基于惯性因子的混沌粒子群优化算法研究
- 格式:pdf
- 大小:254.68 KB
- 文档页数:4
混沌粒子群优化算法¨计算机科学2004V01.31N-o.8高鹰h2谢胜利1(华南理工大学电子与信息学院广州510641)1(广州大学信息机电学院计算机科学与技术系广州510405)2摘要粒子群优化算法是一种新的随机全局优化进化算法。
本文把混沌手优思想引入到粒子群优化算法中,这种方法利用混沌运动的随机性、遍历性和规律性等特性首先对当前粒子群体中的最优粒子进行混池寻优,然后把混沌寻优的结果随机替换粒子群体中的一个粒子。
通过这种处理使得粒子群体的进化速度加快t从而改善了粒子群优化算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。
仿真结果表明混沌粒子群优化算法的收敛性能明显优于粒子群优化算法。
关键词粒子群优化算法。
混沌手优,优化’ChaosParticle SwarmOptimizationAlgorithmGAOYin91”XIESheng—Lil(Collegeof Electronic&InformationEngineeringtSouthChina University ofTechnology,Guangzhou510641)1(Dept.of ComputerScience andTechnology.GuangzhouUniversity·Guangzhou510405)2Abstract Particle swarmoptimizationis anewstochasticglobaloptimization evolutionaryalgorithm.Inthis paper,the chaotic searchis embeddedintooriginalparticleswarmoptimizers.Basedon theergodicity,stochastic propertyandregularityofchaos,fl newsuperiorindividualisreproducedbychaoticsearchingonthecurrentglobalbest individ—ual。
基于动态加速因子的粒子群优化算法研究
滕志军;吕金玲;郭力文;王志新;许恒;袁丽红
【期刊名称】《微电子学与计算机》
【年(卷),期】2017(34)12
【摘要】针对固定加速因子导致粒子群算法中函数优化精度差、易于陷入局部最优、后期时收敛速率较缓慢等问题,提出一种基于动态加速因子的改进粒子群优化算法(PSO-DAC).采用递减的惯性权重系数,提高权衡局部搜索和全局搜索的能力,引入动态的加速因子,有利于全局搜索以改善粒子群算法的收敛速度及精度.借助四个常用的测试函数与标准粒子群算法进行仿真测验对比,结果显示,改进之后的算法的最优解精度明显提高同时比标准粒子群算法迭代次数降低51.28%以上,能够更快搜索到最优解,特别是在多峰函数中表现更加明显.
【总页数】5页(P125-129)
【关键词】粒子群算法;惯性权重;加速因子;收敛速度;全局搜索
【作者】滕志军;吕金玲;郭力文;王志新;许恒;袁丽红
【作者单位】东北电力大学信息工程学院;国网吉林供电公司信息通信分公司【正文语种】中文
【中图分类】TP18
【相关文献】
1.基于惯性因子的混沌粒子群优化算法研究 [J], 李邓化;李金鳌;庞美飒;刘爱华
2.采用扰动加速因子的自适应粒子群优化算法 [J], 姜建国;田旻;王向前;龙秀萍;李
锦
3.基于动态交换策略的快速多目标粒子群优化算法研究 [J], 金欣磊;马龙华;刘波;钱积新
4.基于动态非线性策略的粒子群优化算法研究 [J], 陈林涧;倪世宏;谢川;薛省卫
5.基于自适应加速因子粒子群优化算法的裁剪分床研究 [J], 江丽林;周巨栋;董辉因版权原因,仅展示原文概要,查看原文内容请购买。
收稿日期:2009-03-12;修回日期:2009-05-29基金项目:辽宁省教育科研计划项目(2004F012)作者简介:邹 毅(1971-),男,辽宁沈阳人,副教授,研究方向为优化算法及智能控制理论。
一种基于混沌优化的混合粒子群算法邹 毅,朱晓萍,王秀平(沈阳工程学院电气工程系,辽宁沈阳110136)摘 要:粒子群算法是一类基于群智能的优化搜索算法。
该算法初期收敛很快,但后期易陷入局部最优点。
