汽轮机轴系调整
- 格式:ppt
- 大小:248.50 KB
- 文档页数:22
浅谈汽轮机轴系找中心与调整工艺摘要:多转子的轴系找中心和调整是个很复杂繁琐的过程,在实际的检修中需根据每台机组自己的特性进行多次的测量、计算、调整达到最优效果,本文通过分析某电力集团属下300MW燃煤机组和GE9FA燃气蒸汽联合循环机组的轴系找中心依据和调整工艺的异同,给同类型机组检修提供参考意见。
关键词:300MW燃煤机组;GE9FA;轴系找中心;调整工艺1、概述1.1 300MW燃煤机组汽轮机设备概况该汽轮机是哈尔滨汽轮机厂制造的N300-16.7/537/537反动式、单轴、双缸双排汽、高中压合缸、低压缸分流、亚临界中间一次再热凝气式汽轮机。
轴系由四条转子(高中压转子、低压转子、发电机转子、励磁机转子)通过刚性联轴器连接而成,主油泵安装在高中压转子前端,为双吸式蜗壳离心泵。
每条转子通过2个径向轴承支撑,其中高压转子#1、#2轴承是由四块瓦块组成的可倾式轴承,通过改变底部45度的两块球面垫铁进行调整;低压转子#3轴承是半可倾式,#4轴承是椭圆式,通过改变固定在轴承箱上的瓦枕进行调整;发电机转子#5、#6轴承是椭圆式,通过定子整体调整;励磁机转子#7、#8轴承是圆筒式,通过励磁机整体调整。
1.2 GE9FA燃气轮机联合循环发电机组概况该机组燃气轮机由美国GE公司生产,型号为PG9351FA,简单循环单机出力255.6MW,汽轮机是哈动力—GE联合制造的D10型三压、一次中间再热、单轴、双缸双排汽、纯凝式机组,单机出力141MW。
燃气轮机、蒸汽轮机、发电机共四条转子同轴布置,通过刚性联轴器连接,共采用8个径向轴承支撑,从燃机起#1-#5轴承均为由六块瓦块组成的可倾式轴承,#6-#8轴承为椭圆式。
燃机转子、发电机转子通过改变燃机和发电机整体位置进行调整,汽轮机高中压转子、低压转子通过改变支撑轴承瓦枕背面分布的5块调整垫进行调整。
2、轴系找中心的考虑基准大型发电机组经过长时间运行后由于基础不均匀沉降,轴瓦下部轴承钨金的磨损以及设备内应力的释放等原因,可能会引起轴系各靠背轮中心值发生变化。
200MW汽轮机轴系中心模拟运行状态调整方法优化摘要:随着社会的进步与发展,汽轮机在工业生产中得到广泛应用,汽轮机也是发电厂中的重要设备。
汽轮机运行时,由于支持轴承乌金磨损,汽缸及轴承座位移,轴承垫铁腐蚀等方面的原因,汽轮发电机组的中心发生变化。
若中心变化过大,会产生很大的危害,使机组振动超标、动静部件之间发生碰摩、轴承温度升高等,在检修时一定要对汽轮机组中心进行重新调整汽轮机轴系中心;由于汽轮机受自身重量如内外缸体、隔板、等质量较大的部件以及在各部件螺栓紧固中产生的应力如汽缸中分面、联通管道紧固影响较大,所以确保中心数据准确,可提高火电厂设备可靠性及生产效率,实现企业的经济效益和社会效益。
关键词:汽轮机;中心测量;优化方法;1.汽轮机轴系找中心的背景1.1汽轮机运行时,由于支持轴承乌金磨损,汽缸及轴承座位移,轴承垫铁腐蚀等方面的原因,汽轮发电机组的中心发生变化。
若中心变化过大,会产生很大的危害,如使机组振动超标、动静部件之间发生碰摩、轴承温度升高等,所以在检修时一定要对汽轮机组中心进行重新调整。
汽轮发电机组检修项目中,汽轮机轴系中心调整作为调整的第一步工序,也是非常重要的步骤。
