2013年山东高中学业水平考试试题数学
- 格式:doc
- 大小:388.00 KB
- 文档页数:5
山东省新课标学业水平考试样卷一(高中数学)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个符合题目的要求)1、已知集合{}{}{}B C A B A U U ⋂=== ,7,5,3,1,6,4,2,7,6,5,43,2,1等于 A {}6,4,2 B {}5,3,1 C {}5,4,2 D {}5,3 2、函数)1,0()(≠>=a a a x f x在[0,1]上的最大值与最小值的和为3,则a 等于 A 0.5 B 2 C 4 D 0.25 3、若过坐标原点的直线l 的斜率为3-,则在直线l 上的点是A )3,1(B )1,3(C )1,3(-D )3,1(-4、某建筑物的三视图如图所示,则此建筑物结构的形状是A 圆锥B 四棱柱C 从上往下分别是圆锥和四棱柱D 从上往下分别是圆锥和圆柱 5、直线02)32()1(:03)1(:21=-++-=--+y k x k l y k kx l 和互相垂直,则k 的值是A -3B 0C 0或-3D 0或1 6、算法程序框图如图所示,最后输出的结果是A 数列{}n 的第100项B 数列{}n 的前99项和C 数列{}n 的前100项和D 数列{}n 的前101项和7、抽样时,每次抽取的个体再放回总体的抽样为放回抽样,那么在分层抽样、系统抽样、简单随机抽样三种抽样中,属放回抽样的有 A 3个 B 2个 C 1个 D 0个8、袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是A 至少一个白球;都是白球B 至少一个白球;至少一个黑球C 至少一个白球;一个白球一个黑球D 至少一个白球,红球、黑球各一个 9、已知ααπαααcos sin ,20,81cos sin +<<=则的值是 A23 B 41C 23-D 2510、已知正方形ABCD 的棱长为1,设++===,,,等于 A 0 B 2 C 22 D 3 11、0105cos 等于A 32- B462- C 462+ D 426- 12、在ABC ∆中,已知0120,6,4===C b a ,则A sin 的值是A1957 B 721 C 383 D 1957- 13、在等差数列{}92,0832823=++<a a a a a a n n 中,若,则其前10项和为 A -13 B -15 C -11 D -914、若R c b a ∈,,,给出下列命题:①若d b c a d c b a +>+>>则,,;②若d b c a d c b a ->->>则,,;③若bd ac d c b a >>>则,,;④若bc ac c b a >>>,则0,.其中正确命题的序号是 A ①②④ B ①④ C ①③④ D ②③15、下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型是A 一次函数模型B 二次函数模型C 指数函数模型D 对数函数模型第Ⅱ卷二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 16、已知幂函数)(x f y =的图像过点)2,2(,则=)9(f ______________. 17、圆心在直线y=2x 上,且与x 轴相切与点(-1,0)的圆的标准方程是 _________________________.18、一个容量为20的样本数据,分组后,组距与频数如下:;5],50,40(;4],40,30(;3],30,20(;2],20,10(.2],70,60(;4],60,50(,则样本在区间]50,10(上的频率是_____________.19、设),5,3(),2,(-=-=x 且,的夹角为钝角,则x 的取值范围是___________.20、在等比数列{},64,24),(05346*==-∈>a a a a N n a a n n 且中,,则{}n a 的前8项和是________. 三、解答题(本大题共5小题,共35分,解答应写出文字说明或演算步骤)21、本小题满分6分已知向量552sin ,(cos ),sin ,(cos =-==ββαα,求)cos(βα-的值. 22、本小题满分6分在正方体1111D C B A ABCD -中,F E ,分别是1CC DC 和的中点.求证:ADF E D 平面⊥123、本小题8分已知R a ∈,解关于x 的不等式0)1)((<--x x a .24、本小题7分已知函数a bx ax x f +-=2)(2(,a b R ∈ )(1)若a 从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2,3}中任取一个元素,求方程()0f x =恰有两个不相等实根的概率;(2)若b 从区间[0,2]中任取一个数,a 从区间[0,3]中任取一个数,求方程()0f x =没有实根的概率.25、本小题8分 对于函数)(122)(R a a x f x∈+-=. (1)用函数单调性的定义证明),()(+∞-∞在x f 上是增函数; (2)是否存在实数a 使函数)(x f 为奇函数?山东省新课标学业水平考试样卷二(高中数学)第 I 卷 (选择题 共45分)一、 选择题:(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合 , ,U=N ,那么A ∩(C U B )=( ) A . {1,2,3,4,5} B . {2,3,4,5} C . {3,4,5} D . {x|1<x ≤5}2、已知a>b ,则不等式① 1a <1b ,② 1a-b >1a ,③ a 2>b 2,④ ac>bc(c ≠0)中不能..恒成立的是( ) A. 1个 B. 2个 C. 3个 D. 4个3、已知直线l 的倾斜角为α,且sin α= 45 ,则些此直线的斜率是 ( )A. 43B. - 43C. ± 43D. ±344、下列各组函数中,表示同一函数的是 ( ) A.2y y ==B. 33y =x y x =和C.2a a log y=2log y x x =和D. a y=log a xy x =和5.设甲、乙两名射手各打了10发子弹,每发子弹击中环数如下:甲:10,6,7,10,8,9,9,10,5,10; 乙:8,7,9,10,9,8,7,9,8,9则甲、乙两名射手的射击技术评定情况是: ( ) A .甲比乙好 B. 乙比甲好 C. 甲、乙一样好 D. 难以确定6.函数 的图像的一条对称轴方程是 ( )A .B .C .D .7.下列函数中,最小值为4的函数是 ( )A. B. C. D.8.已知-9,a 1,a 2,-1四个实数成等差数列, -9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ) A. 8 B. -8 C. ±8 D.989.