一元一次不等式的概念及解法
- 格式:docx
- 大小:92.08 KB
- 文档页数:2
第14讲一元一次不等式知识导航1.一元一次不等式的相关概念及解法;2.含参数的一元一次不等式;3.一元一次不等式的实际应用;4.含绝对值的一元一次不等式.【板块一】一元一次不等式的相关概念及解法方法技巧1.一元一次不等式是指含一个未知数,未知数的次数是1的不等式,判断是否为一元一次不等式需要先化简再判断.2.解一元一次不等式,是根据不等式的性质逐步将不等式化为a<a或x>a的形式.题型一元一次不等式的定义【例1】若不等式3(x-1)<mx2+nx-3是关于x的一元一次不等式,求m,n满足的条件.【练1】(2017年春·启东市校级月考)下列不等式是一元一次不等式的是()A.x2-9x≥x2+7x-6 B.x+1=0 C.x+y>0 D.x2+x+9≥0题型二一元一次不等式的解法【例2】解不等式213132x x---≥1,并把它的解集表示在数轴上.【例3】若不等式325123x x--<+的最小整数解是方程2x-ax=4的解,求a的值.【练3】解不等式222223x x-+>-,并写出它的非负整数解.题型四列不等式,求取值范围【例4】(2018·双桥区模拟)对于实数a,b,c表示运算:ab-c,如=2×3-4=6-4=2.(1)列出算式并求值:(2)若的值大于1,请列出不等式,并解不等式;并判断(1)中①和②的值是不是此不等式的解.【练4】(2018春·蔡甸区期末)若代数式315x -的值不小于代数式156x-的值,则x 的取值范围是____.针对练习1.下列各式:①-x ≥5;②y -3x <0;③x π+5<0;④x 2+x ≠3;⑤3x +3≤3x ;⑥2(x +2)-x <x -5,其中是一元一次不等式的有______.(填序号)2.若2(1)30m m x +->是关于x 的一元一次不等式,则m 的值为____. 3.不等式2(5x +3)>x -3(1-2x )的最小整数解为____. 4.(2018春·蜀山区期末)不等式214323x x ---<的所有自然数解的和等于____. 5.(2018春·宁都县期末)代数式12x -1的值小于313x -的值,则x 的取值范围是____. 6.解不等式,并把解集在数轴上表示出来:(1)2(5x -3)≤4x -3(1-3x ); (2)1+5x >522x --; (3)2 1.530.6 1.930.50.20.1x x x---->.7.(2018春·孟津县期中)若不等式5(x -2)+8≤6(x -1)+7的最小整数解是方程3x -ax =-3的解,求210a --的值.8.(2018春·九台区期末)对x ,y 定义一种新运算T ,规定:T (x ,y )=2ax byx y++(a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=01201a bb⨯+⨯=⨯+.若(1,1)2,(2,1) 1.TT-=-⎧⎨=⎩(1)求a,b的值;(2)解关于m的不等式:T(2m,3-4m)≤8.【板块二】含参数的一元一次不等式方法技巧1.解决含参数的一元一次不等式,抓住两条主线,将参数当作数看待或将参数当作主元看待.2.注意讨论参数的取值范围.题型一解含参数的一元一次不等式【例1】解关于x的不等式ax-2a<2(x-2).【练1】解关于x的不等式ax+3<x+b..题型二已知不等式的解集,求参数的取值范围【例2】若不等式(2k+1)x<2k+1的解集是x>1,求k的取值范围.【练2】当a=___时,关于x的不等式(1-a)x>a-5的解集是x<2.题型三已知不等式的解集,化简后求参数的取值范围【例3】(2017秋·双清区校级月考)已知一元一次不等式mx-3>2x+m.(1)若它的解集是x<32mm+-,求m的取值范围;(2)若它的解集是x>34,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.【练3】若关于x的不等式m(x+2)>2m-1的解集是x<15,则关于x的不等式(m-1)x>-1-m的解集是()A.x<23-B.x>23-C.x<23D.x>23题型四已知不等式的整数解,求参数的取值范围【例4】(2018春·淮安区期末)已知不等式2x-m≤0至少有5个正整数解,求m的取值范围.题型五已知不等式的解集,求相关不等式的解集【例5】若关于x的不等式(2a-b)x+3a-4b<0的解集是x>49,试求关于x的不等式(a-4b)x+2a-3b<0的解集.【练5】已知关于x的不等式(4a-3b)x>2b-a的解集是x<49,则ax>b的解集为____.针对练习21.(2018春·大田县期中)若不等式(a-3)x<3-a的解集在数轴上表示如图所示,则a的取值范围是____.2.已知不等式3x+a≤0的正整数解为1、2、3,则a的取值范围是____.3.(2017·大庆)若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为()A.2 B.3 C.4 D.54.解关于X的不等式a(x-b)≤b(x-a).5.(2018春·新野县期中)已知x=3是关于x的不等式3x-22ax+>23x的一个解,求a的取值范围.6.设不等式(m+n)x+(2m-3n)<0的解集为x<-13,求不等式(m-3n)x+(n-2m)>0的解.【板块三】实际问题与一元一次不等式(一)方法技巧1.