要使汽轮机的转动部件(转子)与静止部件(隔板、轴封等)在运行时其中心偏差不超过规定的数值以保证转动与静止部件不发生触碰;必须保证各转子通过联轴器连接成为一根连续的轴。
使各轴瓦负荷分配均匀,避免造成轴瓦乌金磨损、润滑油温度升高情况。
从而使转子在转动时,不会因各转子中心不一致导致轴系失去平衡而振动。
因为轴系中心调整完成后,才能进行隔板洼窝中心、通流间隙的测量调整,所以说轴系中心的准确性关系到后续工作的品质如何,一旦回装阶段发现中心数据存在偏差,调整中期的大部分时间调整的通流间隙付之一炬,降低机组效率,增加碰磨风险;同时轴系中心失准势必会影响工期,后期为抢回工期造成安全、质量风险及经营成本加大。
1.2汽轮机轴系中心受自身重量如内外缸体、隔板、联通管等质量较大的部件以及在各部件螺栓紧固中产生的应力如汽缸中分面、联通管道紧固影响较大,如何确保中心数据,是汽轮机检修的关键性问题。
三、轴系中心调整计算过程1、轴系中心调整标准的选择对于一台正在进行大修的机组在修前中心找出后决定对轴系中心进行调整时所面临的首要问题就是标准选择问题。
到底按照什么样的标准去调整,调整到什么程度对于已经变化了的轴系中心即不能完全按照厂家标准又不能完全脱离厂家标准,这就要求我们在轴系中心调整计算中充分考虑到机组的实际运行情况和历次检修的经验对厂家标准进行修正完善,这样才有可能达到理想结果,在我厂08年#3机组第一次大修中对中、低压对轮中心的处理上,就遇到这一难题,表架装在高压转子上用百分表测量,考虑到该型机组在膨胀方面存在问题,开机时高、中压缸膨胀不出去,#3轴承座以横销为死点前扬,磨#4轴瓦下瓦。
冷态时高、中压缸又收缩不到位,#3轴承座后翅,磨#5轴瓦上瓦如此情况导致冷态时所测对轮中心失真,必须对此进行适当修正。
故当时在复装前将#4瓦下部抽取0.50mm 垫片,可是在大修完成试机过程中,高、中压缸仍旧胀不出去,#4瓦温度过高,只好再次将#4瓦下部抽取0.20mm垫片,这才顺利开起机来,此时,#4瓦下部总抽取0.70mm垫片,以上是我厂#3机组第一次大修未进行整机轴系找中心调整的情况。
总之,在计算调整轴系中心前必须有一个正确的标准,也就是说有一个正确的调整方向,这样才能保证整个调整工作的成功。
2、轴系中心调整计算步骤①记录结果的整理在其中a=a1+a3/2 c=c1+c3/2 d=d2+d4/左右张口为a —c圆周高低位移为B —D /2 左右位移为A —C /2中心偏差值应符合制造厂的规定,如无厂家规定,可参照下表:如不符合规定应进行调整。
②轴瓦调量的计算若中心偏差值超过标准可通过调整轴瓦来消除,将二转子上任何一个轴瓦的位置移动X 时,能同时使联轴器的端面差及圆周差改变△a 及△A ,它们的数量关系如下:两转子中任何一个或两个轴瓦,也可以同时移动三个或四个轴瓦。
调整方法很多,选择调整方法的原则是尽量恢复机组安装或上次大修后转子与汽缸的相对位置,以保持动、静部件的中心关系,减少隔板、轴封套中心的调整工作,也便于它保持发电机的空气间隙,为此应参照轴颈扬度和下沉度、轴封套凹窝中心来选择调整。
1 工程概况及工程量1.1 工程概况绥电二期工程2×1000MW超超临界机组汽轮机为单轴、四缸、四排汽、反动式无调速级凝汽式机组,高压缸为单流式,包括1个双流冲动式调节级和8个冲动式压力级;中压缸采用双分流,每个流向包括全三维设计的6个冲动式压力级;低压缸分A、B两个双流缸,每个低压缸叶片正、反向对称布置,每个流向包括6个冲动式压力级。