圆锥的轴截面是等腰直角三角形,且圆锥的底面积为10,则它的侧面积为 ( )A .10 2 B. 10 2 C. 5 2 D. 5 2 10、已知实数y ,x 满足9y x 22=+ y (≥)0,则1x 3y m ++=的取值范围是 ( )A. m ≤23-或m ≥43B. 23-≤m ≤43C. m ≤3-或m ≥33D. 3-≤m ≤3311、写出右边程序的运行结果 ( )A. 56B. 250 C 2401D. 245012、要从165个人中抽取15人进行身体检查,现采用分层抽样的方法进行抽取,若这165人中老人的人数}0)5)(4(|{≤-+∈=x x N x A }2|{<∈=x N x B )22cos(3π+=x y 2π-=x 4π-=x 8π-=x π=x x x y 4+=x x y sin 4sin +=x x ee y 4+=81log log 3x x y +=ππ为22人,则老年人中被抽到参加健康检查的人数是( )A. 5人B. 2人C. 3人D. 1人13 、两名教师与两名学生排成一排照相,则恰有两名学生排在两名教师之间的概率为( )A76 B 73 C52D61 14、函数4()log f x x =与()4xf x =的图像( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点对称D. 关于直线y x =对称 15、已知2()22xf x x =-,则在下列区间中,()0f x =有实数解的是( ) A. (-3,-2) B. (-1,0) C. (2,3) D. (4,5)第 Ⅱ 卷 (非选择题 共55分)二.填空题:(本大题共5小题;每小题4分,共20分.) 16、在面积为S 的ΔABC 内任取一点P,则ΔPAB 的面积大于 S2的概率为 .17.已知 ,则 .18.已知x,y 满足不等式组 ,则S=6x+8y 19.运行右边框内的程序,在两次运行中分别输入 -4 和 4,结果依次为 .20. 如图①,一个圆锥形容器的高为a 如果将容器倒置,这时所形成的圆锥的高恰为2a(如图②),则图①中的水面高度为 .三.解答题:(本大题共5小题,共35分.解答应写出文字说明、证明过程或推证过程)21.(本题满分6分) 已知α为锐角,向量 ,且 (1)求的值. (2)若 ,求向量 的夹角的余弦值.12sin 22cos 2sin )tan(2)(2--+=x xx x x f π=)43(πf ⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00523y x y x y x )2sin ,2(cos ),cos ,(sin αααα==b a ba ⊥ba yb a x 322,232+=+=y x 与α ① ②22. (本题满分6分)已知圆C 经过A(3,2)、B(1,6)两点,且圆心在直线y=2x 上。
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A,B 独立,那么P (AB )=P(A)*P(B) 第Ⅰ卷 (共60分) 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为() A. 2+i B.2-i C. 5+i D.5-i (2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( ) A. 1 B. 3 C. 5 D.9 (3)已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+1x,则f(-1)=() (A )-2(B )0 (C )1(D )2(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为94,底面积是边长为√3的正三棱柱,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 () (A )5π12(B )π3(C )π4(D )π6(5)将函数y=sin (2x +φ)的图像沿x 轴向左平移 个单位后,得到一个偶函数的图像,则φ的一个可能取值为 (A )3π4(B )π4(C )0 (D )−π4(6)在平面直角坐标系xOy 中,M 为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM 斜率的最小值为(A )2 (B )1 (C )−13 (D )−12(7)给定两个命题p,q 。
山东省2013年12月普通高中学业水平考试二、填空题(本大题共5个小题,每小题3分,共15分)21.12 22. 2 23. 3 24. 2 25. cos 9π三、解答题(本大题共3个小题,共25分)26. 解:(1)由23>,得632)3(=⨯=f . …………………………1分 由22<-,得4)2()2(2=-=-f . …………………………2分 所以[(2)]f f -=842)4(=⨯=f . ………………………… 4分 (2)当2<a 时,216a =,得a =4-或a =4(舍); ………………………… 6分 当a ≥2时,216a =,得a =8;所以,a =4-或a =8. …………………………8分27. 证明:因为四所以1BB ⊥底面ABC . 因为AC ⊂底面ABC ,所以1BB AC.⊥ …………………………3分 因为AB 为底面圆的直径, 所以90ACB ∠=︒.所以BC AC.⊥ …………………………6分 又因为11BB BC B,BB =⊂ 平面1BB C ,BC ⊂平面1BB C ,所以AC ⊥平面1BB C . …………………………8分ABA 1B 1C28. 解:(1)数列{}n a 不成等差数列. …………………………1分当1n =时,111a S ==.当2n 时,()()2211111122n n n n n n n n a S S k k k -⎛⎫-----=-=+-+=⎪ ⎪⎝⎭. 所以1, 1,1, 2.n n a n n k=⎧⎪=-⎨⎪⎩ …………………………3分当 2n 时,k k n k n a a n n 111=--=-+. 又 kk a a 11112≠-=-, 所以,数列{}n a 不成等差数列. …………………………4分 (2)由题意可得1121T k a a ==, 当2n 时,12231111n n n T a a a a a a +=+++ ()22212231k k k k n n =+++⋅⋅⋅+⨯⨯-⨯211111(1)2231k k n n =+-+-+⋅⋅⋅+--21(1)k k n=+-. …………………………6分要使2n T <对所有的n *∈N 都成立,即21(1)2k k n+-<. (*)解法一:整理(*)式,得 0)2(22<--+k n k k ,对所有的n *∈N 都成立. 只需220(0) k k k +-≠. …………………………8分 解得 21,0k k -≠. 因此存在实数k ,使得2n T <对所有的n *∈N 都成立,其取值范围是[2,0)(0,1]- . (9)分≥ ≥ ≥ ≥ ≤ ≤ ≤解法二:因为221(1)k k k k n+-<+(n *∈N ), 如果22(0)k k k +≠ ,则21(1)2k k n+-<(n *∈N ). ………………………8分 以下同解法一.≤。