常见的一些等量关系:①行程问题∶路程=速度×时间;②工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量;③利润问题∶商品利润=商品售价-商品进价,利润率=利润进价×100%;④增长率问题∶增长量=原有量×增长率;⑤银行存贷款问题∶本息和=本金+利息,利息=本金×利率×时间;⑥数字问题∶多位数的表示方法∶例如∶abcd=a×103+b×102+c×10+d.2.用不等式解决应用问题在设未知数时,表示不等关系的文字(如“至少”〉不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.题型一关系直接型【例1】蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问∶在巳确定调用7辆A型车的前提下至少还需调用B型车多少辆?【练1】(2018春•秦都区期中)某小区为了绿化环境,计划购进甲、乙两种花卉共31株,甲种花卉每株20元,乙种花卉每株5元,若购买甲、乙两种花卉总费用不超过350元,问至少需要购买乙种花卉多少株?题型二阅读理解型【例2】(2018•上城区一模)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:(注:居民生活用水水价=供水价格十污水处理费)(1)当居民月用水量在18立方米及以下时,水价是元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=5.90(元),预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收人的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议.【练2】用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表∶现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为x kg,则x应满足的不等式为()A.600x+100(10-x)≥4200B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200D.8x+4(100-x)≥4200针对练习31.(2018春⋅包河区期中)某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=-售价进价进价×100%),则最多可降价( )A.80元B.160元C.100元D.120元2.(2018春⋅南江县期末)南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计).在南江县,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6B.7C.8D.93.(2018春⋅黄岛区期末)三个连续自然数的和小于15,这样的自然数组共有( )A.6组B.5组C.4组D.3组4.(2018春⋅道里区期末)去年某市空气质量良好(二级以上)的天数与全年天数(365天)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数比去年至少要增加天.5.(2018春⋅磴口县期末)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200斤,老王昨天青菜和西兰花各进了多少斤?斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,青菜每斤售价至少为多少元?6.下面是工厂各部门提供的信息:人事部:明年生产工人不多于800人,每人每年工时按2400工时计算;市场部∶预测明年的产品销售是10000〜12000件;技术部∶该产品平均每件需用120工时,每件需要装4个某种主要部件;供应部∶今年年终库存某种主要部件6000个,明年可采购到这些部件60000个.请判定:①工厂明年的生产量至多应为多少件?②为了减少积压,至多可裁减多少工人用于开发其他新产品?【板块四】实际问题与一元一次不等式(二)题型一与方程(组)结合【例1】(2018⋅赤峰)小明同学三次到某超市购买益A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.针对练习31.(2018春•包河区期中)某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=-售价进价进价×100%),则最多可降价( )A.80元B.160元C.100元D.120元2.(2018春•南江县期末)南江县出租车收费标准为∶起步价3元(即行驶距离小于或等于3千米时都需要付费3元,超过3千米以后每千米加收1.5元(不足1千米按1千米计〉.在南江县,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是( )千米.A.6B.7C.8D.93.(2018春•黄岛区期末)三个连续自然数的和小于15,这样的自然数组共有( )A.6组B.5组C.4组D.3组4.(2018春•道里区期末)去年某市空气质量良好(二级以上)的天数与全年天数(365天)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数比去年至少要增加天.5.(2018春•磴口县期末)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200斤,老王昨天青菜和西兰斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,青菜每斤售价至少为多少元?6.