第7例悬臂梁
- 格式:ppt
- 大小:511.00 KB
- 文档页数:22
材料力学典型案例材料力学典型案例:1. 悬臂梁的弯曲问题悬臂梁是一种常见的结构,经常用于桥梁、楼梯和支撑物等。
在悬臂梁的弯曲问题中,常常需要计算梁的挠度和应力分布。
通过应用材料力学的理论和公式,可以准确计算出悬臂梁在外力作用下的弯曲情况,并确定梁的安全性。
2. 拉伸试验中的应力应变关系拉伸试验是材料力学中常用的实验方法之一,用于确定材料的力学性质。
在拉伸试验中,通过施加不断增加的拉伸力,测量材料的应变和应力,得到应力应变关系曲线。
该曲线可以描述材料在拉伸过程中的变形和破坏行为。
3. 管道的弯曲问题管道的弯曲问题是材料力学中的一个重要问题。
在工程实践中,经常需要对管道进行弯曲设计和分析。
通过应用材料力学的理论和方法,可以计算出管道在外力作用下的应力和变形情况,从而确定管道的强度和稳定性。
4. 钢筋混凝土梁的受弯问题钢筋混凝土梁是建筑结构中常用的承载构件之一。
在设计和施工过程中,需要对钢筋混凝土梁的受弯性能进行分析和计算。
通过应用材料力学的理论和公式,可以确定钢筋混凝土梁在受弯作用下的应力和变形情况,并评估梁的承载能力和安全性。
5. 地基沉降引起的结构变形问题地基沉降是建筑结构中常见的问题之一,它会导致结构的变形和破坏。
通过应用材料力学的理论和方法,可以计算出地基沉降引起的结构变形和应力分布,从而评估结构的稳定性和安全性,并提出相应的加固措施。
6. 薄壁容器的承载问题薄壁容器是化工和食品等行业常用的储存和运输设备。
在设计和使用过程中,需要对薄壁容器的承载能力进行评估。
通过应用材料力学的理论和公式,可以计算出薄壁容器在内外压力作用下的应力和变形情况,从而确定容器的安全性和可靠性。
7. 斜拉桥的稳定性问题斜拉桥是一种特殊的桥梁结构,具有较大的跨度和较轻的自重。
在斜拉桥的设计和施工过程中,需要对桥梁的稳定性进行分析和计算。
通过应用材料力学的理论和方法,可以确定斜拉桥在外力作用下的应力和变形情况,从而评估桥梁的稳定性和安全性。
7.6 横向扭转屈曲分析实例(GUI方式)可以用BEAM188 和BEAM189 单元来模拟直梁的弯曲和剪切,也可以模拟梁的横向扭转屈曲。
为了建立这一模型,需要建立足够密的梁单元网格。
典型地,需要用一系列的梁单元来模拟一根直梁。
如图7-4 所示。
图7-4 悬臂梁的横向扭转屈曲悬臂梁的横向扭转屈曲,用60个BEAM188 单元模拟(通过/ESHAPE显示)《ANSYS Structural Analysis Guide》§7 详细叙述了屈曲分析。
本例分析悬臂梁在末端承受横向载荷时的行为。
7.6.1 问题描述一根直的细长悬臂梁,一端固定一端自由。
在自由端施加载荷。
本模型做特征值屈曲分析,并进行非线性载荷和变形研究。
研究目标为确定梁发生支点失稳(标志为侧向的大位移)的临界载荷。
参见图7-5。
7.6.2 问题特性参数材料特性:杨氏模量=1.0X10e4 psi;泊松比=0.0。
几何特性:L=100 in;H=5 in;B=2 in。
载荷为:P=1 lb。
7.6.3 草图图7-5 梁的变形7.6.4 特征值屈曲和非线性破坏分析特征值屈曲分析是线性分析,通常仅适用于弹性结构。
通常在小于特征值屈曲分析得到的临界载荷之前发生材料屈服。
这种分析比完全非线性屈曲分析所需的求解时间要少。
用户还可以用弧长法做非线性载荷-位移研究,这时用弧长法确定临界载荷。
对于更一般的情况,需要进行破坏分析。
模型有缺陷时,必须做非线性破坏分析,因为完美模型不会表现出显著的屈曲。
可以通过使用特征值分析得到的特征向量,来加入缺陷。
求得的特征向量是对实际屈曲模态最接近的预测。
添加的缺陷与梁的典型厚度相比,应为小量。
缺陷删除了载荷-位移曲线的突变部分。
通常情况下,缺陷最大值为梁厚度的1%~10%。
UPGEOM命令在前一步分析的基础上添加位移,并把几何形状更新到变形后的形状。
7.6.5 设置分析名称和定义模型的几何实体1、选择菜单“Utility Menu>File>Change Title”。
7.6 横向扭转屈曲分析实例(GUI方式)可以用 BEAM188 和 BEAM189 单元来模拟直梁的弯曲和剪切,也可以模拟梁的横向扭转屈曲。
为了建立这一模型,需要建立足够密的梁单元网格。
典型地,需要用一系列的梁单元来模拟一根直梁。
如图7-4 所示。
图7-4 悬臂梁的横向扭转屈曲悬臂梁的横向扭转屈曲,用60个 BEAM188 单元模拟(通过/ESHAPE显示)《ANSYS Structural Analysis Guide》§7 详细叙述了屈曲分析。
本例分析悬臂梁在末端承受横向载荷时的行为。
7.6.1 问题描述一根直的细长悬臂梁,一端固定一端自由。
在自由端施加载荷。
本模型做特征值屈曲分析,并进行非线性载荷和变形研究。
研究目标为确定梁发生支点失稳(标志为侧向的大位移)的临界载荷。
