢。
万有引力的发现和研究对于理解天体运动以及宇宙演化有着重要的意义。
牛顿在17世纪提出了万有引力定律,他认为两个物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。
这个定律可以简洁地表示为F=G*(m1*m2)/r^2,其中F是两个物体之间的引力,m1和m2是两个物体的质量,r是它们之间的距离,G是一个常数。
根据万有引力定律,天体之间的引力与它们的质量和距离有关。
质量越大,引力越大;距离越近,引力越大。
这就解释了为什么地球可以吸引住我们,而月球也可以吸引住地球。
地球质量大,所以对我们的引力很大;而月球离我们近,所以对我们的引力也很大。
万有引力还解释了为什么行星会围绕太阳运动。
太阳质量非常大,它的引力对行星的影响非常大,使得行星绕太阳运动。
行星离太阳越近,其运动速度越快;离太阳越远,其运动速度越慢。
这样,行星在太阳的引力和其自身的惯性作用下,形成了稳定的椭圆轨道。
除了行星绕太阳运动,万有引力还可以解释其他天体运动的现象。
例如,卫星绕地球运动、月球绕地球运动等。
所有这些运动都可以用万有引力定律来描述,而且都符合定律的预测。
除了描述天体运动,万有引力还可以解释天体之间的相互影响。
例如,当两个星系靠近时,它们之间的引力会使它们相互靠拢,甚至发生碰撞。
这样的引力交互作用对于理解星系演化和宇宙结构的形成有着重要的意义。
万有引力还可以解释为什么在宇宙中有星系、星云、恒星等天体的存在。
宇宙中的物质在引力的作用下逐渐聚集形成了这些天体。
而恒星的形成和演化也与引力密切相关,它们的质量和结构都受到引力的影响。
万有引力的研究不仅有助于我们理解宇宙的起源和演化,还对人类的生活产生了重要影响。
例如,卫星的轨道设计和导航系统的建立都依赖于对引力的准确理解和计算。
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
万有引力与天体运动引言:在自然界中,存在着一种无所不在的力量,即万有引力。
万有引力是负责使得天体之间相互吸引的力量,它是牛顿力学的基本法则之一。
本文将探讨万有引力的定义、原理及其与天体运动的关系。
一、万有引力的定义与原理万有引力是指任意两个物体之间存在相互吸引的力量,这种力量与物体的质量和距离有关。
根据牛顿第三定律,相互作用的两个物体之间的引力大小相等,方向相反。
万有引力的存在与质量有关,质量越大的物体,其引力也越大。
而且,两个物体之间的引力与它们之间的距离的平方成反比,即距离越近,引力越强。
二、天体运动的基本规律根据万有引力的原理,天体运动遵循以下基本规律:1. 开普勒定律约翰内斯·开普勒是天体运动领域的重要科学家之一,他总结出三个著名的运动定律。
第一定律表明天体绕太阳运动的轨道是椭圆形,而不是圆形。
这就意味着天体在其轨道上的位置不是固定的,而是变化的。
2. 第二定律开普勒的第二定律,也称为面积定律,表明天体在相同时间内扫过的面积相等。
换句话说,当天体离太阳较远时,它的速度较慢;当它距离太阳较近时,速度较快。
这个定律说明了天体在椭圆轨道上的运动速度是不均匀的。
3. 第三定律开普勒的第三定律,也称为调和定律,阐述了天体轨道周期与半长轴的关系。
具体来说,天体运动的周期的平方与它的椭圆轨道的半长轴的立方成正比。
这个定律揭示了天体运动的规律性,使得科学家们可以通过研究地球运动来推导出其他天体的运动规律。
三、天体运动和万有引力的关系天体运动与万有引力有着密不可分的关系,万有引力是驱动天体运动的根本力量。
在太阳系中,太阳是最重要的引力中心,其他行星、卫星以及小行星等都围绕太阳进行运动。
1. 行星运动行星绕太阳运动的轨道是椭圆形,行星距离太阳越近,它们的速度越快;相反,距离越远,速度越慢。
这符合开普勒定律中的第二定律。
行星的运动速度与距离有关,而这种变化正是受到万有引力的影响。
2. 月球运动月球是地球的卫星,它也受到地球的引力影响,围绕地球进行运动。
万有引力与天体运动研究报告小结示例文章篇一:《万有引力与天体运动研究报告小结》嘿,你知道吗?咱们生活的这个宇宙啊,就像一个超级神秘又超级有趣的大游乐场,而万有引力和天体运动呢,就像是这个游乐场里最刺激、最神秘的游乐项目。
