汽轮机轴系调整分析
- 格式:ppt
- 大小:248.50 KB
- 文档页数:22
1000MW汽轮机TSI调整轴系定位法优化分析张庆国1孙登成2李祥苓1李红利1(1-华电国际邹县发电厂;2-中国广核集团阳江核电有限公司)摘要:本文通过对邹县电厂1000MW大容量汽轮发电机组TSI系统调整前汽轮发电机组轴系定位过程出现的问题进行分析,提出有别于传统的优化方案为热工调整轴系提供一个准确的转子轴向位置。
该方案目的在于保证TSI系统测量探头的要求间隙值,确保TSI系统轴向位移、胀差所设定的报警值、跳机值的准确性。
关键词:1000MW汽轮机 TSI系统轴系定位优化1 前言汽轮机TSI系统是汽轮发电机组非常重要的保护系统之一,汽机检修过程中应用一定的机械手段为热工调整TSI参数提供转子的轴向位置是必须的。
一旦转子的轴系定位不准,会导致汽轮发电机组运行中误停或者拒停,从而影响汽轮发电机组的安全稳定运行。
随着社会科技的进步,大容量汽轮发电机组的出现使得汽轮发电机转子变的异常庞大(百万千瓦级及以上大型机组多为四缸四排汽或五缸六排汽)。
厂家在设计上为高、中压缸多选用无顶轴油式的可倾瓦,这为采用传统方法进行汽轮发电机组轴系定位带来了较为复杂的工作。
按照传统的检修方法用液压千斤顶进行轴系定位时,转子推力盘带动推力瓦沿轴向窜动,极易造成推力瓦严重过推,影响转子轴向定位的准确性。
另外,转子瞬间轴向窜动会使推力瓦承受转子推力盘的瞬时冲击载荷,会对推力瓦造成不良影响。
此类故障实际工作中甚为多发,现场调整时若不采用合理的工作方法将难以得到转子的真实定位值,进而影响到调整后TSI参数的准确性。
本文比较了国内各电厂在应对此问题时所采取的常见对策,并在此基础上提出了汽轮机轴系定位的优化方法,即根据调整TSI轴系转子的轴向位置与单个高压转子推力盘靠在非工作面上的位置进行比较,并以此修正TSI轴向探头的调整值。
2 汽轮发电机轴系定位传统定位法出现的问题邹电300MW机组改造成335MW后,汽轮机高中压缸#1~#4轴瓦均改造为无顶轴油可倾瓦。
浅谈汽轮机轴系找中心与调整工艺摘要:多转子的轴系找中心和调整是个很复杂繁琐的过程,在实际的检修中需根据每台机组自己的特性进行多次的测量、计算、调整达到最优效果,本文通过分析某电力集团属下300MW燃煤机组和GE9FA燃气蒸汽联合循环机组的轴系找中心依据和调整工艺的异同,给同类型机组检修提供参考意见。
关键词:300MW燃煤机组;GE9FA;轴系找中心;调整工艺1、概述1.1 300MW燃煤机组汽轮机设备概况该汽轮机是哈尔滨汽轮机厂制造的N300-16.7/537/537反动式、单轴、双缸双排汽、高中压合缸、低压缸分流、亚临界中间一次再热凝气式汽轮机。
轴系由四条转子(高中压转子、低压转子、发电机转子、励磁机转子)通过刚性联轴器连接而成,主油泵安装在高中压转子前端,为双吸式蜗壳离心泵。
每条转子通过2个径向轴承支撑,其中高压转子#1、#2轴承是由四块瓦块组成的可倾式轴承,通过改变底部45度的两块球面垫铁进行调整;低压转子#3轴承是半可倾式,#4轴承是椭圆式,通过改变固定在轴承箱上的瓦枕进行调整;发电机转子#5、#6轴承是椭圆式,通过定子整体调整;励磁机转子#7、#8轴承是圆筒式,通过励磁机整体调整。