下面是工厂各部门提供的信息:人事部:明年生产工人不多于800人,每人每年工时按2400工时计算;市场部:预测明年的产品销售是10000〜12000件;技术部:该产品平均每件需用120工时,每件需要装4个某种主要部件;供应部:今年年终库存某种主要部件6000个,明年可采购到这些部件60000个.请判定:①工厂明年的生产量至多应为多少件?②为了减少积压,至多可裁减多少工人用于开发其他新产品?【板块四】实际问题与一元一次不等式(二)题型一与方程(组)结合【例1】(2018 赤峰)小明同学三次到某超市购买益A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.【练2】(2018•太原三模)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土——讲好我们的地球故事”.在地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是:家长免费,学生都按九折收费;乙旅行社的优惠条件是:家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?针对练习41.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8︰11,则符合此规定的行李箱的高的最大值为cm.2.(2018春•洪山区期末)已知购买60件八商品和30件B商品共需1080元;购买50件A商品和20件B商品共需880元.若某商店需购买B商品的件数比购买A商品的件数的2倍少4件,且商店购买的A、B两种商品的总费用不超过296元,则购买A商品的件数最多为件.根据以上信息解答下列问题(1)求A、B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的1倍,购买三种电冰箱的总金额不超过132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【练1】(2018•昆明)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?题型二方案选择型型两种客车,它们的载客量和租金如下表:A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A 型客车x辆,根据要求回答下列问题:(1)用含工的式子填写下表:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【板块五】绝对值不等式方法技巧1.①关于x的不等式|x|<a(a>0)的解为:-a<x<a;②关于x的不等式|x|>a(a>0)的解为:a>x或者x <-a.2.含绝对值的不等式可利用数形结合法与分类讨论法解决问题.题型一解含一个绝对值的不等式【例1】阅读求绝对值不等式子|x |<3解集的过程:因为|x |<3,从如图所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所以|x |<3的解集是-3<x <3.解答下面的问题:(1)不等式|x |<a (a >0)的解为 .(2)求|x -5|<3的解集实质上是求不等式组 的解集,所以|x -5|<3的解集是 .【练1】解下列含绝对值的不等式:(1) |x |≤5(2) |2x -1|<3(1) 213x ≥4题型二 解含多个绝对值的不等式【例2】解不等式:|x -1|+|x +2|=5.由绝对值的几何意叉知,核方程表示求在数紬上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距高为3,满足方程的x 对应点在1的右边或-2的左边.若x 对应点在1的右边,由可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列向题:(1)方程|x +3|=4的解カ .(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.0 1 -3 -2 -1 23 0-2 -1【练2】解不等式|x-5|-|x+2|<1.针对练习5 1.解下列含绝对值的不等式:(1) |2x+5|>7(2) |x+2|<3x+14(1) 31314x--<22.解下列含绝对值的不等式:|x-1|+|x+2|>5.3.解下列含绝对值的不等式:|x|≥|x-3|.4.已知x<-1,化简|3x+1|-|1-3x|.5.已知5(x+1)-3x>2(2x+3)+4,化简|2x-1|-|1+2x|.。
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。
一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。
一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。
二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。
2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。
3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。
三、解法1. 一元一次不等式的解法有两种:图像法和代数法。