第2题图 2013年学业水平考试模拟考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果+10%表示“增加10%”,那么“减少8%”可以记作 A .-18% B .-8% C .+2% D .+8% 2.如图,右面几何体的俯视图是3.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为 A .4 600 000 B .46 000 000 C .460 000 000 D .4 600 000 000 4.下列说法或运算正确的是A .1.0×102有3个有效数字B .222()a b a b -=-C .235a a a +=D .a 10÷a 4= a 6 5.已知反比例函数y =2x ,则下列点中在这个反比例函数图象的上的是 A .(-2,1) B .(1,-2) C .(-2,-2) D .(1,2)6.下列说法错误的是A的平方根是±2 B.2是分数 CD7.在10到99这些连续正整数中任意选一个数,其中每个数被选出的机会相等,求选出的数其十位数字与个位数字的和为9的概率A .908B .909C .898D .899A .B .C .D .第9题图B第8题图 A 1 B 1 C 12A 3B 2B 3C 2 C 3 第14题图第15题图OB第12题图D A 8.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是A .40°B .60°C .70°D .80° 9.已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图所示, 若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表 示圆心距d 的点D 所在的位置是 A .在点B 右侧 B .与点B 重合C .在点A 和点B 之间D .在点A 左侧 10.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m n -的算术平方根为A .4B .2C . 2D .±211.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .-3,2B .-3,-2C .3,2D .3,-212.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于A .9B .10C .11D .1213.已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2yB .1y 2y =C .1y <2yD .不能确定14.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2, 作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的 方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第8个正△A 8B 8C 8的面积是A 71()2B 81()2C 71()4D 81()415.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图所示,根据图象判定下列结论不正确...的是 A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米第18题图第20题图第21题图AP DCB 第Ⅱ卷(非选择题 共75分)题中横线上.16.分解因式:229121m n -=____________________________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_______.18.如图所示,一个宽为2 cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数 恰好是“2”和“10”(单位:cm ),那么该光盘的直径是cm.. 19.如图,1∠的正切值等于. 20.已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是21.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==, PB =APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ED ⊥;④1APD APB S S +=+V V ;⑤4ABCD S =+正方形其中正确的结论是__________.(将正确结论的序号填在横线上.)第22题图 AB CD FE 三、解答题:本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分7分)⑴解不等式组122 3x x x +⎧⎪-⎨+⎪⎩>0 ≤⑵如图,将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0).求该抛物线的解析式.23.(本小题满分7分)⑴解方程:33122x x x-+=--⑵如图,分别过点C 、B 作△ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分别为E 、F .求证:BF =CE .第25题图 24.(本小题满分8分)为了增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:⑴在这次调查中共调查了多少名学生?⑵求户外活动时间为1.5小时的人数,并补充频数分布直方图; ⑶求表示户外活动时间 1小时的扇形圆心角的度数;⑷本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.25. (本小题满分8分)某商场为缓解“停车难”问题,拟建造地下停车库,如图所示是该地下停车库坡道入口的设计示意图,其中, AB ⊥BD ,∠BAD =18°,C 在BD 上,BC =0.5m .根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD 的长就是所限制的高度,而小亮认为应该以CE 的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m )参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,sin72°≈0.95,cos72°≈0.31.26.(本小题满分9分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.⑴分别求出y1、y2与x之间的函数关系式;⑵若市政府投资140万元,最多能购买多少个太阳能路灯?。
试卷体现能力考查主旨,有效地考查了运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及应用意识和创新意识等。
探索性问题、应用性问题、新情境问题和综合性问三、注重通性通法,突出数学思想方法的考查2013年试题注重能力立意,以考查基础知识为重点,注重对通性通法的考查,淡化特殊技巧, 突出数学思想与方法的考查。