为了提高粒子群算法的性能,将粒子群算法全局搜索的快速性和混沌算法的一定范围内的遍历性二者结合,提出一种基于混沌优化的混合粒子群算法。
该算法首先用粒子群算法进行快速搜索,当出现早熟收敛时,对局部较优的部分粒子和全局极值采用混沌优化策略。
对两个典型的测试函数进行仿真表明,该算法能够摆脱局部极值,得到全局最优。
将其用于(N +M )系统费用模型求解,得到最优解,同样验证了该算法搜索效率、精度优于一般的粒子群算法,同时具有较好的收敛稳定性。
关键词:粒子群算法;混沌;优化;混合;(N +M )容错中图分类号:TP306.1 文献标识码:A 文章编号:1673-629X (2009)11-0018-05A H ybrid PSO AlgorithmB ased on Chaos OptimizationZOU Y i ,ZHU Xiao 2ping ,WAN G Xiu 2ping(Department of Electrical Engineering ,Shenyang Institute of Engineering ,Shenyang 110136,China )Abstract :Particle Swarm Optimization (PSO )is a kind of optimizations based on swarm intelligence.The algorithm weaken quickly in ini 2tial stage ,but fall into local extreme value easily in the latter.With PSO algorithm ’s rapid global searching and chaos ’s ergodicity in cer 2tain range ,a hybrid PSO algorithm based on chaos is presented.The algorithm fast search with PSO algorithm first ,then the chaos opti 2mization is adopted for the better part of the particles and global extreme value when the optimization is in premature and convergence.The test of the two functions and solving the optimization of (N +M )fault -tolerant system show that search efficiency ,accuracy of hy 2brid PSO algorithm are better than general PSO algorithm ,while with better convergence stability.K ey w ords :PSO algorithm ;chaos ;optimization ;hybrid ;(N +M )fault -tolerant0 引 言粒子群优化(Particle Swarm Optimization ,PSO )是一类基于群智能的优化搜索算法,是由K ennedy 和E 2berhart 通过对鸟群飞行行为研究,于1995年提出的仿生进化算法[1~3]。
混沌粒子群混合优化算法王大均,李华平,高兴宝,赵云川四川蜀渝石油建筑安装工程有限责任公司,四川成都(610017)摘 要:粒子群优化算法(PSO )具有收敛速度快但易陷入局部最优点的特点,因此本文将在结合混沌运动的遍历性、伪随机性和对初值的敏感性等特点的基础上,对粒子群优化算法进行了改进,提出了一种基于混沌思想的粒子群优化算法(CPSO ),该算法保持了群体多样性,增强了PSO 算法的全局寻优能力,提高了算法的计算精度,改善了收敛性和鲁棒性,很大程度上避免了算法停滞现象的发生,是一种有效的优化搜索算法。
关键词:混合优化算法;混沌优化算法;粒子群优化算法1. 引言粒子群算法PSO(Particle Swarm Optimization) 是Kennedy J 与Eberhart R 于1995年借鉴鸟群和鱼群捕食过程的社会行为提出的[1]。