图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。
代数法是通过移项、化简等代数运算来求解。
2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。
四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。
2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。
3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。
一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。
解不等式常用公式解不等式是数学中的一个重要内容,它在实际问题中具有广泛的应用。
在解不等式的过程中,我们可以运用一些常用的公式和方法来简化计算,提高求解的效率。
本文将介绍一些常用的不等式解法公式,并通过实际例子来说明它们的应用。
一、一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次方程。
对于一元一次不等式ax+b>0(或<0)来说,我们可以通过以下公式来求解:1. 当a>0时,不等式ax+b>0的解集为x>-b/a;2. 当a<0时,不等式ax+b>0的解集为x<-b/a;3. 当a>0时,不等式ax+b<0的解集为x<-b/a;4. 当a<0时,不等式ax+b<0的解集为x>-b/a。
例如,对于不等式2x-3>0,我们可以将其转化为2x>3,再除以2,得到x>3/2。
因此,不等式2x-3>0的解集为x>3/2。
二、一元二次不等式的解法一元二次不等式是指含有一个未知数的二次方程。
对于一元二次不等式ax^2+bx+c>0(或<0)来说,我们可以通过以下公式来求解:1. 当a>0时,不等式ax^2+bx+c>0的解集为x<x1或x>x2,其中x1和x2分别为方程ax^2+bx+c=0的两个根;2. 当a<0时,不等式ax^2+bx+c>0的解集为x1<x<x2。
例如,对于不等式x^2-3x+2>0,我们可以先求出方程x^2-3x+2=0的根,即x1=1和x2=2。
由于a=1>0,因此不等式x^2-3x+2>0的解集为x<1或x>2。
三、绝对值不等式的解法绝对值不等式是指含有绝对值符号的不等式。
对于绝对值不等式|ax+b|>c来说,我们可以通过以下公式来求解:1. 当a>0时,不等式|ax+b|>c的解集为x<-b/a-c/a或x>-b/a+c/a;2. 当a<0时,不等式|ax+b|>c的解集为x<-b/a+c/a或x>-b/a-c/a。
一元一次不等式的解法在代数学中,一元一次不等式是一个包含一个未知数的一次多项式不等式。
解一元一次不等式是找到使得不等式成立的未知数的取值范围。
本文将介绍常见的一元一次不等式的解法。
一、一元一次不等式的基本形式一元一次不等式的基本形式如下:ax + b > 0 (或ax + b ≥ 0)其中,a和b是已知实数,x是未知数。
二、两种基本解法解一元一次不等式有两种基本的解法:图解法和代数解法。
1. 图解法图解法是通过在数轴上绘制函数图像来找到不等式的解。
首先,我们将不等式中的等号改为等号,并根据系数a的正负性质判断函数图像的开口方向。
如果a > 0,函数图像开口向上;如果a < 0,函数图像开口向下。
然后,根据b的正负性质确定函数图像与x轴的交点。
如果b > 0,交点在x轴上方;如果b < 0,交点在x轴下方。
最后,确定不等式的解集。
如果不等式是大于号(>),解集为交点右侧的所有实数;如果不等式是大于等于号(≥),解集为交点及其右侧的所有实数。
图解法直观明了,可以直接观察出解集的范围。
2. 代数解法代数解法是通过对不等式进行变形和运算来找到不等式的解。
首先,根据不等式的形式,确定变式的目标。
如果目标是求x的取值范围,则可以将不等式进行变形,以消去a的系数。
然后,进行变形和运算,使得不等式的形式简化。
例如,可以根据a的正负性质将不等式改写为:x > -b/a 或x ≥ -b/a。
最后,根据不等式的形式确定解集的范围,并将解集用集合的符号表示出来。
代数解法较为繁琐,但可以精确得出解集的范围。
三、示例解析现以一个具体的例子来说明一元一次不等式的解法。
例:2x + 3 > 51. 图解法根据不等式的形式,将等号改为等号,得到2x + 3 ≥ 5。
由于a > 0,函数图像开口向上。
由于b > 0,交点在x轴上方。
解集为交点右侧的所有实数:x > 1。
一元一次不等式一元一次不等式是初中数学中的一个重要概念。
它是一种用来描述数之间大小关系的数学式子,由一个未知数和一个或多个常数构成。
本文将从基本概念、求解方法和应用场景三个方面介绍一元一次不等式的相关知识。
1. 基本概念一元一次不等式是指由一个未知数和一个或多个常数构成的不等式。
一元一次不等式的一般形式为Ax + B > 0(或< 0),其中A和B为实数,且A ≠ 0。
在求解一元一次不等式时,需要注意以下几个基本规则:- 若A > 0,则不等式两端同时乘以正数(或正数的等价形式)不改变不等式的方向。
- 若A < 0,则不等式两端同时乘以负数(或负数的等价形式)会改变不等式的方向。
- 不等式两端同时加(或减)同一个数值,不等式的方向不变。
2. 求解方法对于一元一次不等式的求解,我们可以采用图像法、试值法或代数法等不同方法。
2.1 图像法图像法是一种直观的方法,通过绘制函数图像来确定不等式的解。
