高考复习专题——三视图还原
- 格式:ppt
- 大小:2.32 MB
- 文档页数:14
⾼中数学⽴体⼏何三视图⾼效还原法:拔⾼法三视图在⾼考考查的实质是空间想象有些同学们的空间想象能⼒⽐较强,快速还原出对应的⽴体图形,这种题⽬得以解决,⽽且有的同学空间想象⼒稍微弱⼀些,这种题⽬是⾮常难做出来的。
同学,⽼师今天给⼤家讲解⼀种⽅法——拔⾼法 拔⾼法不需要同学们空间想象,⾮常快速就能还原出对应的⽴体图形。
只要同学能够掌握拔⾼法,其他还原⽴体图形⽅法感觉弱爆了,三线交汇等⽅法通通都不如拔⾼法来的直接、暴⼒。
那么拔⾼法能够还原90%左右的图形,还有⼀部分图形10%不能⽤拔⾼法还原出来的。
那么⽤什么⽅法呢?⽤正⽅体切,⽽正⽅体切⽤六字箴⾔,这种类型⽐较⾼效。
什么时候能⽤拔⾼法,其他⽅法在体系课程⾥,只要看了课程就知道什么时候⽤拔⾼,什么⽤正⽅体切。
⾸先⾸拔⾼法,没有⽅法的情况下使⽤正⽅体切。
把⽴体图形还原之后,有三种题型: 1、让你判断其形状; (给出三个图形正视图,侧视图,俯视图让你判断形状) 2、由两个试图读出另⼀视图; (⽐如:给正视和俯视,读出侧视) 3、考察的综合运算——让你去求多⾯体棱长最⼤值、求体积或者表⾯积。
(综合运算,综合运算在⾼考考查的频率是最⾼的,还原完三视图之后,让同学们算出⽴体图形中最长棱长,⾯积最⼤值。
或者求体积,表⾯积。
求体积表⾯积最经常考的⼜是什么题型——锥体的题型,因为锥体表⾯积考察的频率最⾼。
如果,不论底⾯是三⾓形还是四边形,上顶点前后左右稍微平动⼀些,那么这个⽴体图形的三视图会发⽣本质改变,所以锥体求体积求表⾯积出的⼏率⽐较⾼。
) 对于这些问题,你只要把⽴体图形还原出来,这个题⽬没有任何难度了。
那么有的同学空间想象稍微偏弱,那种问题就不会得到快速解决,那么怎样快速准确还原对应的三视图呢?⽅法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正⽅体切等⽅法,但是我给同学们讲,这些⽅法都不能最⾼效、最准确的还原三视图,如果你所有的⽴体图形都⽤三线交汇、或者正⽅体切等⽅法,我告诉⼤家就想⼩题⼤做了,你会发现解题会⽐较困难。
同学们,今天我们来讲一下立体几何里面的三视图,其实三视图主要考察点是空间想象,如果同学们的空间想象能力比较强,如果你能快速还原出对应的立体图形,那么这道问题就马上解决,它无非就是考察几个点:1、让你判断其形状;2、由两个试图读出另一视图;3、考察的综合运算——让你去求多面体棱长最大值、求体积或者表面积。
对于这些问题,你只要把立体图形还原出来,这个题目没有任何难度了。
那么有的同学空间想象稍微偏弱,那种问题就不会得到快速解决,那么怎样快速准确还原对应的三视图呢?方法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正方体切等方法,但是我给同学们讲,这些方法都不能最高效、最准确的还原三视图,如果你所有的立体图形都用三线交汇、或者正方体切等方法,我告诉大家就想小题大做了,你会发现解题会比较困难。
那么我今天给大家讲一种方法叫——拔高法,它能够还原90%以上的三视图,还有10%是偏难的要用别的方法:六字箴言——先去除再确定,就能够把所有的三视图题快速准确还原出来,这个方法我以后再给大家讲。
首先,我们来看一下拔高法的步骤:1、拔高法最主要的就是俯视图,是三视图的根基,首先标出俯视图的所有节点;画出俯视图所对应的直观图;2、由主、侧视图的左、中、右找出所被拔高的点。
什么意思?那我们先来看一道题,大家要好好理解,好好掌握,只要理解透彻以后,再解题可能就10来秒一道题,是非常快速,而且非常准确。
拔高法还原三视图1.某多面体的三视图如圏所示’则这个多面体的最长棱长为好,我们先将俯视图作底座,这个最重要:(请注意:我们先只画俯视图外轮廓的直观图,至于哪个虚线那个实线,我们先不管它,先都画成虚线。
最终哪个需要是实线,到后面再看)。
③然后由俯视图看主视图,我们在俯视图和主视图上都标出它们相对应的节点左、中、右f4+47 PA j? AA拔高法还原三视图1.某多面体的三视图如圏所示’则这个多面体的最长棱长为现在大家看,不难发现,主视图的左边是没有被拔高的,中间虽然高了,但没有节点,我们 可以认为他没有高或者不用管它,那么由俯看主就只有右边被拔高了。