参见图7-5。
7.6.2 问题特性参数材料特性:杨氏模量=1.0X10e4 psi;泊松比=0.0。
几何特性:L=100 in;H=5 in;B=2 in。
载荷为:P=1 lb。
7.6.3 草图图7-5 梁的变形7.6.4 特征值屈曲和非线性破坏分析特征值屈曲分析是线性分析,通常仅适用于弹性结构。
通常在小于特征值屈曲分析得到的临界载荷之前发生材料屈服。
这种分析比完全非线性屈曲分析所需的求解时间要少。
用户还可以用弧长法做非线性载荷-位移研究,这时用弧长法确定临界载荷。
对于更一般的情况,需要进行破坏分析。
模型有缺陷时,必须做非线性破坏分析,因为完美模型不会表现出显著的屈曲。
可以通过使用特征值分析得到的特征向量,来加入缺陷。
求得的特征向量是对实际屈曲模态最接近的预测。
添加的缺陷与梁的典型厚度相比,应为小量。
缺陷删除了载荷-位移曲线的突变部分。
通常情况下,缺陷最大值为梁厚度的1%~10%。
UPGEOM命令在前一步分析的基础上添加位移,并把几何形状更新到变形后的形状。
7.6.5 设置分析名称和定义模型的几何实体1、选择菜单“Utility Menu>File>Change Title”。
实验报告悬臂梁的模态实验姓名: xxx学号: xxx专业: xxx系别: xxx一、试验装置二、实验原理本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~,∑=+-==ni i i i k i s i r s r rs i k F X H 12)()()(0)21(~~λζλϕϕ (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为:∑=+--=-=ni i i i k i s i r s r a rs i kF X H 12)()()(202)21(~~λζλϕϕωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为:,22)(~)()()()()()(2kk k s k r k k k sk r k k a rs m i k i H ζϕϕζϕϕωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m kk k 2()(ω)式中=为各阶主质量...n k ,3,2,1=。
改变s 点的位置,在不同点激振,可以得到不同点与点r之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为:∑=+--=ni i i i i i r i r a rr i k H 12)()()(2)21(~λζλϕϕω (4) 它的第k 个峰值为:,2)(~)()()(2kk k r k r k k a rr k i H ζϕϕωωω-== (5)由(3)/(5)得到:(6)若另1)(=k rϕ,就可得到:(7)由(7)式,另s=1,2,3,......n,就可得到第k 阶主振型的各个元素。
线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。
在ABAQUS 中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。
线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。
这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。
在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。
对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。
悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1 所示,求梁受载后的Mises 应力、位移分布。
材料性质:弹性模量 E 2e3 ,泊松比0.3均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS 启动ABAQUS 有两种方法,用户可以任选一种。
(1)在Windows 操作系统中单击“开始” --“程序” --ABAQUS 6.10 --ABAQUS/CAE 。
(2)在操作系统的DOS 窗口中输入命令:abaqus cae。
启动ABAQUS/CAE 后,在出现的Start Section(开始任务)对话框中选择Create Model Database。
1.3 创建部件在ABAQUS/CAE 顶部的环境栏中,可以看到模块列表:Module :Part,这表示当前处在Par(t 部件)模块,在这个模块中可以定义模型各部分的几何形体。