对于一元一次不等式Ax + B > 0(或< 0),我们可以绘制出函数y = Ax + B 的图像,并根据图像在数轴上的位置来确定不等式的解集。
2.2 试值法试值法是一种简单有效的方法,在不等式两边选择一些特定的数值进行代入,然后判断不等式的成立情况。
通过不断尝试,最终找到满足不等式的解集。
2.3 代数法代数法是一种更为精确的方法,它基于等价变形和性质运算对不等式进行求解。
通过将一元一次不等式进行等价变形,将未知数的系数化为1,从而得到不等式的解集。
3. 应用场景一元一次不等式在实际问题中有着广泛的应用。
以下是两个常见的应用场景:3.1 财务管理在财务管理中,一元一次不等式可以用来描述投资、贷款或收入等方面的问题。
例如,假设一个人每月的收入为x元,他将其中的40%用于生活费,那么可以通过不等式0.4x > 1000 来计算他每月的最低收入。
3.2 生产与销售在生产与销售中,一元一次不等式可以用来描述成本、销售量和利润等关系。
一元一次不等式的解法的一题多解一元一次不等式是初中阶段数学中的重要内容之一,它涉及到数轴、代数运算和图像等多个方面的知识。
在解一元一次不等式时,往往会出现一题有多种解法的情况,这对于培养学生的数学思维和解决问题的能力是非常有益的。
本文将从不同的角度出发,探讨一元一次不等式的解法的一题多解现象,并深入解析每种解法的特点和适用情况,帮助读者更好地理解和掌握这一数学内容。
1. 知识回顾:一元一次不等式的基本概念在开始讨论一题多解的情况前,首先需要回顾一元一次不等式的基本概念。
一元一次不等式是指形如ax+b>c或ax+b≥c的不等式,其中a、b、c为给定的实数,且a≠0。
解一元一次不等式的关键是找到变量的取值范围,使得不等式成立。
通常可以通过图像法、实数法和代数法等多种方法来解决一元一次不等式,而一题多解的情况往往出现在代数法中。
2. 一题多解的情况及原因分析一元一次不等式的一题多解情况指的是对于同一个不等式题目,可以有多种不同的解法来求解变量的取值范围。
这种现象的存在主要是由于一元一次不等式的代数性质较为复杂,导致在求解过程中可以有多种不同的途径和方法。
对于不等式2x+3>7,可以通过加减消元、乘除消元、绝对值法等多种代数方法来得到不同的解。
3. 一题多解的案例分析现以不等式2x+3>7为例,分别通过加减消元和乘除消元两种代数方法来求解不等式的解。
- 加减消元法:首先将不等式转化为2x>4,然后除以2得到x>2,即不等式的解集为{x|x>2}。
- 乘除消元法:将不等式转化为x>2,得到同样的解集{x|x>2}。
可以看到,通过不同的代数方法得到的解集是相同的,这说明在这个特定的例子中,不同的方法可以得到相同的答案。
4. 解法的特点和适用情况从以上案例分析可以看出,一元一次不等式的一题多解并不意味着所有的解法都是正确的,而是指在某些特定情况下可以有多种不同的方法来求解同一个不等式。
一元一次方程不等式解法一元一次方程不等式是数学中比较基础的知识,对于初学者来说,理解并掌握它是非常重要的。
本文将为大家介绍一元一次方程不等式的概念、解法以及常见的问题和注意事项。
一、什么是一元一次方程不等式?一元一次方程不等式是指一个只有一个未知数x的不等式,其形式一般为ax + b > 0或ax + b < 0,其中a和b为已知数且a ≠ 0。
二、一元一次方程不等式的解法1. 移项法将不等式中的常数项b移到一边,未知数项ax移到另一边,然后将方程两边同除以系数a。
例如,对于ax + b > 0,我们可将b移到另一边,得到ax > -b,再将两边同除以a,即可得到x > -b/a的解。
2. 加减法一元一次方程不等式的加减法是指将不等式两边同时加上或减去同一量,从而改变不等式符号后比较大小。
例如,对于ax + b < 0,我们可将b移到另一边,得到ax < -b,再将两边同时减去b/a,即可得到x < -b/a的解。
三、一元一次方程不等式的常见问题和注意事项1. 一元一次方程不等式的解可能是整数、有理数或无理数。
2. 当a为正数时,不等式ax + b > 0的解集为x > -b/a,不等式ax + b < 0的解集为x < -b/a。
3. 当a为负数时,不等式ax + b > 0的解集为x < -b/a,不等式ax + b < 0的解集为x > -b/a。
4. 在解一元一次方程不等式时,最好画出数轴,从而更直观地判断解的区间。
5. 如果在方程中遇到分母为0的情况,就必须将其排除在方程的解的范围之外。
综上所述,理解一元一次方程不等式的概念和解法,以及注意事项,有助于我们更好地学习数学,提高解题能力。
希望本文能为大家提供一些参考和帮助。
八年级上册数学一元一次不等式八年级上册数学一元一次不等式一、不等式的定义和基本性质不等式是数学上一种重要的比较关系,不同于等式,它表示两个数的大小关系。
我们将一些基本概念和性质列出来,方便大家理解。
1. 定义:两个数a、b之间的不等式可以表示为a<b或a>b,读作a 小于(或大于)b。
2. 对称性:若a<b,则b>a;若a>b,则b<a。
3. 传递性:若a<b,b<c,则a<c。
4. 增量性:若a<b,则a+c<b+c;若a>b,则a+c>b+c。
二、一元一次不等式一元一次不等式是一元一次方程的推广。
我们一般将一元一次不等式写成ax+b<0或ax+b>0的形式,其中a、b为实数,且a≠0。
下面列出一些一元一次不等式的解法。
1. 解ax+b<0(a>0)的步骤:(1)移项,得到ax<-b;(2)消去a的负号,得到x>-b/a。
(3)注意:当等式左边出现乘方时,应考虑反号。