咱先来说说万有引力吧。
牛顿发现万有引力的时候,那可真是一个超级伟大的时刻,就好像在黑暗中突然点亮了一盏超级亮的灯。
我就想啊,牛顿当时肯定是个超级爱思考的人。
你看啊,苹果从树上掉下来,这事儿在咱平常人眼里,那就是个再平常不过的事儿了,说不定还会想,这苹果熟了不掉下来才怪呢。
可是牛顿他老人家就不一样啊,他就琢磨着,为啥这苹果是往地上掉,而不是往天上飞呢?这一琢磨可不得了,就琢磨出了万有引力这个大宝贝。
万有引力就像是宇宙中的一条看不见的绳子。
你想啊,咱们地球上的东西,不管是大的像山,还是小的像一粒沙子,都被这条看不见的绳子给拴着呢。
而且这绳子的力量可神奇了,它不是乱拴的。
质量越大的东西,它拴得就越紧。
就好比是两个大力士在拔河,力气大的那个肯定能把力气小的那个拉得更靠近自己。
在宇宙里也是一样,像地球这么大质量的星球,就把咱们人啊、动物啊、还有那些花花草草,都紧紧地拽在自己身上。
要是没有万有引力,咱们估计就像气球一样,到处乱飞了。
那可就乱套了,说不定早上一睁眼,人就飘到外太空去了,想想都可怕。
再说说天体运动吧。
那些天体在宇宙里就像是一群舞者,各自有着自己独特的舞步。
行星绕着恒星转,就像孩子围着妈妈转一样。
拿咱们地球来说吧,地球就绕着太阳这个大火球转啊转。
我就常常在想,地球在转的时候,会不会也有累的时候呢?哈哈,这当然是开玩笑啦。
地球的这种运动可是非常有规律的,它就这么一圈又一圈地转着,带来了白天和黑夜,带来了春夏秋冬。
其他的行星也一样啊。
它们在万有引力的作用下,有条不紊地进行着自己的运动。
你看木星,那可是个大家伙,它也乖乖地按照自己的轨道运行。
这就好比是在一个超级大的舞池里,每个舞者都知道自己的位置,都知道自己该怎么跳,谁也不会乱了脚步。
运用万有引力定律解决天体运动问题的技巧天体运动一直是人类研究的焦点之一,而万有引力定律无疑是解决天体运动问题的重要工具。
本文将探讨运用万有引力定律解决天体运动问题的一些技巧,并展示相关的实例。
首先,我们需要了解万有引力定律的基本原理。
根据牛顿的万有引力定律,任何两个物体之间都存在着相互吸引的力,该力与两个物体的质量成正比,与它们之间的距离的平方成反比。
这一定律的数学表达式为 F = G × (m1 × m2) / r^2,其中 F 表示两个物体之间的引力,G为引力常数,m1 和m2 分别为两个物体的质量,r 为它们之间的距离。
在解决天体运动问题时,一个重要的技巧是将天体视为质点。
这意味着我们可以忽略天体的大小和形状,只关注其质量和位置的变化。
这样简化后的问题更容易处理,因为只需考虑质心的运动即可。
另一个技巧是利用万有引力定律来计算天体之间的引力。
考虑两个天体 A 和 B,它们之间的引力可以根据万有引力定律计算得到。
如果我们已知 A 和 B 的质量以及它们之间的距离,那么我们就可以通过代入公式来求解引力的大小。
如果我们想计算 B 受到的引力,我们可以将 A 和 B 的质量互换位置再代入公式中即可。
除了计算引力的大小,我们还可以利用万有引力定律来研究天体的运动轨迹。
在这种情况下,我们需要运用牛顿的第二定律,即力等于质量乘以加速度。
对于天体 A,它受到来自天体 B 的引力,根据牛顿第二定律,我们可以设立以下公式:m1 × a1 = G × (m1 × m2) / r^2,其中 a1 表示天体 A 的加速度。
同样地,对于天体 B,我们可以得到 m2× a2 = G × (m1 × m2) / r^2,其中 a2 表示天体 B 的加速度。
通过求解这两个方程组,我们可以得出天体的加速度,进而推导出其运动轨迹。
举个例子来说明这些技巧的应用。
万有引力定律-知识点万有引力定律及其应用万有引力定律是自然界中最普遍的规律之一,它把地面上的运动与天体运动统一起来。
根据定律,宇宙间的一切物体都是互相吸引的,两个物体间的引力大小与它们的质量的乘积成正比,与它们的距离的平方成反比。
该定律的公式为F=Gm1m2/r^2,其中G为万有引力恒量,其数值为6.67×10^-11 N·m^2/kg^2.万有引力定律适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离。
对于均匀的球体,r是两球心间的距离。