如第22题的解题思路是将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根公式、韦达定理、两点间距离公式等布列条件组,从而解决问题。
山东数学卷历来重视数学思想与方法的考查,今年也不例外。
如数形结合的思想渗透在线性规划(第6题)、函数图象(第8题等)的题目中;函数与方程的思想则体现在第21题、第22题等题目中;转化与化归思想贯穿整份试卷,如第15题等;试卷对分类讨论的思想(第16题、第21题等)做了深入考查。
总之,2013年高考山东卷数学试题,注重考查考生运用所学知识发现问题、分析问题、解决问题的能力。
整份试卷稳中有变,变中求新,新题不难,难题不偏,“稳”以考查基础,“变”以考查能力,有较高的信度、效度和区分度。
本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
2013年山东省菏泽市中考数学试卷年山东省菏泽市中考数学试卷 一.选择题1B 2D 3C 4A 5D 6D 7B 8C 二.填空题填空题 9. 4.68×106 10. 11. 3(a﹣2b)2 12. ,(或介于和之间的任意两个实数).13. 14. 12 三.解答题三.解答题15.解:(1)原式=﹣3×+1+2+=2+;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∴不等式组的非负整数解为0,1,2.16. 解:(1)①证明:∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵AB=CB,∠ABC=90°,∴∠CAB=45°,∵∠CAE=30°,∴∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,∵△ABE≌△CBD,∴∠BCD=∠BAE=15°,∴∠BDC=90°﹣∠BCD=90°﹣15°=75°;(2)解:设甲工厂每天能加工x件产品,则乙工厂每天加工1.5x件产品,件产品,根据题意得,﹣=10,解得x=40,经检验,x=40是原方程的解,并且符合题意,是原方程的解,并且符合题意,1.5x=1.5×40=60,答:甲、乙两个工厂每天分别能加工40件、60件新产品.件新产品.17.考点:反比例函数与一次函数的交点问题;分式的化简求值.考点:反比例函数与一次函数的交点问题;分式的化简求值.分析:(1)根据方程的解得出m2﹣m﹣2=0,m2﹣2=m,变形后代入求出即可;,变形后代入求出即可;(2)①求出A的坐标,代入反比例函数的解析式求出即可;的坐标,代入反比例函数的解析式求出即可;②以A或B为直角顶点求出P的坐标是(0,2)和(0,﹣2),以P为直角顶点求出P的坐标是(0,),(0,﹣).解:(1)∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,m2﹣2=m,∴原式=(m2﹣m )(+1)=2×(+1)=4.(2)①把x=﹣1代入y=﹣x得:y=1,即A的坐标是(﹣1,1),∵反比例函数y=经过A点,∴k=﹣1×1=﹣1;②点P的所有可能的坐标是(0,),(0,﹣),(0,2),(0,﹣2).18.考点:切线的判定与性质;解直角三角形.考点:切线的判定与性质;解直角三角形.分析:(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;即可;(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.解答:(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,的中点, ∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.的切线, ∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵CD是⊙O的切线,的切线;上一点, ∴AP是⊙O的切线;∵A是⊙O上一点,(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==,∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴AC==2,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===4.19.解:(1)三类垃圾随机投入三类垃圾箱的树状图如下:由树状图可知垃圾投放正确的概率为;(2)“厨余垃圾”投放正确的概率为.20.解:(1)证明:k≠0,△=(4k+1)2﹣4k(3k+3)=(2k﹣1)2,∵k是整数,∴k≠,2k﹣1≠0,∴△=(2k﹣1)22>0,∴方程有两个不相等的实数根;方程有两个不相等的实数根;的函数.(2)解:y是k的函数.解方程得,x==,∴x=3或x=1+,是整数, ∴≤1,∴1+≤2<3.∵k是整数,又∵x1<x2,∴x1=1+,x2=3,∴y=3﹣(1+)=2﹣.21.考点:二次函数综合题.考点:二次函数综合题.分析:(1)根据一次函数解析式求出点A.点C坐标,再由△ABC是等腰三角形可求出点B坐标,根据平行四边形的值,继而得出二次函数表达式.的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式.(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO,利用对应边成比例可求出t的值,继而确定点P的位置;的位置;②只需使△APQ的面积最大,就能满足四边形PDCQ的面积最小,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO,利用对应边成比例得出h的表达式,继而表示出△APQ的面积表达式,利用配方法求出最大值,即的位置.可得出四边形PDCQ的最小值,也可确定点P的位置.解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),为底边的等腰三角形, ∴B点坐标为(﹣4,0),∵△ABC是以BC为底边的等腰三角形,是平行四边形, ∴D点坐标为(8,3),又∵四边形ABCD是平行四边形,将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,可得,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴△APQ∽△CAO,∴=,即=,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,的面积最小,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO可得:=,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.。