例一:悬臂梁在循环加载作用下的弹塑性计算(GUI)一、问题描述:一个左端固定的悬臂梁见图1-1(a),厚度为1cm,在它的右段中点上施加有一个集中力,该集中力为循环载荷见图1-1(b),悬臂梁的材料为多线性弹性材料,材料的弹性模量为20000,实验获得的该材料的非线性应力-应变行为见表1-2,分析该悬臂梁在循环载荷作用下的观测点P的水平方向上的应力应变历程。
(a)悬臂梁以及加载位置(cm)(b)所受的循环载荷(N)图1-1一个悬臂梁以及加载历程表1-2 〉材料的应力-应变行为实验数据二、问题分析解答:为考察悬臂梁根部P点的应力-应变历程,采用2D的计算模型,使用平面单元PLANE42,材料采用多线性弹塑性模型(mkin),进行循环加载过程的分析。
建模的要点如下:①设置几何以及材料参数,②输入材料的多线性弹塑性模型(包括:弹性模量、屈服极限),见图1-3;③通过设置time来给出加载历程,每次加载都输入当时的状态载荷值,不是增量加载,每次加载后,必须进行计算,再进入下一步的计算;④在时间后处理中,通过设置几何位置来查询对应的P观测点的节点编号,并设置观测点的应力显示变量(2号变量)以及塑性应变为显示变量(3号变量),最后将3号变量设置为横轴,画出2号变量随3号变量的变化曲线见图1-4,可以看出,该材料具有非常明显的Bauschinger效应(即正向屈服与反向屈服之和是单拉实验屈服极限的2倍)。
给出的基于图形界面(GUI)的交互式操作(step by step)过程如下:(1) 进入ANSYS(设定工作目录和工作文件)程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname(设置工作文件名): Beams →Run →OK(2) 设置计算类型ANSYS Main Menu:Preferences… →Structural →OK(3) 设定不显示时间ANSYS Utility Menu:PlotCtrls→Window Controls →Window Options… →DATE:No Date or Time →OK(4) 定义单元类型ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete... →Add…→Solid: Quad 4node 42 →OK(返回到Element Types窗口)→Close(5) 定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →输入EX: 2E4, PRXY: 0.3 (定义弹性模量及泊松比) →OK →返回Define Material ModelBehavior 窗口Structural →NonLinear→Inelastic →Rate Independent →Kinematic Hardening Plasticity →Mises Plasticity →Multilinear (Fixed table) →在Strain一行中对应1至4号点输入0.004、0.015、0.03、0.08 →在Curve1中对应1至4号点输入80、160、210、280 →点击右下角Graph→OK →Close(关闭材料定义窗口),见图1-3,观察窗口中的多线性弹塑性模型(6) 构造模型生成关键点ANSYS Main Menu:Preprocessor →Modeling →Create →Keypoints→In Active CS →Keypoints number:1,X,Y,Z Location in active CS:0,0,0 →Apply →同样依次输入其他三个关键点(100,0,0)、(100,10,0)与(0,10,0)→OKANSYS Main Menu:Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPs →用鼠标依次点击1、2、3、4关键点,生成面单元,见图1-5构造模型图(7) 网格划分ANSYS Main Menu:Preprocessor →Meshing →Mesher Opts →Mesher Type : Mapped →OK →2D Shape Key : Quad →OKANSYS Main Menu:Preprocessor →Meshing →size contrls→ManualSize→Lines →Picked Lines →选择上下两条横边线,Ok →NDIV 设置为20 →Apply →选择两条竖边线→Ok →NDIV设置为8 →OK ANSYS Main Menu:Preprocessor →Meshing →Mesh →Areas →Target Surf →点击生成面几何体的位置,显示矩形面被选中→OK,见图1-6网格划分图(8) 