重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力。
重力实际上是万有引力的一个分力。
另一个分力就是物体随地球自转时需要的向心力。
表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化。
通常的计算中因重力和万有引力相差不大,而认为两者相等。
在地球的同一纬度处,重力加速度g随物体离地面高度的增大而减小,即g_h=GM/(r+h),比较得g_h=(2r^2)·g/(r+h)。
在赤道处,物体的万有引力分解为两个分力F_向和m2g,即m2g=F=F_向+m2g。
因此,m2g=Gm1m2/r^2-m2Rω自,所以m2g=Gm1m2/r^2-2m2Rω自,其中G为万有引力恒量,ω自为地球自转角速度,R为地球半径。
设天体表面重力加速度为g,天体半径为R,则mg=Gm1M/(R^2),其中M为天体的质量。
五、天体质量和密度的计算根据原理,天体对其卫星(或行星)的引力是卫星绕天体做匀速圆周运动的向心力,即$G\frac{mM}{r^2}=\frac{mv^2}{r}$。
由此可得,$M=\frac{4\pi^2r^3}{GT^2}$,$\rho=\frac{3M}{4\piR^3}$(其中$R$为行星的半径)。
因此,只要用实验方法测出卫星的半径$r$及运行周期$T$,就可以算出天体的质量$M$。
万有引力知识点总结第1篇1.开普勒第三定律:t2/r3=k(=42/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:f=gm1m2/r2(g=,方向在它们的连线上)3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2{r:天体半径(m),m:天体质量(kg)}4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;=(gm/r3)1/2;t=2(r3/gm)1/2{m:中心天体质量}5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=;v2=;v3=6.地球同步卫星gmm/(r地+h)2=m42(r地+h)/t2{h36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的xxx力由万有引力提供,f向=f万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发*速度均为。
万有引力知识点总结第2篇定义:万有引力是由于物体具有质量而在物体之间产生的一种相互作用。
它的大小和物体的质量以及两个物体之间的距离有关。
物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。
其中G代表引力常量,其值约为×10的负11次方单位N·m2/kg2。
为英国科学家卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期)如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小mrω^2=mr(4π^2)/T^2另外,由开普勒第三定律可得r^3/T^2=常数k'那么沿太阳方向的力为mr(4π^2)/T^2=mk'(4π^2)/r^2由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
如何运用万有引力定律解决天体运动问题引言:天体运动一直以来都是天文学中的重要研究领域。
除了运用天文望远镜观测天体,众多科学家还运用物理学中的定律,特别是万有引力定律,来解决天体运动问题。
本文将探讨如何运用万有引力定律解决天体运动问题,从中揭示宇宙的奥秘。
一、万有引力定律的基本概念和公式万有引力定律是由牛顿在17世纪提出的,它描述了任意两个物体之间的引力作用。
该定律可以总结为以下公式:F =G * (m1 * m2) / r^2其中,F是两个物体之间的引力,G为万有引力常数,m1和m2分别为两个物体的质量,r是它们之间的距离。