2. 解ax+b<0(a<0)的步骤:(1)移项,得到ax>-b;(2)消去a的负号,得到x<-b/a。
(3)注意:当等式左边出现乘方时,应考虑反号。
3. 解ax+b>0(a>0)的步骤:(1)移项,得到ax>-b;(2)消去a的正号,得到x<-b/a。
(3)注意:当等式左边出现乘方时,应考虑反号。
4. 解ax+b>0(a<0)的步骤:(1)移项,得到ax<-b;(2)消去a的正号,得到x>-b/a。
(3)注意:当等式左边出现乘方时,应考虑反号。
三、一元一次不等式的综合应用一元一次不等式的应用非常广泛,如何解决一些实际问题,需要我们了解并掌握一些技巧。
下面列出一些例题及解法,供大家参考。
1. 例题:小明要买苹果,商店每斤3元以下,小明手头只有30元,请问小明最多能买多少斤苹果?(1)解法1:假设小明能买的苹果质量为x,那么有不等式3x<=30,即x<=10。
一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。
例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。
三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。
X=2 是不等式 x+3<2 的解。
X=2 是不等式 3x<7 的解。
不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。
解是 x<2。
X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。
-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。
例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。
②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
一元一次不等式的解法教案一元一次不等式是数学学科中较为基础的内容之一,也是各种数学问题的必要组成部分。
在解一元一次不等式时,首先需要明确其基本概念和解题思路,以此为基础进行实际操作,从而达到正确解题的目的。
本文将从概念和解题思路两个方面讲解一元一次不等式的解法。
一、概念一元一次不等式的概念可以从以下三个方面入手,进而掌握其基本含义:1.一元一元指的是不等式中只有一个未知量,通常用x表示。
2.一次一次指的是不等式中未知量的最高次数为1,即不含平方项及以上次数的项。
3.不等式不等式指的是不等关系,不同于等式的等于关系,包括大于、小于、大于等于、小于等于等多种形式。
在掌握了一元、一次和不等式这三个概念之后,就能够对一元一次不等式有更为深入的理解和认识。
二、解题思路在解一元一次不等式时,需要掌握以下基本思路:1.移项将不等式中含有未知量的项移至一侧,将不含未知量的项移至另一侧,以求得未知量的取值范围。
2.变形通过运用数学公式和基本变形方式,将求解一元一次不等式的问题转化为更简单的问题进行求解。
3.分段讨论对于复杂的一元一次不等式,可以将其拆分为多个不等式进行讨论求解,从而得到最终的解法。
4.画图法对于一元一次不等式,还可以通过在坐标系中绘制对应函数的图像,从而更直观地理解其解法和结果。
以上为解一元一次不等式的基本思路,当然,具体操作方法还需要根据不同的题型进行具体分析和求解。
综上所述,一元一次不等式的解法是数学学科中的基础内容,也是芝士经验悠久的领域。
掌握了一元一次不等式的基本概念和解题思路,就能够更轻松地解决各种数学问题,并在日常生活中发挥出更大的作用。
家庭作业
解答题 1.解不等式组
⑴⎩⎨⎧-≤+>+145321x x x x ⑵⎪⎩⎪
⎨⎧-≥-->+35663
4)1(513x x x x
2.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。
问刻录这批电脑光盘,该校如何选择,才能使费用较少?
3.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?
附加题:
1.如果不等式03<-a x 的正整数是1,2,3,那么a 的取值范围是多少?
2.已知不等式42213x a x +>-的解集为2>x ,求a x a ->-2)(3
1
的解集。
3.解不等式0412<--x
4.某宾馆底层客房比二楼少5间,一旅游团有48人,若全安排住底层,每间住4人,则房间不够,若每间安排住5人,则有房间没有住满5人。
又若全安排住在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,问该宾馆共有多少间客房?。
一元一次不等式知识点1. 一元一次不等式的定义一元一次不等式是指包含一个未知数,且未知数的最高次数为一的不等式。
其一般形式为 ax + b > c 或 ax + b < c,其中 a, b, c 是实数,a ≠ 0。
2. 基本性质一元一次不等式具有以下基本性质:- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变。
- 0 特殊性:0 不小于任何负数,不大于任何正数。
3. 解一元一次不等式的步骤- 移项:将含有未知数的项移到不等号的一边,常数项移到另一边。
- 合并同类项:将含有未知数的项系数化为1,同时将常数项相加减。
- 求解:根据系数化为1后的不等式,直接求出解集。
4. 特殊注意事项- 当系数化为1时,如果系数的分母为负数,需要改变不等号的方向。