1.2 GE9FA燃气轮机联合循环发电机组概况该机组燃气轮机由美国GE公司生产,型号为PG9351FA,简单循环单机出力255.6MW,汽轮机是哈动力—GE联合制造的D10型三压、一次中间再热、单轴、双缸双排汽、纯凝式机组,单机出力141MW。
燃气轮机、蒸汽轮机、发电机共四条转子同轴布置,通过刚性联轴器连接,共采用8个径向轴承支撑,从燃机起#1-#5轴承均为由六块瓦块组成的可倾式轴承,#6-#8轴承为椭圆式。
燃机转子、发电机转子通过改变燃机和发电机整体位置进行调整,汽轮机高中压转子、低压转子通过改变支撑轴承瓦枕背面分布的5块调整垫进行调整。
2、轴系找中心的考虑基准大型发电机组经过长时间运行后由于基础不均匀沉降,轴瓦下部轴承钨金的磨损以及设备内应力的释放等原因,可能会引起轴系各靠背轮中心值发生变化。
汽轮机轴系振动的分析与预防处理发表时间:2019-06-10T09:25:16.470Z 来源:《电力设备》2019年第3期作者:韩莉王智华[导读] 【摘要】:介绍高背压机组轴封漏气量大、轴承箱微正压运行,油和粉尘在高温情况下碳化,引起机组轴系振动。
(中节能(西安)环保能源有限公司 710301)【摘要】:介绍高背压机组轴封漏气量大、轴承箱微正压运行,油和粉尘在高温情况下碳化,引起机组轴系振动。
分析积碳的形成并提出处理措施。
【关键词】:汽轮机;积碳;振动;轴瓦0 引言某电厂CB30-8.83/3.8/0.645型汽轮机为单缸抽汽背压式汽轮机机组,于2018年1月完成首次大修,2018年2月投入运行,机组1#轴承处轴振和2#轴承处轴振一直平稳,在同工况下基本分别保持在20μm和50μm左右运行。
2019年2月到4月2#轴承处轴振由50μm升到230μm,最大时246μm,同时1#轴承处轴振由50μm到100μm之间跳变。
针对轴系振动情况,此个案着重从运行现场环境、机组运行工况、历史数据、振动的现象和特征出发分析,最终提出振动形成初步原因并确定检修方案。
1 1#、2#轴承处轴振异常现象及原因分析2#轴承处轴振振动增大后调出DCS曲线发现:1月21日2#轴承处振动跳动一次并且大于1# 轴承处(图1),2#轴振在时由19μm跳到45μm然后又回到20μm左右。
1#轴振曲线发现1#轴承处由9μm跳到14μm又回到10μm左右。
1月22日曲线显示1#轴承处轴振动跳动大于2# 轴承处,间断性跳动大出现5次(图2):1#轴承处轴振由14μm跳到46.8μm然后又回到16μm左右,最大跳动值94μm。
2#轴承处轴振由19μm跳到31μm,最大跳动值131μm。
1月24日2#轴承处振动跳动一直大于1# 轴承处轴振并上升。
出现反复跳动现象(图3)。
2月6日临时停机,2#轴承处轴振恢复到40μm左右。
1#轴承处轴振恢复到16μm左右;2月6日启动汽轮机后,2# 轴承处轴振瞬间达到324μm后降至150μm左右。
600MW汽轮机联轴器组合晃度超标原因分析及处理方法摘要:针对某600MW亚临界汽轮机在检修过程中,高中压转子正常连接后,汽轮机联轴器组合晃度超标的问题,通过总结汽轮机联轴器组合晃度超标原因,提出汽轮机联轴器组合晃度超标处理方法,使该电厂汽轮机联轴器晃度超标问题得到有效解决,研究成果对同类型机组具有一定的借鉴意义。
关键字:汽轮机;联轴器;晃度超标;处理方法1引言内蒙古大唐国际托克托发电有限责任公司2号机组为日立公司设计制造的TC4F-40型亚临界、一次中间再热、冲动式、单轴、三缸四排汽、双背压凝汽式汽轮机,高压通流级数由1个单列调节级+8个压力级组成,中压通流级数由5个压力级组成,高中压转子之间的连接采用刚性联轴器连接。