二、解决行星公转问题的方法1. 行星公转的引力计算以地球绕太阳公转为例,使用万有引力定律可以计算出地球受到的太阳引力。
假设地球的质量为m1,太阳的质量为m2,地球到太阳的距离为r,根据公式,我们可以计算出地球受到的引力F。
这个引力将使地球绕太阳旋转。
2. 推导行星公转轨道在行星公转问题中,需要找到行星的轨道方程。
由于行星的质量相对于太阳来说可以忽略不计,我们可以将地球近似为质点。
根据牛顿第二定律,行星所受的万有引力与行星的加速度有关。
通过解析几何学,可以得出行星的轨道方程。
三、解决卫星运动问题的方法1. 卫星绕地球的运动与行星公转不同,卫星绕地球运动需要考虑地球的质量对其产生的引力。
使用万有引力定律可以计算出卫星受到的地球引力。
同样地,通过求解卫星的运动轨迹方程,我们可以得到卫星运动的轨道。
2. 定位卫星的发射卫星定位是现代通信技术中不可或缺的部分。
为了在地球上的不同位置接收到信号,卫星的发射轨道需要精确计算和规划。
运用万有引力定律,科学家可以根据卫星质量、地球质量和所需的轨道高度,计算出卫星所需的发射速度和轨道位置。
四、探索星系和宇宙的运动万有引力定律不仅可以解释行星和卫星的运动,还可以应用于研究星系和宇宙的运动。
科学家通过观测星系中恒星的运动和轨道,运用万有引力定律来解释星系的运动轨迹,并理解宇宙的演化过程。
万有引力定律与天体运动万有引力定律是物理学中最基础、最重要的定律之一,它描述了物体之间存在的万有引力以及天体的运动规律。
该定律由英国科学家牛顿在17世纪形成,并为后来的物理学发展奠定了坚实的基础。
本文将通过介绍万有引力定律的基本概念、公式推导、应用实例等方面,深入探讨万有引力定律与天体运动之间的关系。
一、万有引力定律的基本概念万有引力定律是牛顿力学的重要组成部分,它表明任何两个物体之间都存在引力的相互作用。
根据该定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
其中,引力的大小用F表示,质量分别为m1和m2的两个物体之间的距离用r表示。
万有引力定律的表达式如下:F =G * m1 * m2 / r^2其中,G为万有引力常量,其值约为6.67 × 10^-11 N·m^2/kg^2。
万有引力定律是一个矢量关系,方向与两物体之间直线连接的方向相同,即引力是沿着物体之间连线的方向。
二、万有引力定律的公式推导万有引力定律的公式推导是基于牛顿第二定律和牛顿运动定律,其过程相对复杂,涉及到引力场、势能、力的合成等知识。
在这里,为了保持文章的连贯性和简洁性,略去具体的数学推导过程。
三、万有引力定律与天体运动的关系万有引力定律对于解释天体运动和宇宙中一系列现象具有重要的作用。
首先,根据牛顿的第一定律,物体将保持匀速直线运动,直到外力作用改变其状态。
在此基础上,万有引力定律解释了太阳系行星的椭圆轨道运动。
行星围绕太阳运行,其轨道可近似看作椭圆,太阳位于椭圆的一个焦点上。
同时,根据牛顿的第三定律,行星与太阳之间的引力大小相等,方向相反。
这样,行星在引力作用下沿椭圆轨道运动。
其次,万有引力定律还解释了地球上的重力现象。
地球表面的物体受到地球吸引力的作用,不断地向地心方向运动,形成了地球上的重力。
地球的引力是万有引力定律在地球尺度上的应用,它对地球上的物体产生的作用力与物体的质量成正比。
牛顿万有引力定律与天体运动在我们的日常生活中,我们常常能够感受到地球的引力。
当我们举起一颗苹果,它会落回地面;当我们行走在地面上时,我们能够感受到地球对我们的吸引力。
这就是一个简单的例子,说明了引力的存在和作用。
引力是一个广泛存在于整个宇宙中的力量,而牛顿的万有引力定律正是揭示了这一力量背后的科学原理。
牛顿的万有引力定律是物理学中最基本的定律之一,它被广泛应用于解释天体运动。
根据这个定律,任何两个物体之间都会存在引力,而这个引力的大小与这两个物体的质量和它们之间的距离有关。
简单来说,万有引力定律可以表示为F = G * (m1 * m2) / (r^2),其中F表示两个物体之间的引力,G是一个常数,m1和m2分别是这两个物体的质量,而r代表它们之间的距离。
应用牛顿的万有引力定律,我们可以解释许多天体运动的现象。