高、中压缸均为双层缸,低压缸为3层结构,高、中、低压内外缸均为水平中分,上下缸中分面法兰连接。
低压内缸通过轴承座支撑在基础上。
低压外缸需在现场进行拼装,外下缸与凝汽器采用不锈钢弹性膨胀节焊接的连接方式。
汽轮发电机组共有10个轴承,其中一个为推力—径向轴承,高、中压转子支持轴承选用可倾瓦轴承,两根低压转子及发电机转子支持轴承选用椭圆轴承,单轴承整体联轴器靠止口定中心。
1.2 主要设备重量高压内缸上半 20700kg高压内缸下半 23100kg高压外缸上半 51900kg高压外缸下半 55800kg中压外缸上半 40800kg中压外缸下半 58000kg#1中压内缸上半 8540kg#1中压内缸下半 9350kg#2、#3中压内缸上半 4620kg#2、#3中压内缸下半 4830kgA低压内缸上半(含螺栓) 30200kgA低压内缸下半(含螺栓) 31600kgA低压外缸上半 53200kgA低压外缸下半 103423kgB低压内缸上半(含螺栓) 30200kgB低压内缸下半(含螺栓) 31600kgB低压外缸上半 53200kgB低压外缸下半 106861kg高压主汽调节阀158800kg中压联合汽阀 58300kg高压转子 23500kg中压转子 30400kgA低压转子 77900kgB低压转子 77800kg发电机转子 104000kg发电机底板 3116kg发电机定子 409000kg2.编制依据2.1 东方汽轮机厂安装图纸及说明书2.2 东方电机厂安装图纸及说明书2.3《绥中发电厂二期2×1000WM扩建工程主体施工A标段施工组织设计》2.4《绥中发电厂二期(2×1000WM机组)3号机组汽机专业组织设计》2.5《火电施工质量检验及评定标准》0594P 98(汽机篇)2.6《电力建设施工及验收技术规范》DL5011-92(汽轮机机组篇)2.7《电力建设安全工作规程》(第1部分火力发电厂)DL5009.1-20022.8《工程建设标准强制性条文》(2006版)(电力工程部分)第一篇火力发电工程2.9《防止电力生产重大事故的二十五项重点要求》(国电发[2000]589号)3 作业条件和施工准备3.1 对施工人员的资格和要求3.1.1 施工负责人员必须具有汽轮发电机组本体安装施工经验,在施工前应先熟悉施工环境,了解图纸及有关措施和规范等要求,对施工内容和要求有足够的理解,施工人员必须是经过安全考核合格者;3.1.2 所有参加作业的特殊工种人员(电工、测量工、起重工、操作工、架子工)必须持证上岗;3.1.3 施工前组织施工人员熟悉施工现场和工艺质量要求、了解安全操作规范和现场环境保护要求;3.2 有关人员职责3.2.1 技术人员在开工前做好技术准备,根据施工具体特点编写作业指导书;3.2.2 质检员负责工程质量的全过程控制及相关质量措施的实施、检查、监督和验收评定工作,并做好质量跟踪;3.2.3班组长熟悉施工图、了解规范要求、掌握施工方案。
青岛捷能汽轮机之汽轮机调速系统篇青岛捷能汽轮机之汽轮机调速系统篇电调一:自动调节1、自动调节:使被调量或被调参数按要求规律变化。
2、蒸汽轮机自动调节的基本方法:● 汽轮机的工作介质:蒸气● 发电用汽轮机的能量转换过程:蒸汽的内能——轴系的机械能(动能)——电能● 函:● 汽轮机的功率公式:N=D0xΔHxη0i/3600 KWD:蒸汽流量kg/hH:蒸汽透平的绝热函降kJ/kgΔη0i:汽轮机的内效率N:功率● 被调量或调节参数:表象看:转速、功率、排汽压力、进汽压力、抽汽压力等●实际调节量或参数:蒸汽流量、调节汽阀的开度I二:电调系统的定义、分类和组成1、电调系统的定义:在全液压调节的基础上,某些环节由电子产品所代替的调节系统。