高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析根据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD 中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.B.6 C.D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.40+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A侧视图俯视图正视图2A 、2B、4 C 、83D 、2 5、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C)61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)(D)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B )1()A 6 ()B 9 ()C 12 ()D 189、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于13、某几何体的三视图如图所示,则该几何体的体积为_____________.8314、某几何体的三视图如图所示,则该几何体的体积为_____________.15、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A. B. C .6 D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+323。
高中数学 | 三视图还原——七字真言闯天下 解决三视图问题,尤其是一些比较复杂的三视图还原问题,需要极强的空间想象能力.这给好多同学(包括一些空间想象能力挺强的同学)造成了一定的压力,如果在高考中碰到一个稍有些不常规的三视图,绝对会给在高考中以数学成绩为倚傍的同学设置了一道拦路虎,要是稍微一心慌,那我们与这一道分题就失之交臂了,也会给后面的答题造成心理影响.比如2014年全国1卷第12题,当时就将相当大一部分同学斩于马下.今天小编就带领大家为曾经在类似这样的三视图还原问题上折戟沉沙的同学报仇雪恨.我们的口号是“七字真言扫天下,不破胡虏誓不归.”就从这道高考题入手吧.2014年高考全国 I 卷理科第12题(选择压轴题):如图,网格纸上小正方形的边长为 ,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )A .26B .6C .24D .4正确答案是 B .解由三视图可知,原几何体的长、宽、高均为 ,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,左视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可.大家是不是体会到了用这种方法还原三视图的妙处呢?这种方法的核心其实就是七个字:“三线交汇得顶点”.这样是不是比我们以前那种天马行空的遐想接地气一些呢?由此,我们在三视图还原上就可以七字真言扫天下了.注一此方法更适用于解决三棱锥的问题,画直观图后需要验证一下是否符合.注二参考文章:下面给出一道练习.如图,网格纸上的小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为______.答案是.提示如图.。
高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。
高考数学中三视图还原空间几何体的解题技巧考纲解读与命题趋势探究空间立体几何的三视图是高中数学新课程的新增内容之一,也是近几年全国各地高考的热点内容,考纲不仅要求学生掌握『画空间几何体的三视图』还要求掌握它的逆过程,前者比较容易掌握,后者对空间想象力较弱的同学来说往往无从下手,特别是复杂一点的问题更是怎么也想象不出来。
Mr.Yang总结了一个简单可行的方法,虽不能解决所有三视图还原的问题,但对高中阶段的大部分问题都可解决,这里呈现出来,以期抛砖引玉,也请同行斧正。
一、简单几何体的三视图还原规律复杂的几何体是由简单几何体组合而成的,简单几何的分类:柱体(圆柱和棱柱);椎体(圆锥和棱锥);台体(圆台和棱台);球体.要掌握复杂几何体的三视图还原,先要搞清楚简单几何体的三视图还原规律,一般情况下简单几何体的三视图还原有如下规律:1. 三视图中如果其中两个视图是矩形(不要管内部的细节,只要外轮廓线为矩形就称该视图为矩形)那么该空间几何体为柱体.当第三个试图为圆时,该空间几何体为圆柱,否则为棱柱.2. 三视图中如果其中两个视图是三角形(不要管内部的细节,只要外轮廓线为矩形就称该视图为三角形)那么该空间几何体为锥体,当第三个试图为圆时,该空间几何体为圆锥,否则为棱锥.3. 三视图中如果其中两个视图是梯形(不要管内部的细节,只要外轮廓线为矩形就称该视图为梯形)那么该空间几何体为台体.当第三个试图两个同心圆时,该空间几何体为圆台,否则为棱台.球体的三视图很简单,这里就不加论述.以上规律简单好记,按照以上规律解决简单的三视图还原都不在话下,下面举例说明.例1:(2013年全国高考陕西卷理科试题)若某空间几何体的三视图如下,求其体积 .例2:(2012年全国高考江西卷理科试题)若某空间几何体的三视图如下,求其体积()例3:(2014年全国高辽宁卷理科试题)若某空间几何体的三视图如下求其体积()二、叠加式组合体的三视图还原方法组合体的组合形式可分为三种:叠加式、切割式、综合式.