2013年全国普通高等学校招生统一考试文科(山东卷)数学试题1、【答案】C【解析】【考点定位】本题考查复数的基本概念和运算,通过分母实数化思想来考查运算能力,要注意在运算中多次出现,符号确定容易出错.2、【答案】A【解析】,因为,所以中必有元素,【考点定位】本题考查集合的交集、并集和补集运算,考查推理判断能力.对于,这两个条件,可以判断集合中的元素有三种情形,而指出中必有元素,简化了运算,使结果判断更容易.3、【答案】D【解析】【考点定位】本题考查函数的奇偶性的应用,考查运算求解能力和转化思想. 根据直接运算而若求在上的解析式再求便“多余”了.【答案】B【解析】由正视图可知该四棱锥为正四棱锥,底面边长为,高为,侧面上的斜高为,所以【考点定位】本题考查三视图的应用,考查空间想象能力和运算能力. 因求体积的影响,可能会把求侧面积误认为全面积而选C. 此外棱锥体积运算时不要漏乘5、【答案】A【解析】由题意得,所以【考点定位】本题考查函数的定义域的求法,考查数形结合思想和运算能力. 根据函数解析式确定函数的定义域,往往涉及到被开放数非负、分母不能为零,真数为正等多种特殊情形,然后通过交集运算确定.6、【答案】C【解析】两次运行结果如下:第一次第二次【考点定位】本题考查程序框图的运行途径,考查读图能力和运算能力. 本题不同于以往所见试题,两次运行程序输出结果.针对类似问题可根据框图中的关键“部位”进行数据罗列,从而确定正确的输出结果.【答案】B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.8、【答案】A【解析】由且可得且,所以是的充分不必要条件.【考点定位】本题考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了转化思想的考查. 本题依据原命题的逆否命题进行判断较为简单,也可以依据题目条件构造一个满足“是的必要而不充分条件”的简单例子,进行转化比较,从而确定答案.9、【答案】D【解析】函数在时为负,排除A,由奇函数的性质可排除B,再比较C,D,不难发现在取接近于的正值时排除C.【考点定位】本题考查函数的奇偶性、函数的单调性、函数的值域等函数的重要性质,考查了函数图象的识别能力.本题可根据函数的性质对比图象进行逐一验证,若通过求导方法来研究该函数的图象和性质后再做准确判断,增加了运算负担.10、【答案】B【解析】由图可知去掉的两个数是,所以,【考点定位】本题考查茎叶图的识别、方差运算能统计知识,考查数据处理能力和运算能力. 确定被去掉的数据是解题的关键,本题给出的数据中最大,即便是处理方差运算时要对方差概念牢固掌握,避免与标准差混淆误选D.11、【答案】D【解析】画图可知被在点M处的切线平行的渐近线方程应为,设,则利用求导得又点共线,即点共线,所以,解得所以【考点定位】本题考查了抛物线和双曲线的概念、性质和导数的意义,进一步考查了运算求解能力.这一方程形式为导数法研究提供了方便,本题“切线”这一信号更加决定了“求导”是“必经之路”.根据三点共线的斜率性质构造方程,从而确定抛物线方程形式,此外还要体会这种设点的意义所在.12、【答案】C【解析】当且仅当时成立,因此所以【考点定位】本题考查基本不等式的应用,考查运算求解能力、推理论证能力和转化思想、函数和方程思想. 基本不等式的使用价值在于简化最值确定过程,而能否使用基本不等式的关键是中的是否为定值,本题通过得以实现.13、【答案】【解析】最短弦为过点与圆心连线的垂线与圆相交而成,,所以最短弦长为【考点定位】本题考查直线和圆的位置关系,考查数形结合思想和运算能力. 圆的半径、弦心距、半弦构成的直角三角形在解决直线和圆问题常常用到,本题只需要简单判断最短弦的位置就能轻松解答,有时候可能会出现点到直线的距离公式来求弦心距的长度.14、【答案】【解析】确定可行域为点形成的三角形,因此的最小值为点到直线的距离,所以【考点定位】本题考查线性规划下的最值求法,考查数形结合思想、图形处理能力和运算能力. 线性规划问题的重点是确定可行域,要根据已知条件逐一画出直线并代点验证从而确定区域位于直线的某一侧,类比集合的交集运算确定公共部分,再按照研究方向求得结果.15、【答案】【解析】,所以【考点定位】本题考查平面向量的加减坐标运算和数量积坐标运算,考查转化思想和运算能力. 本题通过进行运算极易想到,但求时往往出现坐标的“倒减”,虽然不影响运算的结果,被填空题型所掩盖,但在解答题中就会被发现.16、【答案】①③④【解析】对于①可分几种情形加以讨论,显然时,依运算,成立,时亦成立.若,则成立.综合①正确.对于②可取特殊值验证排除.对于③分别研究在内的不同取值,可以判断正确;对于④根据在内的不同取值,进行判断,显然中至少有一个小于结论成立,当均大于时,,所以满足运算,结论成立.【考点定位】本题通过新定义考查分析问题解决问题的能力,考查了分类讨论思想,并对推理判断能力和创新意识进行了考查. “正对数”与“普通对数”的差异只在于内,因此在取值验证时要特别注意这一“差异”,对于“正对数”的四则运算法则才能作出正确判断.17、【答案】(Ⅰ)(Ⅱ)【解析】(I)可得到满足条件的基本事件有种情形,目标事件只有种,所以选到的人都在以下的概率为(II)把研究学生的人数扩大到人,基本事件个数增加到,并且要通过身高和体重两方面的限制确定目标事件,因此选到的人的身高都在以上且体重指标都在中的概率为【考点定位】本题考查古典概型的运算,通过对基本事件和目标事件的罗列考查数据处理能力和运算能力. 判断为古典概型后,根据题意罗列可能的结果组成的基本事件是关键.由于本题的两个问题研究的对象发生变化,在寻找基本事件和目标事件时要做到不重不漏.18、【答案】(Ⅰ) (Ⅱ) ,.【解析】因为图象的一个对称中心到最近的对称轴的距离为,又,所以(II)由(I)知,当时,,所以因此故在区间上的最大值和最小值分别为,.【考点定位】.本题考查三角函数的图象和性质,通过三角恒等变换考查转化思想和运算能力.第一问先逆用倍角公式化为的形式,再利用图象研究周期关系,从而确定第二问在限制条件下求值域,需要通过不等式的基本性质先求出的取值范围再进行求解.式子结构复杂,利用倍角公式简化时要避免符号出错导致式子结构不能形成这一标准形式,从而使运算陷入困境.19、【答案】见解析【解析】(I)取的中点,连接因为为的中点,所以,又,所以因此四边形是平行四边形.所以又平面,平面,因此平面.另解:连结.因为为的中点,所以又所以又,所以四边形为平行四边形,因此. 又平面,所以平面.因为分别为的中点,所以又平面,所以平面.因为,所以平面平面.(II)证明因为分别为的中点,所以,又因为,所以同理可证.又,平面,平面,因此平面.又分别为的中点,所以.又,所以因此平面,又平面,所以平面平面.【考点定位】本题考查空间直线与平面,平面与平面间的位置关系,考查推理论证能力和空间想象能力.要证平面,可证明平面与所在的某个平面平行,不难发现平面平面.证明平面平面时,可选择一个平面内的一条直线()与另一个平面垂直.线面关系与面面关系的判断离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系,中点形成的三角形的中位线等,都为论证提供了丰富的素材.20、【答案】(Ⅰ)(Ⅱ)【解析】(I) 设等差数列的首项为,公差为.由,得,解得因此(Ⅱ) 由可得当时,,当时,所以又,两式相减得所以【考点定位】本题考查等差数列的通项公式、错位相减求和方法,考查方程思想、转化思想和运算能力、推理论证能力.根据已知条件列出关于首项和公差的方程组,从而确该数列的通项公式,这一问相对简单,第二问通过递推关系得到数列的通项公式后再按照错位相减方法转化为等比数列的求和运算进行解决.