首先,我们可以解释为什么地球和其他行星围绕太阳运行。
根据万有引力定律,太阳对地球和其他行星产生了引力,而这个引力使它们保持在太阳的引力场中,并围绕着太阳运动。
这就是我们所熟知的行星公转。
除了行星的公转,牛顿的万有引力定律还可以解释其他许多天体运动。
例如,根据这个定律,我们可以解释为什么天体之间会产生潮汐现象。
地球和月球之间的引力使得海洋发生周期性的涨潮和退潮。
这种现象在我们的生活中非常常见,而万有引力定律能够很好地解释其中的原因。
除了潮汐现象,万有引力定律还可以解释彗星的轨道。
彗星是一种由冰、尘埃和岩石组成的天体,在它们的运动过程中,受到太阳的引力作用,使得它们围绕太阳形成椭圆轨道。
这一现象同样可以用牛顿的万有引力定律来解释。
然而,尽管牛顿的万有引力定律在解释天体运动中获得巨大成功,它在特殊的情况下并不完全准确。
例如,在极端的高速运动或强引力场下,爱因斯坦的广义相对论更准确地描述了物体的运动和引力场的性质。
但是,在大多数情况下,牛顿的万有引力定律仍然是我们理解和解释天体运动的重要工具。
牛顿的万有引力定律不仅揭示了天体运动背后的科学原理,还赋予了人类对宇宙的更深入认识。
第12讲万有引力与天体运动一、开普勒三定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个上.2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的相等.3.开普勒第三定律:所有行星的轨道的的三次方跟的二次方的比值都相等.二、万有引力定律1.内容:自然界中任何两个物体都互相吸引,引力的大小与物体的质量的乘积成,与它们之间距离的二次方成.2.公式:(其中引力常量G=6.67×10-11 N·m2/ kg2).3.适用条件:公式适用于质点之间以及均匀球体之间的相互作用,对均匀球体来说,r是两球心间的距离.三、天体运动问题的分析1.运动学分析:将天体或卫星的运动看成运动.2.动力学分析:(1)由万有引力提供,即F向=G Mmr2=man=m v2r=mω2r=m(2πT)2r.(2)在星球表面附近的物体所受的万有引力近似等于,即G Mmr2=mg(g 为星球表面的重力加速度).【辨别明理】(1)牛顿利用扭秤实验装置比较准确地测出了引力常量.()(2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小.()(3)近地卫星距离地球最近,环绕速度最小.()(4)地球同步卫星根据需要可以定点在北京正上空.()(5)极地卫星通过地球两极,且始终和地球某一经线平面重合.()(6)发射火星探测器的速度必须大于11.2 km/s.()考点一万有引力及其与重力的关系例1 (多选)设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R.宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2=F02.假设第三次在赤道平面内深度为R2的隧道底部,示数为F3;第四次在距星表高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是()A.F3=F04 B.F3=15F04C.F4=0D.F4=F04■题根分析1.万有引力与重力的关系地球对物体的万有引力F表现为两个效果:一是重力mg,二是提供物体随地球自转的向心力F向,如图12-1所示.图12-1(1)在赤道处:G MmR2=mg1+mω2R.(2)在两极处:G MmR2=mg2.(3)在一般位置:万有引力G MmR2等于重力mg与向心力F向的矢量和.越靠近南、北两极,g值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即G MmR2=mg.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g(不考虑地球自转):mg=G MmR2,得g=GMR2.(2)在地球上空距离地心r=R+h处的重力加速度g':mg'=G Mm(R+ℎ)2,得g'=GM(R+ℎ)2,所以gg'=(R+ℎ)2R2.