解一元一次不等式的六种技巧
- 格式:doc
- 大小:43.50 KB
- 文档页数:1
一元一次不等式解题步骤
解一元一次不等式通常需要以下几个步骤:
1. 熟悉一元一次不等式的格式:用不等号连接的,含有一个未知数,并且含有未知数项的次数都是 1 的,系数不为 0 的,左右两边为整式的式子叫做一元一次不等式。
2. 求出不等式的解集:通过代数运算,求出不等式的解集。
3. 观察解集的形式,确定不等式的特性:观察解集的形式,确定不等式的特性,比如是线性不等式、多项式不等式还是其他类型的不等式。
4. 根据不等式的特性,运用相应的解题方法:根据不等式的特性,选择合适的解题方法,比如列出不等式方程、利用系数规律、利用数形结合等方法。
5. 解答问题:根据解题方法,将求解的问题转化为不等式的形式,然后解出不等式,最后得到问题的答案。
需要注意的是,解一元一次不等式需要熟练掌握代数运算的基本概念和方法,以及对不等式解集形式的敏锐洞察力。
一元一次不等式的解法在代数学中,不等式是数学中常见的一种形式。
与方程不同,不等式中的未知数可以有不止一个解,并且解可以包含无穷个实数。
一元一次不等式是指只有一个未知数,并且未知数的最高次数为一的不等式。
在本文中,我们将探讨一元一次不等式的解法。
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b 和c 是已知实数,a 不等于零。
我们的目标是找到使得不等式成立的 x 的取值范围。
解一元一次不等式的基本方法与解一元一次方程非常相似。
我们可以通过移项和化简等步骤,逐步确定未知数的解集。
步骤一:移项根据不等式的形式,我们首先将不等式中的常数项移至方程的另一侧,得到 ax > c - b 或 ax < c - b。
步骤二:化简接下来,我们可以通过除以 a 的方式将 x 的系数变为 1。
需要注意的是,当 a 是负数时,我们需要翻转不等号的方向。
因此,最终得到的化简后的不等式形式为 x > (c - b)/a 或 x < (c - b)/a。
步骤三:确定解集最后,我们根据不等式的形式确定解集的范围。
当不等式为严格大于(或严格小于)时,解集为开区间;而当不等式为大于等于(或小于等于)时,解集为闭区间。
具体来说,若不等式为 x > k,则解集为(k, +∞);若不等式为 x < k,则解集为 (-∞, k)。
若不等式为x ≥ k,则解集为[k, +∞);若不等式为x ≤ k,则解集为 (-∞, k]。
举例说明:例 1:解不等式 2x + 1 > 5。
首先,我们移项得到 2x > 4。
然后,化简得到 x > 2。
因此,解集为开区间(2, +∞)。
例 2:解不等式 -3x - 2 ≤ 10。
首先,我们移项得到 -3x ≤ 12。
然后,化简得到x ≥ -4。
因此,解集为闭区间 [-4, +∞)。
总结:通过移项、化简和确定解集的步骤,我们可以解决一元一次不等式。
一元一次不等式变号法则不等式的解就是能够使不等式成立的实数x的取值范围。
在解一元一次不等式时,可以使用变号法则来确定不等式的解集。
变号法则是指在一元一次不等式的左边加上或减去同一个正数(或负数)时,不等式的符号会发生变化。
具体来说,有以下三个规则:规则1:不等式两边同加(或减)一个正数时,不等式的符号不变。
例如,若 ax + b > 0,则 ax + b + c > 0。
规则2:不等式两边同加(或减)一个负数时,不等式的符号发生变化。
例如,若 ax + b > 0,则 ax + b - c < 0。
规则3:不等式两边同乘以一个正数时,不等式的符号不变。
例如,若 ax + b > 0,且 c > 0,则 acx + bc > 0。
利用变号法则,可以按照以下步骤求解一元一次不等式:步骤 1:将一元一次不等式化为形如 ax + b > 0 或 ax + b < 0。
步骤2:对于不等式两边的项,找到其中的一个变号点。
变号点是指使不等式中其中一项为0的取值。
步骤3:根据变号法则确定不等式的解集。
如果不等式中方程等号的一侧恰好有一个变号点,那么这个变号点就是不等式的解。
如果不等式中方程等号两侧分别有两个变号点,那么不等式的解在这两个变号点之间。
如果不等式中方程等号的一侧没有变号点,那么解集为空集。
变号法则的原理是基于实数轴上数的大小关系,在不等式两边加减同一个数或乘同一个正数时,不等式的大小关系不变,只是相对零点向右或左移动。
举一个例子来说明:要求解不等式2x-3>0。
首先将不等式化为标准形式,得到2x>3接下来需要找到变号点。