本题第二问的条件因其结构复杂在使用上形成障碍,如果表示为数列的前项和的形式,则不难想到利用这一熟悉结构来处理.21、【答案】(Ⅰ) 单调递减区间是,单调递增区间是(Ⅱ)【解析】(Ⅰ)由得(1)当时,(i)若,当时,恒成立,所以函数的单调递减区间是.(ii)若,当时,,函数单调递减,当时,,函数单调递增.所以的单调递减区间是,单调递增区间是(2)当时,令得,由得显然当时,,函数单调递减;当时,,函数单调递增.所以函数的单调递减区间是,单调递增区间是.(Ⅱ)由题意知函数在处取得最小值,由(I)知是的唯一极小值点,故,整理得,令则由得当时,,单调递增;当时,,单调递减.因此故,即即【考点定位】本题考查导数法研究函数的单调性和相关函数值的大小比较,考查分类讨论思想、推理论证能力和运算求解能力.函数的单调区间判断必然通过导数方法来解决,伴随而来的是关于的分类讨论.比较与的大小时要根据已知条件和第一问的知识储备,构造新的函数利用单调性直接运算函数值得到结论.本题具备导数研究函数单调性的特征,必然按照程序化运行,即求导、关于参数分类讨论、确定单调区间等步骤进行.而第二问则是在第一问的基础上进一步挖掘解题素材,如隐含条件的发现、新函数的构造等,都为解决问题提供了有力支持.22、【答案】(I) (Ⅱ) 或【解析】(I)设椭圆的方程为,由题意知,解得因此椭圆的方程为(II)(1)当两点关于轴对称时,设直线的方程为,由题意知或,将代入椭圆方程得.所以解得或.又,因为为椭圆上一点,所以,或又因为所以或(2)当两点关于轴不对称时,设直线的方程为,将其代入椭圆方程得.设,由判别式可得,此时所以,因为点到直线的距离为,所以令,则解得或,即或.又,因为为椭圆上一点,所以,即,所以或又因为所以或经检验,适合题意.综上可知或【考点定位】本题基于椭圆问题综合考查椭圆的方程、直线和椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.第一问通过椭圆的性质确定其方程,第二问根据两点关于轴的对称关系进行分类讨论,分别设出直线的方程,通过联立、判断、消元等一系列运算“动作”达成目标.本题极易简单考虑设直线的形式而忽略斜率不存在的情况造成漏解.在联立方程得到后,后续运算会多次出现这一式子,换元简化运算不失为一种好方法,令,搭建了与的桥梁,使坐标的代入运算更为顺畅,使“化繁为简”这一常用原则得以完美呈现。
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ()(A)-2(B)0 (C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。
2013年全国普通高等学校招生统一考试文科(山东卷)数学试题1、【题文】复数为虚数单位,则( )A.25 B.C.6 D.2、【题文】已知集合均为全集的子集,且,,则( )A.B.C.D.3、【题文】已知函数为奇函数,且当时, ,则 ( ) A.B.C.D.4、【题文】一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是A.B.C.D.5、【题文】函数的定义域为( )A.B.C.D.6、【题文】执行右边的程序框图,若第一次输入的的值为,第二次输入的的值为,则第一次、第二次输出的的值分别为( )A.B.C.D.7、【题文】的内角的对边分别是,若,,,则( )A.B.C.D.8、【题文】给定两个命题,的必要而不充分条件,则的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9、【题文】函数的图象大致为( )10、【题文】将某选手的个得分去掉个最高分,去掉个最低分,个剩余分数的平均分为,现场做的个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以表示:则个剩余分数的方差为( )A.B.C.D.11、【题文】抛物线的焦点与双曲线的右焦点的连线交于第一象限的点,若在点处的切线平行于的一条渐近线,则( )A.B.C.D.12、【题文】设正实数满足,则当取得最大值时,的最大值为( )A.B.C.D.13、【题文】过点(3,1)作圆的弦,其中最短的弦长为__________.14、【题文】在平面直角坐标系中,为不等式组所表示的区域上一动点,则直线的最小值为____.15、【题文】在平面直角坐标系中,已知,,若,则实数的值为_____.16、【题文】定义“正对数”:,现有四个命题:①若,则;②若,则③若,则④若,则其中的真命题有____________(写出所有真命题的序号)17、【题文】某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:A B C D E(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.18、【题文】设函数,且的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值.19、【题文】如图,四棱锥中,,,分别为的中点.(Ⅰ)求证:;(Ⅱ)求证:.20、【题文】设等差数列的前项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,求的前项和.21、【题文】已知函数(Ⅰ)设,求的单调区间;(Ⅱ) 设,且对于任意,.试比较与的大小.22、【题文】在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.(I)求椭圆的方程;(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.。
2013年高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n2个 第二章 函数 1、求)(x f y =的反函数:解出)(1y fx -=,y x ,互换,写出)(1x fy -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=,幂的对数:Mn M a n a log log =;b mnb a n amlog log=, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n n n2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)通项公式:d n a a n)1(1-+= (其中首项是1a ,公差是d ;)(3)前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)通项公式:11-=n nq a a (其中:首项是1a ,公比是q )(3)前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S n n n 第四章 三角函数 1弧度制:(1)π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin22=+ααααc o st a n =1c o t t a n =αα5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααt a n )180t a n (c o s )180c o s (s i n )180s i n (=+︒-=+︒-=+︒ ααααααt a n )t a n (c o s )c o s (s i n )s i n (-=-=--=-6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)α2S : αααcos sin 22sin =α2C :ααα22sin cos 2cos -= 1cos 2sin 2122-=-=ααα2T :ααα2t a n 1t a n22t a n -=(2)、降次公式:(多用于研究性质)ααα2sin 21cos sin =212cos 2122cos 1sin 2+-=-=ααα212cos 2122cos 1cos 2+=+=ααα9、三角函数:ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 21sin 21sin 21===∆(2)正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示:(3)余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b A bc c b a +-+=-+=⋅-+=⋅-+=求角:abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:(1)设()()2211,,,y x b y x a==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a,→→=⋅00a ,0)(=-+a a(4)、向量()()2211,,,y x b y x a==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x(2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a,02121=+⇔⊥→→y y x x b a则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab ba 2≥+或2)2(b a ab +≤ 一正、二定、三相等 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;第七章:直线和圆的方程 1、斜 率:αtan =k,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B Ak -=,y 轴截距为B C -3、两直线的位置关系 (1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+; (2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)6、圆的方程: (2)圆的一般方程022=++++F Ey Dx y x0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第九章 直线 平面 简单的几何体 1、长方体的对角线长2222c b a l++=;正方体的对角线长a l 3=2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;3、球的体积公式:334 R Vπ=,球的表面积公式:24 RS π=4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =第十一章:概率:1、概率(范围):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0) 2、等可能性事件的概率:()mP A n=.3、互斥事件有一个发生的概率: A ,B 互斥: P(A +B)=P(A)+P(B);A 、B 对立:P (A )+ P(B)=14、独立事件同时发生的概率:独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B). n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-山东省2008年普通高中学生学业水平考试数学试题第Ⅰ卷(选择题 共45分)一、选择题(本答题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个符合题目要求)1.若全集U={1.,2,3,4},集合M={1,2},N={2,3},则集合C U (M N)= ( ) A.{1,2,3} B.{2} C.{1,3,4} D.{4}2.若一个几何体的三视图都是三角形,则这个集合体是 ( ) A. 圆锥 B.四棱锥 C.三棱锥 D.三棱台3.若点P(-1,2)在角θ的终边上,则tan θ等于 ( ) A. -2 B. 55-C. 21- D. 552 4.下列函数中,定义域为R 的是 ( ) A. y=x B. y=log 2X C. y=x 3D. y=x15.设a >1,函数f (x )=a |x|的图像大致是 ( )6.为了得到函数y=sin (2x-3π)(X ∈R )的图像,只需把函数 y=sin2x 的图像上所有的点 ( )A.向右平移3π个单位长度B.向右平移6π个单位长度 C.向左平移3π个单位长度 D.向左平移6π个单位长度7.若一个菱长为a 的正方形的个顶点都在半径为R 的球面上,则a 与R 的关系是( )A. R=aB. R=a 23C. R=2aD. R=a 3 8.从1,2,3,4,5这五个数字中任取两数,则所取两数均为偶数,则所取两数均为偶数的概率是 ( ) A.101 B. 51 C. 52 D. 539.若点A (-2,-3)、B (0,y )、C (2,5)共线,则y 的值等于 ( )A. -4B. -1C. 1D. 410.在数列{a n }中,a n+1=2a n ,a 1=3,则a 6为 ( )A. 24B. 48C. 96D. 19211.在知点P (5a+1,12a )在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是 ( )A. -1<a <1B. a <131C.51-<a <51D. 131-<a <13112.设a ,b ,c ,d ∈R ,给出下列命题: ①若ac >bc ,则a >b ; ②若a >b ,c >d ,则a+b >b+d ; ③若a >b ,c >d ,则ac >bd ; ④若ac 2>bc 2,则a >b ;其中真命题的序号是 ( ) A. ①② B. ②④ C. ①②④ D. ②③④13.已知某学校高二年级的一班和二班分别有m 人和n 人(m ≠n )。
山东省2013年1月普通高中学业水平考试
数 学 试 题
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分100分,考试限定时间90分钟.交卷前,考生务必将自己的姓名、考籍号、座号填写在答题卡的相应位置,考试结束后,讲本试卷和答题卡一并交回.