模型加约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement On Lines →选取左侧边线(L4)→OK →select Lab2: All DOF(施加全部约束) →OK,见图1-7模型加约束图(9)求解设置ANSYS Main Menu : Solution →Analysis Type →Sol’n Controls →在Basic标签下设置Analysis Options 为Large Displacement Satic,Number of substeps: 8, Max no. of substeps :25Min no. Of substeps:2, Frequency 设置为Write N number of substeps Where N = 10 →OK(10)按照时间步施加循环载荷ANSYS Main Menu : Solution →Analysis Type →Sol’n Controls →在Basic标签下设置Time at end of loadstep:1 →OKANSYS Main Menu : Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择右侧边缘中点(26号节点)→OK →Lab:Fy,Value:-40 →OK,结果见图1-8ANSYS Main Menu:Solution →Solve →Current LS →OK,结果见图1-9ANSYS Utility Menu : Plot →ReplotANSYS Main Menu : Solution →Analysis Type →Sol’n Controls →在Basic标签下设置Time at end of loadstep: 2 →OKANSYS Main Menu : Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择右侧边缘中点(26号节点)→OK→Lab:Fy,Value:0 →OK,结果见图1-10ANSYS Main Menu:Solution →Solve →Current LS →OK,ANSYS Utility Menu : Plot →ReplotANSYS Main Menu : Solution →Analysis Type →Sol’n Controls →在Basic标签下设置Time at end of loadstep: 3 →OKANSYS Main Menu : Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择右侧边缘中点(26号节点)→OK →Lab:Fy,Value:40 →OK,结果见图1-11ANSYS Main Menu:Solution →Solve →Current LS →OK,结果见图1-12ANSYS Utility Menu : Plot →ReplotANSYS Main Menu : Solution →Analysis Type →Sol’n Controls →在Basic标签下设置Time at end of loadstep: 4 →OKANSYS Main Menu : Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择右侧边缘中点(26号节点)→Lab:Fy,Value:0 →OK,结果见图1-13ANSYS Main Menu:Solution →Solve →Current LS →OK,结果见图1-14ANSYS Utility Menu : Plot →ReplotANSYS Main Menu : Solution →Analysis Type →Sol’n Controls →在Basic标签下设置Time at end of loadstep: 5 →OKANSYS Main Menu : Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择右侧边缘中点(26号节点)→Lab:Fy,Value:-40 →OK,结果见图1-15ANSYS Main Menu:Solution →Solve →Current LS →OK,结果见图1-16ANSYS Utility Menu : Plot →ReplotANSYS Main Menu : Solution →Analysis Type →Sol’n Controls →在Basic标签下设置Time at end of loadstep: 6 →OKANSYS Main Menu : Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择右侧边缘中点(26号节点)→Lab:Fy,Value:0 →OK,结果见图1-17ANSYS