南开中学高一数学(必修3&5)复习试卷
- 格式:doc
- 大小:496.00 KB
- 文档页数:9
一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2-B .ln 2C .0D .12.已知()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,则(1)(2)f g +=( )A .5B .6C .8D .103.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞4.若定义在R 的奇函数()f x 在(],0-∞单调递减,则不等式()()20f x f x +-≥的解集为( ) A .(],2-∞B .(],1-∞C .[)1,+∞D .[)2,+∞5.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 6.定义在R 上的奇函数()f x 满足()10f =,且对任意的正数a 、b (ab ),有()()0f a f b a b -<-,则不等式()202f x x -<-的解集是( )A .()()1,12,-+∞B .()(),13,-∞-+∞C .()(),13,-∞+∞ D .()(),12,-∞-+∞7.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( )A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,28.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭C .11,22⎛⎫-⎪⎝⎭D .13,22⎛⎫⎪⎝⎭9.函数()|3|3f x x =+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数10.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则b a -的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .70,4⎛⎤ ⎥⎝⎦C .90,8⎛⎤ ⎥⎝⎦D .150,8⎛⎤⎥⎝⎦11.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞12.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(-∞D .)+∞13.关于函数1()lg 1xf x x-=+,有下列三个命题: ①对于任意(1,1)x ∈-,都有()()f x f x -=-;②()f x 在(1,1)-上是减函数;③对于任意12,(1,1)x x ∈-,都有121212()()()1x x f x f x f x x ++=+; 其中正确命题的个数是( ) A .0B .1C .2D .314.函数2222(1)ln 2(1)x y x x +=-⋅+的部分图象是( ) A . B .C .D .15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.则函数的解析式为__________17.已知定义在R 上的奇函数()y f x =满足(1)(1)f x f x -=+,且当(0,1)x ∈时,3()24x f x =-,则12(log 25)f =________.18.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.19.记号{}max ,m n 表示m ,n 中取较大的数,如{}max 1,22=.已知函数()f x 是定义域为R 的奇函数,且当0x >时,()222max ,4x f x x x a a ⎧⎫=-+-⎨⎬⎩⎭.若0x <时,()f x 的最大值为1,则实数a 的值是_________.20.已知函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩给出下列三个结论:①()f x 是偶函数; ②()f x 有且仅有3个零点; ③()f x 的值域是[]1,1-. 其中,正确结论的序号是______.21.已知函数()()()2421log 1a x ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间(),-∞+∞上是减函数,则a 的取值范围为______ .22.函数()22(1)221x xx f x x -++-=+,在区间[]2019,2019-上的最大值为M ,最小值为m .则M m +=_____.23.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.24.已知函数()31x xx a ef x e -++=+是奇函数,则a =__________. 25.设函数()f x x x b =+,给出四个命题:①()y f x =是偶函数;②()f x 是实数集R 上的增函数;③0b =,函数()f x 的图像关于原点对称;④函数()f x 有两个零点. 上述命题中,正确命题的序号是__________.(把所有正确命题的序号都填上) 26.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[8,10]单调递增;④若方程()f x m =在[6,2]--上的两根为1x 、2x ,则128.x x +=- 以上命题中所有正确命题的序号为___________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值;(3)最后得出结果.2.D解析:D 【分析】先由()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,得到32()()231f x g x x x x -+-=-+-+,求出()f x 和()g x ,再求(1)(2)f g +【详解】因为32()()231f x g x x x x +=+++,所以32()()231f x g x x x x -+-=-+-+.又()f x 是奇函数,()g x 是偶函数,所以32()()231f x g x x x x -+=-+-+,则32()23,()1f x x x g x x =+=+,故(1)(2)5510f g +=+=.故选:D 【点睛】 函数奇偶性的应用:(1)一般用()()f x f x =-或()()f x f x =-;(2)有时为了计算简便,我们可以对x 取特殊值: (1)(1)f f =-或(1)(1)f f =-.3.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8), 所以1128na -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =, 由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.4.B解析:B 【分析】由奇函数性质结合已知单调性得出函数在R 上的单调性,再由奇函数把不等式化为(2)()f x f x -≥-,然后由单调性可解得不等式.【详解】∵()f x 是奇函数,在(,0]-∞上递减,则()f x 在[0,)+∞上递减, ∴()f x 在R 上是减函数,又由()f x 是奇函数,则不等式()()20f x f x +-≥可化为(2)()f x f x -≥-, ∴2x x -≤-,1x ≤. 故选:B . 【点睛】方法点睛:本题考查函数的奇偶性与单调性.这类问题常常有两种类型:(1)()f x 为奇函数,确定函数在定义域内单调,不等式为12()()0f x f x +>转化为12()()f x f x >-,然后由单调性去掉函数符号“f ”,再求解;(2)()f x 是偶函数,()f x 在[0,)+∞上单调,不等式为12()()f x f x >,首先转化为12()()f x f x >,然后由单调性化简. 5.A解析:A 【分析】由图象知函数的定义域排除选项选项B 、D ,再根据()01f =-不成立排除选项C ,即可得正确选项. 