■变式网络变式题1 (多选)火箭载着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器,如图12-2所示.火箭从地面起飞时,以加速度g02竖直向上做匀加速直线运动(g0为地面附近的重力加速度),已知地球半径为R,升到某一高度时,测试仪器对平台的压力刚好是起飞时压力的1727,此时火箭离地面的高度为h,所在位置重力加速度为g,则()图12-2A.g=2g03B.g=4g09C.h=RD.h=R2变式题2 假设地球是一半径为R、质量分布均匀的球体,一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为()A.1-dR B.1+dRC.(R-dR )2D.(RR-d)2变式题3 假设地球可视为质量均匀分布的球体.已知地球表面的重力加速度在两极的大小为g0,在赤道的大小为g,地球自转的周期为T,引力常量为G,则地球的密度为()A.3π(g0-g)GT2g0B.3πg0GT2(g0-g)C.3πGT2D.3πg0GT2g考点二天体质量及密度的计算(1)利用卫(行)星绕中心天体做匀速圆周运动求中心天体的质量计算天体的质量和密度问题的关键是明确中心天体对它的卫星(或行星)的引力就是卫星(或行星)绕中心天体做匀速圆周运动的向心力.由G Mmr2=m4π2T2r,解得M=4π2r3GT2;ρ=MV=M43πR3=3πr3GT2R3,R为中心天体的半径,若为近地卫星,则R=r,有ρ=3πGT2.由上式可知,只要用实验方法测出卫星(或行星)做圆周运动的半径r及运行周期T,就可以算出中心天体的质量M.若再知道中心天体的半径,则可算出中心天体的密度.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G,天体密度ρ=MV =M43πR3=3g4πGR.例2[2017·北京卷]利用引力常量G和下列某一组数据,不能计算出地球质量的是()A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离变式题1 我国成功地进行了“嫦娥三号”的发射和落月任务,进一步获取月球的相关数据.该卫星在月球上空绕月球做匀速圆周运动时,经过时间t,卫星的路程为s,卫星与月球中心连线扫过的角度是θ弧度,引力常量为G,月球半径为R,则可推知月球密度的表达式是()A.3t 2θ4πGs3R3B.4θπR3Gt23s3C.3s 34θπGt2R3D.4πR3Gs33θt2变式题2 已知“慧眼”卫星绕地球做匀速圆周运动,其轨道半径为r,运动周期为T,地球半径为R,引力常量为G,则下列说法正确的是()A.“慧眼”卫星的向心加速度大小为4π2rT2B.地球的质量大小为4π2R3GT2C.地球表面的重力加速度大小为4π2RT2D.地球的平均密度大小为3πGT2■要点总结天体质量和密度的估算问题是高考命题热点,解答此类问题时,首先要掌握基本方法(两个等式:①由万有引力提供向心力;②天体表面物体受到的重力近似等于万有引力),其次是记住常见问题的结论,主要分两种情况:(1)利用卫星的轨道半径r和周期T,可得中心天体的质量M=4π2r3GT2,并据此进一步得到该天体的密度ρ=MV =M43πR3=3πr3GT2R3(R为中心天体的半径),尤其注意当r=R时,ρ=3πGT2.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G ,天体密度ρ=MV=M43πR3=3g4πGR.考点三黑洞与多星系统1.双星系统系统可视天体绕黑洞做圆周运动黑洞与可视天体构成的双星系统两颗可视天体构成的双星系统图示向心力的来源黑洞对可视天体的万有引力彼此给对方的万有引力彼此给对方的万有引力2.多星系统系统 三星系统(正三角形排列)三星系统(直线等间距排列)四星系统图示向心力 的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力例3 天文学家们推测,超大质量黑洞由另外两个超大质量黑洞融合时产生的引力波推射出该星系核心区域.在变化过程中的某一阶段,两个黑洞逐渐融入到新合并的星系中央并绕对方旋转,这种富含能量的运动产生了引力波.