优点:精度高、更稳定、操作方便缺点:安全性能低——通过冗余和保护来解决2、分类:厂内产品:KD系列K系列按反馈方式分:电反馈、液压反馈、机械反馈按所选用的电调产品分:Woodward系列、ABB系列、HLS系列、新华系列等3、电调系统与液压调节系统的比较:三:常用的电调产品及介绍(1)组成:数字调节器+电液转换器(2)厂家:WoodWard、HLS、新华等(3)作用:数字调节器(CPU):采集各种需要的数据和接收用户的指令,按照预先设定的程序进行运算、判断、比较等操作,决定输出的状态或大小。
指令电液转换器:把数字调节器输出的电信号转换成一定的液压信号(5)外观:505/505E:正面:显示屏、数字键、功能键、选择键等背面:接线端子、通讯接口、电源接口(6)输入/输出(以505E为例)输入:模拟量8个2个必选(转速输入)+6个可选开关量16个4个必选:停机NC、复位、转速升、转速降12个可选(如果是发电用机组,GB(发电机油开关)和TB(电网油开关)是必选的)输出:模拟量8个2个必选(执行器)+6个可选开关量8个2个必选:报警、停机NC6个可选(7)电源:三种24VDC110VAC/110VDC220VAC505E/505本身具备断电延时功能,以便断电时顺利地切换到UPS供电。
汽轮发电机组轴系对中方法黄国强【摘要】汽轮发电机组轴系对中是汽轮发电机组安装施工中最为关键的一步,它直接关系到机组安全、稳定和经济运行.用正确的方法、步骤为汽轮发电机组找中心,是机组安装成功的重要保证.介绍了找中心的相关方法和步骤,指出了相关注意事项.【期刊名称】《华电技术》【年(卷),期】2011(033)003【总页数】4页(P20-23)【关键词】大容量机组;高参数机组;找中心;步骤;注意事项【作者】黄国强【作者单位】四川电力建设二公司,四川,成都,610051【正文语种】中文【中图分类】TK263.6+10 引言在汽轮发电机组的安装过程中,对汽轮发电机组中心进行调整是一项非常重要而细致的工作。
该项工作质量的好坏将直接对机组的安全、平稳、经济运行产生关键的影响。
随着机组容量的增大,汽缸数量、汽轮机转子及轴承数量的增多,汽轮发电机组找中心的工序和步骤就更加复杂。
笔者将以广安电厂二期扩建工程N300-16.7/537/537型汽轮机的安装为例(该汽轮机配东方电机厂QFSN-300-2-20型300 MW水氢氢发电机),介绍300 MW 汽轮发电机组找中心的方法和步骤。
1 找中心的目的在汽轮发电机组的安装过程中,找中心有2个目的:一是要使汽轮发电机组各转子的中心线连成一条连续光滑的曲线,使连接转子的联轴器中心线成为一根连续的轴;二是要使汽轮发电机组的各静止部件与转动部件基本保持同心,其偏差值不超过制造厂及规程、规范规定的数值,保证动、静部分的径向间隙能调至允许范围,从而保证机组安全、经济运行。
2 找中心的方法及步骤2.1 N300-16.7/537/537型汽轮机组结构特点(1)布置紧凑。
仅有2个缸,即高中压缸、低压缸各1个,与国产同类型机组相比,总长度明显缩短。