由于2x是一次项,所以变号点就是使得2x=0的点,即x=0。
然后根据变号法则确定不等式的解集。
当x<0时,2x<0,不满足2x>3,所以x<0不是原不等式的解。
当x>0时,2x>0,满足2x>3,所以x>0是原不等式的解。
一元一次不等式的解集方法解一元一次不等式就像解开一道数学题的扣子,简单又有趣。
想象一下,你拿着一把尺子,量着距离,一步步往前走,最终找到答案。
这个“解”的过程,就是咱们解决不等式的步骤啦。
你得知道不等式是什么形状的。
它就像是一条直线,起点和终点都标但中间有一段是弯弯曲曲的。
咱们要做的,就是沿着这条直线走,找到那个“弯弯曲曲”的部分。
这就好比是咱们在纸上画一条线段,然后把它拉长、变短,直到找到那个合适的长度。
咱们得数一数这条线段有多少个点。
这些点就像是不等式里的未知数,它们的位置决定了不等式的大小。
咱们需要把这些点连起来,看看它们构成了一个什么样的图形。
如果这些点连在一起形成了一个正方形或者是一个三角形,那就意味着不等式没有解;如果它们连在一起形成了一个圆形或者是一个梯形,那就意味着不等式有解。
现在,咱们来看看如何找出这些点。
咱们可以用尺子来量,也可以用笔来画。
但是,别忘了咱们的目标是找出那些能让不等式成立的点。
所以,咱们得用一些技巧来帮助自己找到这些点。
比如,咱们可以用“+”号来表示未知数,然后用“=”号来表示等式两边相等的情况。
这样,咱们就可以看到不等式两边的差值是多少了。
咱们要做的就是将这些点连起来,看看它们连成了一个什么样的图形。
如果连成了一个正方形或者是一个三角形,那就意味着不等式没有解;如果连成了一个圆形或者是一个梯形,那就意味着不等式有解。
这时候,咱们就可以根据这个图形来判断不等式的解集了。
解一元一次不等式就像是在纸上找宝藏一样。
你需要耐心地观察、思考和计算,才能找到那个隐藏的宝藏——不等式的解集。
这个过程虽然有点复杂,但当你成功找到解集的那一刻,你会发现原来解决问题也可以这么有趣。
经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
一元一次不等式的解法一元一次不等式是数学中常见的一种不等式类型,它可以表示为ax + b > 0或ax + b < 0的形式,其中a、b是实数,且a≠0。
解一元一次不等式的过程不仅可以帮助我们求解数学问题,还能提高我们的逻辑思维和分析能力。
本文将介绍一元一次不等式的解法,并给出一些例子进行说明。
一元一次不等式的解法可以分为两种情况:当系数a大于0时,不等式的符号与等式相同;当系数a小于0时,不等式的符号与等式相反。
接下来,将分别讨论这两种情况的解法。
当系数a大于0时,不等式的符号与等式相同。
我们可以按照下列步骤求解不等式:步骤一:将不等式转化为等式,即ax + b = 0。
步骤二:求出等式的解x0。
步骤三:根据解x0的位置,判断不等式的解集。
举例来说,假设我们要求解不等式2x + 3 > 0。
步骤一:将不等式转化为等式,得到2x + 3 = 0。
步骤二:求出等式的解:2x + 3 = 0,解得x0 = -1.5。
步骤三:根据解x0的位置,即-1.5,我们可以知道不等式2x + 3 >0的解集为x > -1.5。
当系数a小于0时,不等式的符号与等式相反。
我们可以按照下列步骤求解不等式:步骤一:将不等式转化为等式,即ax + b = 0。
步骤二:求出等式的解x0。
步骤三:根据解x0的位置,判断不等式的解集。
举例来说,假设我们要求解不等式-2x + 3 > 0。
步骤一:将不等式转化为等式,得到-2x + 3 = 0。
步骤二:求出等式的解:-2x + 3 = 0,解得x0 = 1.5。
步骤三:根据解x0的位置,即1.5,我们可以知道不等式-2x + 3 > 0的解集为x < 1.5。
综上所述,一元一次不等式的解法可以分为两种情况:当系数a大于0时,不等式的符号与等式相同,解是大于等于或小于等于解的集合;当系数a小于0时,不等式的符号与等式相反,解是小于或大于解的集合。
不等式解法教程不等式可是数学里超有趣的一部分呢!今天咱们就来好好唠唠不等式的解法。
一、一元一次不等式一元一次不等式就像一元一次方程的调皮小姐妹。
比如说ax + b > 0(a≠0)这种形式的。
如果a是正数,那解起来就很简单啦。
咱们就像解一元一次方程那样,把b移到右边,变成ax > - b,然后两边同时除以a,x就大于 - b/a啦。
要是a是负数呢,这时候就有点小反转啦,除以a的时候,不等号方向要改变,x就小于 - b/a咯。
就好像在一个小规则里玩游戏,得遵守这个不等号方向改变的小规则呢。