此次检修过程中对中低压转子联轴器正常连接后,出现组合晃度超标的问题。
本次等级检修若不及时处理,会出现汽轮机在运行中强烈振动,增加动静部分的摩擦面积,使隔板汽封、轴封磨损。
若振动幅度相对较大,将增加叶轮、叶片等部件应力,造成疲劳性损伤。
同时,还可损坏轴瓦、推力瓦等其他部套,使汽轮机表面材料脱落、叶片断裂等事故发生。
本文针对该问题,通过现场检修并结合原因分析,提出汽轮机联轴器组合晃度超标处理方法,保证了汽轮机本体检修顺利完成及机组后续的平稳运行。
2汽轮机联轴器组合晃度增大原因2.1中低联轴器螺栓设计结构不合理日立公司设计制造的TC4F-40型亚临界汽轮发电机组的低发对轮螺栓采用凸台结构螺栓,设计理念为采用联轴器端面接触摩擦力传递全部扭矩。
但本次检修中多次发生螺栓弯曲现象,说明对轮摩擦传扭能力存在不足, 中低联轴器螺栓不能承受剪切力,在发生联轴器错位时螺栓需承受很大的弯曲应力,造成应力超标,导致螺栓发生永久性弯曲变形,因此实际只能靠对轮摩擦力和螺栓弯曲力共同传递扭矩。
2.2中低联轴器螺栓紧力不足中低联轴器螺栓紧力不足,造成传递扭矩的联轴器摩擦力不能满足机组正常带负荷运行的要求,当传递力矩较大时,中低联轴器发生周向错位。
汽轮机#1轴承振动大分析及处理方法顾崇廉,谈立春(北京太阳宫燃气热电有限公司,北京 100028)摘要:针对汽轮机#1轴承振动偏大,特别是机组带大负荷时振动迅速增加,同时出现半频振动,且半频分量的比重较大。
从轴承自激振动、轴系负荷分配和汽流激振方面进行分析,利用检修期间,对#1轴振问题进行治理,使机组振动水平达到优秀范围内。
关键词:轴振;轴承自激振动;晃度;汽流激振;一、前言北京太阳宫电厂为燃气—蒸汽联合循环机组,汽轮机为LN275/CC154-11.49/0.613/0.276/566/566型哈汽机组, 1、2#轴承为4瓦块可倾瓦轴承,振动保护监视系统TSI,监测1~6号轴承X、Y方向(分别为面向机头向后看垂直中分面左侧45°和右侧45°位置)转子相对振动以及垂直方向的轴承座振动。
二、机组振动特点2010年10月机组检修之前,机组振动主要反映在#1轴承轴振动(特别是Y方向轴振)偏大,轴承座振动很小,通常不超过10μm 。
对振动数据进行分析,其#1轴承轴振具有如下特征:(1)#1轴承轴振测点位置晃度值过大根据该机组多次冷态启动过程数据,发现在低转速(通常400r/min左右)时#1轴承X、Y方向轴振动数据(即晃度值)分别高达75μm和90μm左右,严重超标。
但基频值分别只有25μm和30μm左右。
(2)带负荷后振动出现一定程度的爬升机组带负荷后#1轴承轴振较空载时的数据明显增大(特别是Y方向轴振)。
表1列出的是不同工况下1、2号轴承轴振动数据,从中看出热态空载时#1轴承轴振较冷态空载时有一定的增大,223MW时的振动(Y方向轴振)进一步增大。
表1 不同工况下汽轮机1、2#轴承轴振基频和通频值(μm∠°/μm)(3)额定负荷附近振动剧烈波动当机组在较大负荷(220MW附近)运行时,#1轴承轴振就呈现一定的波动,波动主要来自21.87Hz的低频分量,幅值5~50μm不等,而基频分量基本不变;当负荷超过240MW,振动大幅波动,见图1,波动仍是21.87Hz的低频分量为主,其最大波动到达103μm。