该算法具有程序简单、控制参数少、寻优结果与初值无关、且具有一定的并行性等特点,因此从开始研究到现在短短的十年时间里,表现出强大的优化功能,被广泛应用到函数优化、神经网络训练、人工智能、模糊系统控制等领域。
PSO 作为一种更高效的并行搜索算法,非常适于对复杂环境中的优化问题的求解,成为目前进化计算研究的一个热点。
但是标准的粒子群算法表现出强烈的“趋同性”,对于单调函数、严格凸函数或单峰函数,能在初始时很快向最优解靠拢,但在最优解附近收敛较慢,对于多峰函数更易出现早熟现象以及运算量较大等缺点。
混沌学的诞生是20世纪人类科学史上继相对论和量子理论之后的第三次革命,混沌是指在确定性系统中出现的随机状态,为非线性系统的一种演变现象,它不是由随机性外因引起,而由确定性规则导致的对初始条件非常敏感的无固定周期的长期行为[2]。
混沌运动能在一定范围内按其自身不重复地遍历所有状态,初始值条件极其微弱的变化会引起系统行为巨大变化。
因此,本文将在对标准粒子群算法改进的基础上,将混沌思想引入到粒子群算法中,避免了易陷入局部最优值的缺点,大大改善了粒子群算法的优化性能。
惯性权重动态调整的混沌粒子群算法赵乃刚【摘要】鉴于标准粒子群算法(PSO)有易陷入局部最优位置和全局搜索能力差等缺点,给出了相似度的定义,并根据群体中每个粒子与全局最优粒子的相似度值的大小,动态非线性地更新每个粒子的惯性权重值.为了改善算法的全局搜索性能,将混沌算子引入粒子群算法中.新算法在4个测试函数上与标准粒子群算法进行了比较,结果表明新算法的性能更好.【期刊名称】《软件》【年(卷),期】2016(037)003【总页数】3页(P1-3)【关键词】粒子群算法;相似度值;混沌搜索【作者】赵乃刚【作者单位】山西大同大学数学与计算机科学学院,山西大同037009【正文语种】中文【中图分类】TP18本文著录格式:赵乃刚. 惯性权重动态调整的混沌粒子群算法[J]. 软件,2016,37(3):01-03粒子群优化算法[1-4]是基于大自然中鱼群、鸟群等群体生物的觅食活动的启发由美国心理学博士Kennedy和电气工程师 Eberhart首次提出来的一种群体智能算法。
由于它涉及的理论知识少、实现方式简单方便、执行效率高,自问世以来已经受到了诸多研究者和研究机构的广泛关注。
现今,不同版本的改进粒子群算法已经被成功地应用到了自然科学和工程领域等问题中[5-8]。
但粒子群算法和其它的元启发式算法类似,存在粒子早熟收敛、全局搜索能力差等缺点。
为此,研究者们已经对标准粒子群算法进行了不同方式的改进。
文献[9]将差分进化的基本思想引入标准粒子群算法中,对算法的所有局部最优位置进行了选择、杂交、变异等操作,高效地解决了算法搜索能力和开发能力之间的矛盾。
文献[10]使得算法自适应地选择适合粒子的速度更新方式,使得每一代的粒子可以根据需要适应不同的进化环境,有助于算法解决不同性质的实际问题。
本文基于对标准粒子群算法的研究分析,给出了两个粒子之间相似度值的概念,根据种群中每个粒子与群体最优位置的相似度值,动态非线性地调整每个粒子的惯性权重值,使得算法更适应当前粒子的更新状态。
一种基于混沌序列的粒子群优化算法
杨松铭
【期刊名称】《齐齐哈尔大学学报(自然科学版)》
【年(卷),期】2011(027)004
【摘要】提出了一种基于混沌思想的粒子群优化算法,它利用粒子群优化算法收敛速度快和混沌运动遍历性的特点,对于陷入局部极小点的粒子,引入混沌序列重新初始化,从而使惰性粒子能够跳出束缚并快速搜寻到全局最优解.对几个经典函数的测试计算表明,其在收敛速度和精度上均优于标准的PSO算法.
【总页数】5页(P68-72)
【作者】杨松铭
【作者单位】西安工程大学,理学院,西安,710048
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.基于Tent混沌序列的粒子群优化算法 [J], 田东平
2.基于混沌序列的自适应粒子群优化算法 [J], 侯力;王振雷;钱锋
3.基于量子粒子群优化算法的新型正交基神经网络分数阶混沌时间序列单步预测[J], 李瑞国;张宏立;王雅
4.一种基于空间混沌序列的量子粒子群优化算法及其应用 [J], 靳雁霞;师志斌
5.基于混沌序列的粒子群优化算法 [J], 孟红记;郑鹏;梅国晖;谢植
因版权原因,仅展示原文概要,查看原文内容请购买。