第Ⅰ卷(共60分)
注意事项:
每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动用像皮擦干净后再选涂其他答案标号,不涂在答题卡上,只涂在试卷上无效.
一、选择题(本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题
目要求的) 1.设集合}2,1{},3,2,1{==N M ,则N M ⋂等于
A .}2,1{
B .}3,1{
C .}3,2{
D .}3,2,,1{ 2.函数)2lg()(-=x x f 的定义域是
A .),2[+∞
B .),2(+∞
C .),3(+∞
D .),3[+∞ 3.0
410角的终边落在
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.抛掷一枚骰子,得到偶数点的概率是 A .
6
1 B .41 C .31 D .21
5.在等差数列}{n a 中,11=a ,公差2=d ,则8a 等于 A .13 B .14 C .15 D .16 6.下列函数中,在区间),0(+∞内单调递减的是 A .2
x y = B .x
y 1=
C .x
y 2= D .x y 2log = 7.直线0=-y x 与02=-+y x 的交点坐标是
A .)1,1(
B .)1,1(--
C .)1,1(-
D .)1,1(- 8.在区间]4,0[上任取一个实数x ,则1>x 的概率是 A .25.0 B .5.0 C .6.0 D .75.0 9.圆062
2
=-+x y x 的圆心坐标和半径分别是
A .9),0,3(
B .3),0,3(
C .9),0,3(-
D .3),0,3(-
正(主)视图 侧(左)视图
俯视图
(第16题图)
10.3
13tan
π
的值是 A .33-
B .3-
C .3
3 D .3 11.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知0120,2,1===C b a ,则c 等于 A .2 B .5 C .7 D .
4 12.在等比数列}{n a 中,44=a ,则62a a ⋅等于 A .32 B .16 C .8 D .4 13.将函数)3sin(2π
+
=x y 的图象上所有点的横坐标缩短到原来的2
1
(纵坐标不变),所得图象对应的表达式为 A .321sin(
2π+=x y B .)6
21sin(2π
+=x y C .)32sin(2π+=x y D .)3
22sin(2π
+
=x y 14.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,若B c b sin 2=,则C sin 等于
A .1
B .
23 C .2
2 D .21
15.某广告公司有职工150人.其中业务人员100人,管理人员15人,后勤人员35人,按分层抽样的方
法从中抽取一个容量为30的样本,则应抽取管理人员 A .15人 B .5人 C .3人 D .2人
16
A .
4π B .2
π
C .π
D .π2
17.不等式组⎪⎩
⎪
⎨⎧≥-+≤≤0111y x y x 表示的平面区域面积是
A .
21 B .4
1
C .1
D .2 18
第3组的频率是
甲 乙
8
5 0 1 2 3 2 2 8 8 9
5 2 3 5
第25题图
A .15.0
B .16.0
C .18.0
D .20.0 19.若c b a >>,则下列不等式中正确的是
A .bc ac >
B .c b b a ->-
C .c b c a ->-
D .b c a >+ 20.如图所示的程序框图,其输出的结果是 A .11 B .12
C .131
D .132
第Ⅱ卷(共40分)
注意事项:
1、第Ⅱ卷分填空题和解答题两种题型.
2、第Ⅱ卷所有题目的答案,考生应用0.5毫米的黑色签字笔写在答题卡上规定的范围内,在试卷上答题无效.
二、填空题(本大题共5小题,每小题3分,共15分) 21.已知向量a =)2,1(-,
b =)2,1(-,则向量b a +的坐标是___)4,2(- _.
22.已知函数⎩⎨⎧<≥=0
,0
,)(2x x x x x f ,则=)3(f ____9________.
23.过点)1,0(且与直线02=-y x 垂直的直线方程的一般式是_____x+2y-2=0_______. 24.等差数列}{n a 的前n 项和为n S .
已知36=a ,则=11S ______33______.
25.甲、乙两名篮球运动员在六场比赛中得分的茎叶图如图所
示,记甲的平均分为a ,乙的平均分为b ,则=-a b ___0.5_.
三、解答题(本大题共3小题,共
25分,解答应写出文字说明,证明过程或演算步骤) 26.(本小题满分8分)
已知向量a =)3,sin 1(x +,b =)3,1(.设函数=
)(x f b a ⋅,求)(x f 的最大值及单调递增区
间.
27.(本小题满分8分)
已知:如图,在四棱锥ABCD V -中,底面ABCD 是 平行四边形,M 为侧棱VC 的中点. 求证://VA 平面BDM
28.(本小题满分9分)
已知函数
)(5)1(23)(2R k k x k x x f ∈++-+=在区间)2,0(内有零点,求k 的取值范围.
2013会考试题答案一、ABADC BADBD CBCDC CACCD
,2( 22. 9 23. x+2y-2=0 24. 33 25. 0.5 二、21. )4
三、
26
27
28。