假设在合并前,两个黑洞互相绕转形成一个双星系统,如图12-3所示,若黑洞A 、B 的总质量为1.3×1032 kg ,球心间的距离为2×105 m ,产生的引力波周期和黑洞做圆周运动的周期相当,则估算该引力波周期的数量级为(G=6.67×10-11 N ·m 2/kg 2) ( )图12-3A .10-1sB .10-2sC .10-3sD .10-4s变式题 [2018·江西新余二模] 天文观测中观测到有三颗星位于边长为l 的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T 的匀速圆周运动.已知引力常量为G ,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是 ( )图12-4A.它们两两之间的万有引力大小为16π4l49GT4B.其中一颗星的质量为3GT 24π2l3C.三颗星的质量可能不相等D.它们的线速度大小均为2√3πlT■要点总结多星问题的解题技巧(1)挖掘一个隐含条件:在圆周上运动的天体的角速度(或周期)相等.(2)重视向心力来源分析:双星做匀速圆周运动的向心力由它们之间的万有引力提供,三星或多星做圆周运动的向心力往往是由多个星的万有引力的合力提供. (3)区别两个长度关系:圆周运动的轨道半径和万有引力公式中两天体的距离是不同的,不能误认为一样.完成课时作业(十二)。
总结天体运动的知识点一、天体运动的基本规律1. 开普勒三定律开普勒三定律是描述行星运动的基本规律,其中第一定律指出,行星在椭圆轨道上运行,太阳位于椭圆的一个焦点上;第二定律指出,行星和太阳连线在相等的时间内扫过相等的面积;第三定律指出,行星的公转周期的平方与平均轨道半长径的立方成正比。
2. 开普勒运动定律的物理意义开普勒三定律对描述行星的运动有很强的物理意义,它揭示了行星的运动规律,使我们可以更好地理解行星围绕太阳的运动方式以及行星轨道的形状和大小。
3. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们质量和距离的平方成反比的关系。
该定律在描述行星和其他天体之间的引力作用以及行星公转和自传的运动规律方面有着重要的应用。
4. 行星的自转行星的自转是指行星绕自身轴旋转的运动。
自转的速度、方向和倾角等参数对行星的气候、地理特征以及地球上的时间和季节等有着重要的影响。
二、天体运动的影响1. 天体运动对地球的影响天体运动影响着地球的气候、季节、潮汐等自然现象。
例如,地球公转和自转决定了地球的昼夜变化和季节变化;月球的引力影响地球的潮汐现象,对海洋和大气运动有着重要的影响。
2. 天体运动对人类文明的影响天体运动对人类文明有着深远的影响。
古代人类通过观察天体运动来确定时间、规划农事、寻找方向等。
现代人类通过天文观测来研究宇宙的起源、地球的环境变化以及行星生命的可能性,对于推动科学技术的发展和人类文明的进步有着重要的作用。
三、天体运动的研究方法1. 天文观测天文观测是研究天体运动的基本方法。
通过望远镜、天文台以及太空探测器对天体进行观测,获取天体的位置、速度、亮度等信息,从而揭示天体的运动规律。
2. 数值模拟数值模拟是研究天体运动的重要方法,通过建立数学模型对天体的运动规律进行模拟和预测。
数值模拟可以帮助我们理解天体运动的复杂性和规律性,为天文学研究提供重要的理论依据。
3. 天体力学天体力学是研究天体运动的物理学分支,通过牛顿力学和引力理论等物理学原理分析天体的运动规律,揭示天体之间的相互作用以及天体运动的基本规律。
万有引力定律与天体运动知识总结一、开普勒行星运动定律1) 轨道定律:近圆,太阳处在圆心(焦点)上 2) 面积定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。
K= k 取决于中心天体3) 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值相等。