- 解一元一次不等式时,需要注意不等式两边的运算顺序和运算规则。
5. 常见题型及解法- 直接求解:直接根据一元一次不等式的解法步骤求解。
- 应用题:将实际问题转化为一元一次不等式,然后求解。
- 系统求解:多个一元一次不等式组成的不等式组,需要找到满足所有不等式的解集。
6. 不等式组的解集- 同大取大:两个不等式都是大于号,取较大的那个数。
- 同小取小:两个不等式都是小于号,取较小的那个数。
- 大大小小中间找:一个不等式是大于号,另一个是小于号,取中间的数。
- 无解:一个不等式要求大于某个数,另一个要求小于同一个数,这种情况下无解。
7. 练习题- 解不等式 2x - 3 > 5,并表示在数轴上。
- 一个数的两倍减去5不小于10,求这个数的取值范围。
- 有两个房间,第一个房间的温度比第二个房间的温度高至少5度,如果第二个房间的温度是18度,求第一个房间的温度范围。
8. 总结一元一次不等式是初中数学的重要知识点,掌握其性质和解法对于解决实际问题和进一步学习数学都具有重要意义。
一元一次不等式一元一次不等式是数学中的基本概念之一,它在解决实际问题中具有广泛的应用。
本文将详细介绍一元一次不等式的定义、性质以及解法,并通过实例进行说明。
1. 一元一次不等式的定义一元一次不等式是指一个变量的一次方程与不等式的组合,形如ax + b > 0(或 < 0),其中a和b为已知实数,且a ≠ 0。
这种不等式通常用于表示某些量的范围或条件。
2. 一元一次不等式的基本性质(1)性质1:两个一元一次不等式可以进行加减运算,得到的结果仍然是一个一元一次不等式。
(2)性质2:一元一次不等式两边同时乘(或除)一个正数,不等式的方向不变;两边同时乘(或除)一个负数,不等式的方向发生改变。
(3)性质3:对于一元不等式ax + b > 0,如果a > 0,则该不等式的解集是x > -b / a;如果a < 0,则该不等式的解集是x < -b / a。
3. 解一元一次不等式的步骤(1)将不等式转化为等式:将不等式中的大于号(或小于号)改为等号。
(2)求解等式:解一元一次方程ax + b = 0,得到方程的解为x = -b / a。
(3)确定解的范围:根据一元一次不等式的性质,确定解的范围。
(4)表示解集:将解的范围写成不等式的形式,并表示为解集。
4. 实例演示假设有一元一次不等式2x - 3 > 5,我们按照上述步骤来解决这个不等式。
(1)转化为等式:2x - 3 = 5。
(2)求解等式:2x = 8,x = 4。
(3)确定解的范围:由于系数2 > 0,所以解的范围为x > 4。
(4)表示解集:解集可以表示为(4, +∞)。
通过以上步骤,我们成功解决了一元一次不等式2x - 3 > 5,得出解集为(4, +∞)。
总结:一元一次不等式在数学中具有广泛的应用,特别是在实际问题的建模和解决过程中。
对于一元一次不等式的解法,我们需要明确其定义和基本性质,然后按照一定的步骤进行求解,最终得到表示解集的形式。
一元一次不等式一元一次不等式的概念只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。
要点诠释:(1)一元一次不等式的概念可以从以下几方面理解:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2)一元一次不等式和一元一次方程可以对比理解。
相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。
一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式。
2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.注意事项:(1)在解一元一次不等式时,每个步调其实不肯定都要用到,可按照具体问题灵活运用(2)解不等式应注意:①去分母时,每一项都要乘统一个数,尤其不要漏乘常数②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有没有限多个解,它对当前正确确定一元一次不等式组的解集有很大匡助。
留意事项:在用数轴表示不等式的解集时,要确定边界和偏向:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)偏向:大向右,小向左1、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
2、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为或的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为这五个步骤根据具体题目,适当选用,合理安排顺序。
一元一次不等式与一次函数题型及做题技巧一、引言在数学学习过程中,一元一次不等式与一次函数题型是我们经常会遇到的内容。
它们不仅在中学阶段占据着重要的位置,而且在后续学习中也有着深远的影响。
本文将以一元一次不等式与一次函数为主题,探讨其相关的题型及做题技巧,帮助读者更好地理解和掌握这一部分内容。
二、一元一次不等式的基础概念在开始探讨一元一次不等式的题型及做题技巧之前,我们首先需要了解一元一次不等式的基础概念。
一元一次不等式是指形如ax+b>c或ax+b<c的不等式,其中a、b、c均为实数,且a ≠ 0。
在解一元一次不等式时,我们需要找到不等式的解集,即满足不等式的实数的集合。
针对一元一次不等式,我们通常会涉及到一些常见的题型,例如绝对值不等式、含参数的不等式等。