该机组有高中压转子、低压转子和发电机转子3根转子,高中压转子、低压转子为整锻转子,3根转子间均由刚性联轴器连接。
(2)采用可倾瓦。
该机组共有6个支持轴承和1个推力轴承,6个支持轴承根据整个轴系各支撑位置及载荷的不同,从高中压转子到发电机分别选用了不同类型的轴承。
大型汽轮发电机组轴系扭振研究在电力工业中,大型汽轮发电机组是核心设备之一,其运行稳定性直接关系到电力系统的安全与稳定。
然而,实际运行中,大型汽轮发电机组轴系常常会出现扭振现象,严重时甚至可能导致设备损坏和系统瘫痪。
本文将围绕大型汽轮发电机组轴系扭振展开研究,分析其产生原因、危害,并探讨解决方案。
某大型发电厂曾遭遇一次严重的轴系扭振事故。
当时,发电机组在正常运行过程中,突然出现剧烈振动,导致轴系部分部件严重受损。
幸运的是,操作人员及时采取措施,避免了事故扩大。
然而,这一事件引起了人们对大型汽轮发电机组轴系扭振的和深入研究。
大型汽轮发电机组轴系扭振是指运行过程中,轴系在扭矩作用下产生的周期性弯曲变形。
产生扭振的原因主要有两个方面:一是由于汽轮机侧和发电机侧转速不匹配,导致轴系承受扭矩;二是由于轴系不平衡,导致轴系在旋转过程中受到周期性变化的力矩作用。
扭振对设备危害极大,轻则导致轴系受损、机组振动加剧,重则引发重大事故,严重影响电力系统的稳定运行。
对于大型汽轮发电机组轴系扭振,其重要性不言而喻。
为解决这一问题,需要从以下几个方面展开研究:优化设计:在设计阶段,应充分考虑轴系扭振问题,优化机组结构,提高轴系稳定性。
例如,合理布置轴承座、采用高刚度材料等措施,以减小扭矩对轴系的影响。
运行监控:在机组运行过程中,加强对轴系振动等参数的实时监控,以及时发现扭振现象。
通过采集和分析数据,对机组运行状态进行全面评估,确保安全稳定运行。
故障诊断与处理:一旦发现大型汽轮发电机组出现扭振故障,需迅速采取措施进行诊断和处理。
根据采集的数据,运用相关算法对扭振原因进行分析,并采取针对性的处理措施,例如调整运行参数、修复损坏部件等。
预防措施:为预防大型汽轮发电机组轴系扭振的发生,需加强对机组的维护和保养。
例如,定期对轴承座进行检查,确保其紧固稳定;加强对齿轮箱等关键部位的润滑维护,以降低磨损和减小扭矩。
大型汽轮发电机组轴系扭振是电力工业中一个重要问题。
汽轮机轴系中心调整计算分析汽轮机的轴系中心调整是指在汽轮机运行过程中,对轴系中心的位置进行调整,使各旋转部件的轴心在同一条直线上,以减少轴系的偏载和不平衡,提高汽轮机的运行效率和可靠性。
一般来说,汽轮机的轴系中心调整包括两个方面的内容,即静态中心调整和动态中心调整。
静态中心调整是在汽轮机停车状态下进行的,通过精确测量各旋转部件的轴心位置,确定轴系中心的实际位置。
具体的调整方法可以采用传统的观测方法,即测量旋转部件的轴心位置,并计算其相对于基准位置的偏差量。
通过对偏差量的累积计算,确定轴系中心的实际位置,并进行相应的调整。
动态中心调整是在汽轮机运行状态下进行的,通过分析轴系的振动和不平衡情况,进一步调整轴系中心的位置。
具体的调整方法可以采用激光振动测量仪等高精度测量设备,对轴系的振动和不平衡进行实时监测和分析。
通过对振动和不平衡的幅值、频率等参数进行分析,确定轴系中心的实际位置,并进行相应的调整。
在进行汽轮机轴系中心调整的过程中,需要注意以下几个方面的问题。
首先,要对汽轮机的结构和工作原理有一个清楚的了解,以了解各旋转部件的结构和运动规律。