k= ,[r 为轨道半径]二、万有引力定律F 引=2rMm G G=6.67×10-11Nm 2/kg 2 卡文迪许扭秤 测量出来 三、重力加速度1. 星体表面:F 引≈G =mg 所以:g = GM/ R 2(R 星体体积半径)2. 距离星体某高度处:F ’引 ≈G’ =mg ’3. 其它星体与地球重力加速度的比值四、星体(行星 卫星等)匀速圆周运动 状态描述1. 假设星体轨道近似为圆.2. 万有引力F 引提供星体圆周运动的向心力FnF n =r mv 2F n=22T mr 4π F n = m ω²r Fn=F 引 r mv 2=2r Mm G =22Tmr 4π = m ω²rr GM v =,r 越大,ν越小; 3r GM =ω,r 越大,ω越小 23T a 23T rGM r T 324π=,r 越大,T 越大。
3. 计算中心星体质量M1) 根据 g 求天体质量 mg= M= M 为地球质量,R 为物体到地心的距离2)根据环绕星体的圆周运动状态量,F 引=Fn 2r MmG =22T mr 4π M= (M 为中心天体质量,m 为行星(绕行天体)质量4. 根据环绕星体的圆周运动状态量(已知绕行天体周期T ,环绕半径≈星体半径), 计算中心星体密度ρρ=v m =323R G T r 3π [v=3r 34π] 若r≈R ,则ρ=2GT3π 5. 计算卫星最低发射速度 (第一宇宙速度VI = (近地)= (r 为地球半径 黄金代换公式)第一宇宙速度(环绕速度):s km v /9.7=;第二宇宙速度(脱离速度,飞出地月系):s km v /2.11=;第三宇宙速度(逃逸速度,飞出太阳系):s km v /7.16=。
万有引力定律与天体运动知识总结
一、开普勒行星运动定律
1) 轨道定律:近圆,太阳处在圆心(焦点)上 2) 面积定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。
K= k 取决于中心天体
3) 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值相等。
k= ,[r 为轨道半径]
二、万有引力定律
F 引=2r
Mm G G=6.67×10-11Nm 2/kg 2 卡文迪许扭秤 测量出来 三、重力加速度
1. 星体表面:F 引≈G =mg 所以:g = GM/ R 2(R 星体体积半径)
2. 距离星体某高度处:F ’引 ≈G’ =mg ’
3. 其它星体与地球
重力加速度的比值
四、星体(行星 卫星等)匀速圆周运动 状态描述
1. 假设星体轨道近似为圆.
2. 万有引力F 引提供星体圆周运动的向心力Fn
F n =r mv 2
F n=2
2T mr 4π F n = m ω²r Fn=F 引 r mv 2=2r Mm G =22T
mr 4π = m ω²r
r GM v =,r 越大,ν越小; 3
r GM =ω,r 越大,ω越小 23
T a 23T r
GM r T 324π=,r 越大,T 越大。
3. 计算中心星体质量M
1) 根据 g 求天体质量 mg= M= M 为地球质量,R 为物体到地心的距离
2)根据环绕星体的圆周运动状态量,
F 引=Fn 2r Mm
G =22T mr 4π M= (M 为中心天体质量,m 为行星(绕行天体)质量
4. 根据环绕星体的圆周运动状态量(已知绕行天体周期T ,环绕半径≈星体半径), 计算中心星体密度ρ
ρ=v m =323R G T r 3π [v=3r 34π] 若r≈R ,则ρ=2GT
3π 5. 计算卫星最低发射速度 (第一宇宙速度VI = (近地)= (r 为地球半径 黄金代换公式)
第一宇宙速度(环绕速度):s km v /9.7=;
第二宇宙速度(脱离速度,飞出地月系):s km v /2.11=;
第三宇宙速度(逃逸速度,飞出太阳系):s km v /7.16=。
6. 人造卫星上失重的现象
分析卫星上某物体受合力及圆周运动的状态
F 万 – N = m v ²/r 物体视重 N= F 万 - m v ²/r ( r=R 地 + h ) ∵F 万 = m v ²/r ∴ N=0 即卫星在围绕地球做圆周运动时,它上面物体处于失重状态
7. 同步卫星升轨,全球通信
8. 其它功能人造卫星:
1)全球定位系统 GPS ,由24颗卫星组成
分布在6个轨道平面
2)人造月球卫星
G
gR 2
232G T
r 4πr
GM。