二、一元二次不等式一元二次不等式可比一元一次不等式稍微复杂一丢丢。
像ax2+bx + c > 0(a≠0)这样的。
咱们先得找到对应的一元二次方程ax2+bx + c = 0的根。
这就用到求根公式啦,x = [-b ±√(b2 - 4ac)] / (2a)。
当a > 0的时候呢,如果判别式b2 - 4ac大于0,那这个一元二次不等式的解就是x大于大根或者x小于小根;要是b2 - 4ac等于0呢,解就是x不等于这个唯一的根;要是b2 - 4ac小于0呢,那这个不等式的解就是全体实数啦。
就好像在探索一个小迷宫,根据不同的情况找到不同的出口呢。
三、绝对值不等式绝对值不等式有点像戴着面具的不等式。
比如说|x| < a(a > 0),那这个时候x就被夹在 - a和a之间啦,也就是 - a < x < a。
要是|x| > a(a > 0)呢,那x就跑到两边去啦,x > a或者x < - a。
这就好像绝对值这个小怪兽把x给抓住了,我们得根据不同的规则把x给解救出来呢。
四、分式不等式分式不等式像是一群分数在比大小。
像(f(x)/g(x)) > 0这种。
咱们可不能直接去分母哦。
要把它转化成整式不等式。
那就得看分子分母同号还是异号啦。
如果(f(x)/g(x)) > 0,那就相当于f(x)和g(x)同号,也就是f(x)g(x)>0。
一元一次不等式的解法(基础)知识讲解【学习目标】1.理解一元一次不等式的概念; 2.会解一元一次不等式.【要点梳理】【高清课堂:一元一次不等式 370042 一元一次不等式 】 要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集. 要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变. 3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆点,无等号的是空心圆圈; (2)方向:大向右,小向左. 【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0 (2)2x+3>5 (3)384x (4)1x≥2 (5)2x+y≤8【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数.【答案与解析】解:(2)、(3)是一元一次不等式.【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式2.(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向.举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为()【答案】C3.(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变.【答案与解析】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.【总结升华】去分母时,不要漏乘没有分母的项. 举一反三: 【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >. 【答案】 解:∵3511+-=x y ,14522--=x y , 若21y y >,则有1452351-->+-x x 即 6101<x∴当6101<x 时,21y y >.4.关于x 的不等式2x -a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a 的方程,解方程即可求解. 【答案】-1【解析】由已知得:12a x -≤,由112a -=-,得1a =-. 【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________. 【答案】1a -<【高清课堂:一元一次不等式 370042 例6】 【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值. 【答案】 解:由2233x m xx ---=,得x =22m -, 因为x 为非负数,所以22m-≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x <解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。