其次,要选择合适的测量仪器和设备,以确保测量的准确性和可靠性。
同时,要制定详细的调整方案和工作流程,保证调整过程的顺利进行。
最后,要对调整结果进行验证和评估,以确保调整效果的达到预期目标。
总之,汽轮机轴系中心调整是汽轮机运行过程中的一项重要工作,它关系到汽轮机的稳定运行和轴系的寿命。
通过对汽轮机轴系中心调整的计算分析,可以提高该工作的效率和准确性,进一步优化汽轮机的运行状态,提升其性能和可靠性。
浅谈汽轮机轴系找中心技术标准摘要:轴系找中心是汽轮发电机本体安装工作中最重要一环它贯穿于整个汽轮发电机本体安装的始末,本文依据电力标准要求对不同的轴承找中方法和标准进行概述,为汽轮机轴系找中以及其他泵类找中心提供指导和参考。
关键词:汽轮发电机;轴系;找中心;联轴器概述汽轮机找中心的目的有两点:要使汽轮机的转动部件(转子)与静止部件(隔板、轴封等)在运行时其中心偏差不超过规定的数值以保证转动与静止部件在径向不发生触碰;要使汽轮发电机组各转子的中心线能连接成为一根连续的曲线,以保证各转子通过联轴器连接成为一根连续的轴。
从而在转动时对轴承不致产生周期性交变作用力,避免发生振动。
一、工作流程汽机轴系中心检查→轴系中心调整→轴系中心验收→台板、垫铁检查1.1汽轮机轴系找中心(缸体轴承)1.1.1汽轮机轴系找中心前需具备的条件#1低压外缸找平找正合格。
#1低压转子相对#1低压缸各轴封、油挡洼窝找中心合格;各汽缸(除#1低压缸外)和发电机定子已找平找正,且其转子相对汽缸和定子找洼窝中心亦调整合格。
各轴承已检修合格,各轴瓦瓦枕与轴承洼窝接触面已研磨合格。
#1低压转子轴颈扬度值符合设计要求。
各转子轴颈的椭圆度、柱度检查合格;各转子靠背轮、轴颈、叶片装嵌面的瓢偏,跳动检查合格;各转子的弯曲度检查合格。
各转子动平衡试验等厂家试验合格并已有书面报告。
1.1.2#1与#2低压转子找中心。
在#1低压转子后靠背轮上装上联轴器找中工具,在转子适当的位置装上轴向止推工具。
彻底清理干净在转子轴颈,并在转子轴颈上加盘车油,盘动转子一周以上。
找中应以#1低压转子为基准,调整#2低压转子与之适应。
外圆读数及端面读数分别在转子0°、90°、180°、270°四个位置读取,根据厂家图纸要求,调整至中心及张口与设计值偏差为±0.02mm。
中心偏差的调整可借助于调整#2低压缸台板下的斜垫铁标高及左右移动汽缸来实现。
第3期・・9FA燃气-蒸汽单轴联合循环机组调试经验李勇辉(浙江大学电气工程学院,杭州市,310013)[摘要]杭州半山天然气发电工程采用美国GE公司的9FA燃气-蒸汽单轴联合循环发电机组,在调试过程中出现了该类型机组常见的问题,如轴系振动、控制系统通讯故障、机组启动时间过长等。
经过分析研究,给出了可行的解决方法。
[关键词]燃气轮机;联合循环;调试中图分类号:TK269文献标识码:B文章编号:1000-7229(2008)03-0063-04收稿日期:2007-06-100引言从2005年初至今,美国GE公司已向中国一期和二期的联合循环电厂打捆招标项目提供了20台总计8600MW的的F级燃气轮机发电机组。
其中,半山天然气发电工程的9FA燃气-蒸汽单轴联合循环机组作为全国首台安装调试的发电机组,在安装调试过程中,遇到了不少难题,现就半山燃机的调试方法、分析思路和解决方案进行探讨。