在解题过程中,需要根据不等式的特点选取合适的解法,以便快速有效地求解不等式。
三、一元一次不等式题型及做题技巧1. 绝对值不等式绝对值不等式是一种常见的不等式类型,它的形式通常为|ax+b|>c或|ax+b|<c。
在解绝对值不等式时,我们需要将不等式分为两种情况讨论,即当ax+b>0时和ax+b<0时。
对于不等式|ax+b|>c,我们需要分别解出ax+b>c和ax+b<-c的不等式组,并将其合并得到最终的解集。
而对于不等式|ax+b|<c,我们同样需要分别解出ax+b<c和ax+b>-c的不等式组,然后得到最终的解集。
在解绝对值不等式时,我们需要注意 |ax+b| = a * x + b 或者 |ax+b| = -a * x - b ,然后分别进行讨论。
2. 含参数的不等式含参数的不等式是指不等式中存在未知参数的情况,通常我们需要根据参数的取值范围来求解不等式。
在解含参数的不等式时,我们需要分情况讨论参数的取值范围,然后分别求解不等式并得出最终的解集。
与绝对值不等式类似,在解含参数的不等式时,我们需要将不等式分为不同情况进行讨论,以免遗漏某些情况带来的解集。
一元一次方程与一元一次不等式一元一次方程和一元一次不等式是数学中基础的概念,广泛应用于各个领域。
它们分别描述了方程和不等式之间的关系,并对数学问题的解产生重要影响。
本文将详细介绍一元一次方程和一元一次不等式的定义、性质以及解法。
一、一元一次方程的定义和性质一元一次方程是指含有一个未知数的一次方程。
它的一般形式可以表示为 ax + b = 0,其中 a 和 b 是已知数,且a ≠ 0。
解一元一次方程的目标是找到使得等式成立的未知数的值。
一元一次方程具有以下性质:1. 唯一解性:一元一次方程有且仅有一个解,除非方程中的 a = 0,此时方程无解或有无限多解。
2. 线性关系:一元一次方程表示了两个变量之间的线性关系。
3. 可以通过变量消去求解:通过变量的加减、乘除等操作,可以将方程转化为更简单的形式,从而求得解。
二、一元一次方程的解法解一元一次方程可以运用一些常用的解法,如图形法、代数法和观察法等。
以下是几种常用的解法:1. 代数法:通过代数运算,将方程转化为形如 x = c 的形式,从而得到方程的解。
例如,对于方程 2x + 3 = 7,可以通过将 3 移到等号右边,再将 2 除以得到 x 的值。
2. 图形法:将一元一次方程转化为直线的形式,在坐标系中绘制出该直线,并通过直线与 x 轴的交点确定方程的解。
例如,对于方程 3x - 2 = 4,可以将方程转化为直线的形式,即 y = 3x - 2,然后在坐标系中绘制出这条直线,由直线与 x 轴的交点得到方程的解。
3. 观察法:对于一些简单的一元一次方程,可以通过观察得到解。
例如,对于方程 5x + 7 = 22,可以通过观察得到 x = 3,因为当 x = 3 时,5x + 7 的值正好等于 22。
三、一元一次不等式的定义和性质一元一次不等式是指含有一个未知数的一次不等式。
它的一般形式可以表示为 ax + b < 0 或 ax + b > 0,其中 a 和 b 是已知数,且a ≠ 0。
课题:一元一次不等式的概念及解法 班级: 姓名: 编号: 主备人: 学习目标: 1.能说出什么叫一元一次不等式; 2.知道解方程得移项法则对解不等式同样适用;能归纳出一元一次不等式的解法(解法步骤); 3.能正确运用不等式基本性质。
旧知链接:
1.一元一次方程的最简形式是 ,标准形式是 。
2.解方程 ,并体会其步骤. 新课学习:
1. 叫做一元一次不等式;
2.元一次不等式的最简形式是 一元一次不等式的标准形式是
3.解一元一次不等式与 相类似,但依据是
4.解一元一次不等式时,两边都乘以或除以同一个负数时,最需要注意
5.解下列不等式,并把解集在数轴上表示出来:
(1)x+3>2 (2)-2x <10
(3)3x+1<2x-5 (4)2-5x ≥8-2x
6.一元一次不等式2x -1≤3的解集在数轴上表示为( )。
A B .
C D . 7.归纳总结:
解一元一次不等式的步骤是:
当堂检测题
1 2
1 3 = - - x x 0 1
2 3
-1 -2 -3 0 1 2 3 -1 -2 -3 0 1 2 3 -1 -2 -3 0 1 2 3 -1 -2 -3
1.下列各式是一元一次不等式的是()
A.2
x
>1 B.2x>1 C.2x2≠1 D.2<
1
x
2.“x大于-6且小于6”表示为()
A -6<x<6;
B x>-6,x≤6;
C -6≤x≤6;
D -6<x≤6;
3.关于x的一元一次方程4x-m+1=3x-1的解是负数,则m的取值范围是()
A m=2
B m>2
C m<2
D m≤2
二、填空题(每题4分,共20分)
1.不等式1
2
2
x>的解集是:;不等式
1
3
3
x
->的解集是:;
2.当x 时,3x-2的值为正数;x为时,不等式1
8
3
x-的值不小于7;
3.方程26-8x=0的解是______,不等式26-8x>0的解集是______,不等式26-8x<•0的解集是________.4.如果a与12的差小于a的9倍与8的和,则a的取值范围是_______.
5.解下列不等式:
(1)(x-3)≥2(x-4) (2)48
5
x
-
≥0
(3)(1-2x)>10-5(4x-3)(4)1<
10
2
x
x
+ --
三、根据题意列不等式(组)——只列式,不求解;
某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?
解:设,
依题意得:。