Main Menu:Solution →Solve →Current LS →OK,结果见图1-18(11) 计算结果ANSYS Main Menu:General Postproc→Read Results →Last SetANSYS Main Menu:General Postproc→Plot Results →Deformed Shape →Def + Undeformed→OK,观察最后变形情况,见图1-19ANSYS Main Menu:General Postproc→Plot Results →Contour Plot →Element solu→PlasticStrain →Equivalent plastic strain →OK,观察累计的等效塑性应变,见图1-20ANSYS Main Menu:TimeHistPostpro→关闭弹出窗口→Define Variables →Add… →Element Results →OK 在方框中输入2 →OK 在方框中输入4 →OK →在Item,Comp Data item 中选择Stress, X-direction SX →OK返回Define Time-History Variables →Add… →Element Results →OK 在方框中输入2 →OK 在方框中输入4 →OK →在Item,Comp Data item 中选择Strain-plastic, X-dir’n EPPL X →OK →Close ANSYS Main Menu:TimeHistPostpro→关闭弹出窗口→Settings →Graph →Single Variable No. 输入3 →OKANSYS Main Menu:TimeHistPostpro→关闭弹出窗口→Graph Variables →Nvar1中输入2 →OK观察观测点P上的应力应变历程(SX),见图1-4ANSYS Utility Menu:File →Exit →Save Everything →OK三、ANSYS分析结果:图1-3 多线性弹塑性模型图1-4 观测点P上的应力应变历程(SX)图1-5 构造模型图图1-6 网格划分图图1-7 模型加约束图图1-8图1-9 图1-10图1-11 图1-12图1-13 图1-14图1-15 图1-16图1-17图1-18图1-19 图1-20。
一、计算题例1 求图1所示截面的形心C 的位置,及x I 、y I例2 试分别计算下图对形心轴x 、y 的的形心主惯性矩x I 、y I 和面积矩S 的最大值、截面模量X W 的最小值。
例3图3所示半径为R 的半圆形截面,形心C 与直径轴x 1的距离43c R y π=,求半圆截面对于形心轴x c 的惯性矩I xc 。
图1图3例4将一根直径d =1mm 的直钢丝绕于直径D =1m 的卷筒上(图4),已知钢丝的弹性模量E =200GPa ,试求钢丝由于弹性弯曲而产生的最大弯曲正应力。
又材料的屈服极限σs =350MPa ,求不使钢丝产生塑性变形的卷筒轴径D 1应为多大。
例5 T 字形截面铸铁梁的荷载及截面尺寸如图5(a)示,C 为T 形截面的形心,惯矩I z=6013×104mm 4,试校核梁的抗剪强度和抗弯强度最大值。
例6矩形截面悬臂梁如图6示,试计算梁的最大切应力和最大正应力并比较大小。
例7图7所示悬臂梁由三块胶合在一起,截面尺寸为:b =100mm ,a =50mm 。
已知木材的[σ]=10MPa ,[τ]=1MPa ,胶合面的[τj ]=0.34Mpa 试求许可荷载[P ]。
例8一钢材试件,直径为25㎜,原标距为125㎜,做拉伸试验,当屈服点荷载为201.0KN ,达到最大荷载为250.3KN ,拉断后测的标距长为138㎜,求该钢筋的屈服点、抗拉强度及拉断后的伸长率。
图4图5图6图7二、选择题题1 请选择正确结论:图形对其对称轴的(a )。
(A)静矩为零,惯性矩不为零,惯性积为零 (B)静矩不为零,惯性矩和惯性积均为零 (C)静矩、惯性矩及惯性积均为零 (D)静矩、惯性矩及惯性积均不为零题2 由惯性矩的平行移轴公式,I Z2 的答案为(c )。
、(A) IZ2=IZ1+bh 3/4 (B) IZ2=IZ+bh 3/4(C) IZ2=I Z+bh 3(D) IZ2=IZ1+bh 3题3 图示矩形截面,Z 轴过形心C ,则该截面关于Z 、Z 1及Z 2轴的惯性矩关系为(c ) (A) I Z>IZ1>IZ2 (B) IZ2>IZ>IZ1 (C) IZ2>IZ1>IZ (D) IZ1>IZ>IZ2题4 在边长为2a 的正方形中挖去一个边长为a 的正方形,如图示,则该图形对Z 轴的 惯性矩I Z为( )(A) a 4/4 (B) a 4/3 (C) 4a 4/5 (D) 5a 4/4题2图题4图题3图题5 请选择图示截面对Z 轴惯性矩的正确答案( )。