切割式与综合式在高中阶段见到的不是很多,这里只对高中阶段出现较多的叠加式组合体的三视图还原方法进行论述.既然组合体是由简单几何体组合而成的,那么就可以“化整为零”,把组合体的三视图划分为一个个简单几何体的三视图,再分别根据这些简单几何体的三视图按照上面论述的简单几何体三视图的还原规律把它们还原成简单几何体,再“积零为整',把这些简单几何体组合在一起就得了组合体的三视图.这样就将复杂的三视图问题转化成最基本的简单几何体的三视图还原问题来解决了,大大降低了对空间想象能力的要求,这一方法的难点在于如何把组合体的三视图划分为一个个简单几何体的三试图,该方法的具体过程如下:1. 分线框.一般从主视图入手,将主视图划分成一个个线框(一般是封闭的线框,但有时也可不完全封闭),这些线框就是组成组合体的一个个简单几何体的主视图.2. 对投影.在俯视图和左视图上把主视图中每个线框对应的投影找出来,主要是根据“长对正,高平齐,宽相等”和'三视图所反映的组合体各部分的方位”来找.3. 识形体.根据每一部分的三视图,逐个想象出每一部分所对应的几何体4. 合起来,想整体. 每一部分的形状确定后,再根据各部分的相对位置关系组合成整个组合体的形状.下面看该方法在高考题中的运用.例4 :(2015年全国高考天津卷试题)一个几何体的三视图如图4所示,则该几何体的体积为 .解析:如图4所示,第一步:分线框. 将主视图分为上面一个直角梯形与下面一个矩形两个线框.第二步:对投影. 这里只须用长对正,高平齐就可找到相对应的投影,如图5和图6中的加粗部分相对应.第三步:识形体. 由简单几何体三视图的还原规律知图5中加粗的三个视图对应的几何体为底面为直角梯形的直四棱柱. 图6中加粗的三个视图对应的几何体为长方体.第四步:合起来,想整体.由主视图知该组合体是一个底面为直角梯形的直四棱柱叠放在一个长方体上面组合而成的,如图7所示,进一步易求几何体体积为30.如果不用此方法,此题对很多同学来说都是一道较难想象的题,但用了以上方法后就可以化整为零,化难为易,将复杂的三视图还原问题转化为基本的简单几何体的三视图还原问题,大大降低了难度.例5 :(2015年全国高考山东卷试题)一个几何体的三视图如下图所示,则该几何体的体积为 .解析:如图下所示,第一步:分线框. 将主视图分为上面一个等腰三角形,下面一个正方形两个线框.第二步:对投影. 利用高平齐知主视图中的三角形与左视图中的三角形相对应,主视图中的正方形与左视图中的正方形相对应,利用长对正知主视图中的三角形与俯视图中的圆和正方形都是对正的,那到底哪一个与它相对应呢?这还要结合三视图所反应的各部分的方位来判断. 主视图中三角形在上,正方形在下,这说明原几何体中三角形所对应的简单几何体在正方形所对应的简单几何体的上面.在俯视图中正方形在圆的里面而且是用实线画的,所以俯视图中正方形所对应的简单几何体在圆所对应的简单几何体的上面.因此主视图中的三角形与俯视图中的正方形相对应,主视图中的正方形与俯视图中的圆相对应,第三步:识形体.由简单几何体三视图的还原规律知两部分所对应的几何体分别为正四棱锥和圆柱. 第四步,合起来想整体,由主视图知该组合体是上面一个正四棱锥下面一个圆柱组合而成的.进一步易求答案为C.。
三视图还原直观图“五步走”石门县第一中学415300陈锦鑫三视图是高中立体几何中的一个重要知识点,也是今后进一步学习机械制图、建筑制图等的必修课,三视图也是近几年高考必考的知识点。
主要题型就是给出几何体的三视图,计算几何体的面积和体积等相关量。
学生丢分的主要原因是不能由三视图还原为几何体,画出相应的直观图。
本文通过一道例题介绍一种将三视图还原成实物图的方法。
如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,将该三视图还原成实物图第一步:根据三视图中三种视图的长与宽,作一个与正视图等长等高,与俯视图等宽的长方体。
例如本例中需要作一个边长为2的正方体ABCD-A’B’C’D’,如图。
第二步:根据三视图中的正视图对长方体切割。
例如本例中由正视图知道,原几何体只能在三棱柱ADD’-BCC’范围内,因此将三棱柱AA’D’-BB’C’部分截掉,如图。
第三步:根据三视图中的侧视图对剩余几何体切割。
例如本例中由侧视图知道,原几何体只能在四棱锥C’-ABCD范围内,因此将三棱锥D’-ADC’部分截掉,如图。
第四步:根据三视图中的俯视图对剩余几何体切割。
,同时结合三种视图需要将例如本例中由俯视图知道,原几何体在底面上的投影为BCD三棱锥C’-ABDC部分截掉,得到三棱锥C’-BCD,如图。
第五步:根据三种视图多边形内部的实线或虚线对剩余几何体切割。
例如本例中正视图、俯视图中均有一条虚线,三视图的虚线表示虚线所在的位置有立体图形的轮廓线,只是在观察者所在的位置看不到。
根据正视图、俯视图中知点E为三棱锥C’-BCD 中BC边的中点,连接ED、EC’,ED、EC’是立体图形的轮廓线,因此我们需要将截掉三棱锥C’-ECD,得到三棱锥C’-BDE即为三视图所对应的实物图。