1系统及设备主要技术规范1.1热力系统简介半山天燃气发电工程安装3×390MW燃气-蒸汽联合循环发电机组,为国家确定的“西气东输”开发工程的配套工程。
其主要设备分燃机、汽机、余热锅炉、GIS4个部分,机岛设备(燃机、汽机、发电机)选用美国GE公司生产的STAG109FASS型机型。
设备为单轴排列形式,汽轮机和发电机之间无耦合器,排列顺序为燃气轮机、汽轮机、发电机。
燃气轮机型号:PG9351FA;点火转速:14%额定转速,420r/min;自持转速:2700r/min;压气机:18级轴流式,压比15.4,空气流量624kg/s;燃烧室及喷嘴:18个环型燃烧室和DLN2+燃烧器,每个燃烧室5个喷嘴;燃料:天然气;透平:3级,设计进口温度1326℃;ISO运行工况透平排气流量2329900kg/h;ISO运行工况透平排气温度607.1℃。
汽轮机型号:D10;双缸(一高中压合缸,一低压缸)、下排汽;设计背压:4.85kPa;末级叶片长度:850.9mm;ISO运行工况进汽参数:高压蒸汽进汽压力/温度为:9.679MPa/564.5℃,再热蒸汽进汽压力/温度为:2.182MPa/564.2℃,低压蒸汽进汽压力/温度为:0.3707MPa/294.7℃;发电机型号:390H,氢冷,出力:397.8MW/468MVA;功率因数:0.85;额定电压:19kV。
汽轮机轴系中⼼调整计算分析(⼆)⼆、影响轴系中⼼的因素为了使运⾏时转⼦的轴⽡同汽封、隔板、油挡等部分的中⼼⼀致使汽封和油档四周间隙均匀,使运⾏时保持较⼩的间隙⼜不致造成磨擦,但是影响转⼦同静⼦的因素较多,安装检修运⾏状态都会影响转⼦和静⼦中⼼偏差。
1.安装检修⽅⾯(1)汽轮机汽缸在安装时的影响。
安装检修过程中,中⼼的变化主要是由于汽缸安装状态不同,使汽缸垂弧发⽣变化所致。
例如找中⼼时有只有下半缸⽽缸内⽆内缸、隔板或隔板套,有时虽然只有下半缸,但下半内缸、下半隔板套都已放⼊;有时在下半空缸再扣上半空缸;有时在半实缸上再扣合上半实缸;此外合窄缸及合实缸还有紧与不紧汽缸法兰螺栓的区别,在此不同状态下,汽缸的垂弧各不相同。
所测得汽封凹窝中⼼值不同。
垂弧变化有两⾯⽅⾯的原因:⼀⽅⾯是增加量后垂弧增加;另⼀⽅⾯是扣合上缸并拧紧法兰螺栓后,汽缸的横向断⾯变成圆,使汽缸体的刚度增加,垂弧减⼩。
因此安装时必须对汽缸状态这⼀因素加以考虑汽缸垂弧的影响。
为此要把汽缸相对于转⼦的中⼼适当放低,这样才能在加上⼤盖并拧紧螺栓后中⼼正好合适。
对于不同类型的机组如果具体数值没有掌握,就要进⾏实际测定。
汽缸及轴承座横向⼀般应处在⽔平状态,偏差不超过0.2m,汽缸各凹窝中⼼连线的纵向⽔平为转⼦找好中⼼后两轴颈扬度的代数平均值,轴承座的纵向⽔平与轴颈扬度基本相似,但由于⽔平结合⾯的加⼯误差及在安装时为了满⾜基础负荷分配要求其实际的⽔平值可能跟上述要求有所不同,特别是在结合⾯直接测出的汽缸纵向⽔平值跟汽缸凹窝中⼼连线之⽔平差别可能会更⼤,因此在检修时都是以安装记录作为基准,汽缸及轴承座⽔平值发⽣较⼤偏差时,说明汽缸及轴承座位置可能发⽣变化或产⽣变形位置发⽣变化主要是由于基础产⽣了不均匀下沉,如:我⼚#4机2003年第改造时发现⾼、中压转⼦靠背轮,部分螺孔裂纹和螺栓断裂的重⼤缺陷。
由于机组中压转⼦部分,动负荷较⼤,#2轴承座的不均匀相对下沉量较⼤达1.7mm左右,致使⾼、中压对轮下张⼝达0.52mm,造成靠背轮螺栓断5个,⾼压对轮5个螺孔裂纹,中压对轮⼀个螺孔裂纹。