【详解】由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C , 故选:A 【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.6.C解析:C 【分析】易知函数()f x 在()0,∞+上单调递减,令2t x =-,将不等式()0f t t<等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩,进一步求出答案. 【详解】∵对任意的正数a 、b (ab ),有()()0f a f b a b-<-,∴函数()f x 在()0,∞+上单调递减,∴()f x 在(),0-∞上单调递减. 又∵()10f =,∴()()110f f -=-= 令2t x =-所以不等式()0f t t <等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩∴1t >或1t <-, ∴21x ->或21x -<-, ∴3x >或1x <,即不等式的解集为()(),13,-∞⋃+∞. 故选:C. 【点睛】本题考查抽象函数的单调性和奇偶性以及不等式的知识点,考查逻辑思维能力,属于基础题.7.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.8.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x xx =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭, 所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭ 故选:A9.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()f x =所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x x-==-=-所以函数为奇函数; 故选:A本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;10.B解析:B 【分析】根据分段函数的单调性以及()()()f a f b a b =<,可得11,128a b ≤<≤≤且122log 2b a +=,令122log 2b a k +==,则24k <≤,然后用k 表示,a b ,再作差,构造函数,并利用单调性可求得结果. 【详解】因为函数()f x 在1[,1)8上递减,在[1,2]上递增,又()()()f a f b a b =<, 所以11,128a b ≤<≤≤,且122log 2b a +=,令122log 2b a k +==,则24k <≤,所以212k a -⎛⎫= ⎪⎝⎭,2log b k =,所以221log 2k b a k -⎛⎫-=- ⎪⎝⎭,设函数221()log 2x g x x -⎛⎫=- ⎪⎝⎭,(2,4]x ∈,∵()g x 在(]2,4上单调递增, ∴(2)()(4)g g x g <≤,即70()4g x <≤, ∴70,4b a ⎛⎤-∈ ⎥⎝⎦,故选:B . 【点睛】关键点点睛:根据分段函数的单调性以及()()()f a f b a b =<得到11,128a b ≤<≤≤,且122log 2b a +=是解题关键.属于中档题.11.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解.欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.12.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤, 0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.13.D解析:D 【分析】当(1,1)x ∈-时,函数1()1xf x lgx-=+恒有意义,代入计算()()f x f x -+可判断①;利用分析法,结合反比例函数及对数函数的单调性和复合函数“同增异减”的原则,可判断②;代入分别计算12()()f x f x +和1212()1x x f x x ++,比照后可判断③.【详解】 解:1()1xf x lgx-=+,当(1,1)x ∈-时, 1111()()()101111x x x xf x f x lg lg lg lg x x x x+-+--+=+===-+-+,故()()f x f x -=-,即①正确; 12()(1)11x f x lglg x x -==-++,由211y x=-+在(1,1)-上是减函数,故()f x 在(1,1)-上是减函数,即②正确; 12121212121212121211111()()()11111x x x x x x x x f x f x lglg lg lg x x x x x x x x ----+--+=+==+++++++; 12121212121212121212111()1111x x x x x x x x x x f lg lg x x x x x x x x x x +-+++--==+++++++,即③正确 故三个结论中正确的命题有3个 故选:D . 【点睛】本题以命题的真假判断为载体考查了函数求值,复合函数的单调性,对数的运算性质等知识点,属于中档题.14.C解析:C 【详解】函数()()22221ln 21x y x x +=-⋅+是偶函数,排除AD;且222222(1)2,02(1)x x x x ++≥+∴≤+ 当01,0,10.x y x y <<>==时当时, 排除B,选C.点睛:这个题目考查的是由函数的解析式画函数的图象;一般这种题目是排除法来做的;先找函数的定义域,值域,看是否和解析式相符;再看函数的对称性,奇偶性,看两者是否相符;还有可以判断函数的极限值.15.B解析:B 【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意;对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意; 对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意;对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.【分析】设得到化简即得解【详解】设所以因为函数是定义在R 上的奇函数所以所以所以函数的解析式为故答案为:【点睛】方法点睛:求奇偶函数在对称区间的解析式一般利用代入法求解析式解析:(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩【分析】设0,x <得到()2f x x x -=-+,化简即得解.【详解】设0,0x x <∴->,所以()()21f x x x x x -=--=-+,因为函数()f x 是定义在R 上的奇函数, 所以()2f x x x -=-+,所以()2(1)f x x x x x =-+=-.所以函数的解析式为(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩. 故答案为:(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩【点睛】方法点睛:求奇偶函数在对称区间的解析式,一般利用代入法求解析式.17.【分析】由对称性奇偶性得出周期性然后再结合周期性和奇偶性进行计算【详解】因为则又函数为奇函数所以所以是周期函数周期为4又所以故答案为:【点睛】结论点睛:本题考查函数的奇偶性对称性周期性函数具有两个对 解析:1316-【分析】由对称性、奇偶性得出周期性,然后再结合周期性和奇偶性进行计算. 【详解】 因为(1)(1)f x f x -=+,则()(2)f x f x =-,又函数为奇函数,所以()()(2)(2)(4)f x f x f x f x f x =--=-+=--=+,所以()f x 是周期函数,周期为4.又125log 254-<<-,所以111122222252525(log 25)(4log 25)(log )(log )(log )161616f f f f f =+==--=-225log 163253132416416⎛⎫=--=-+=- ⎪⎝⎭.故答案为:1316-. 【点睛】结论点睛:本题考查函数的奇偶性、对称性、周期性.函数()f x 具有两个对称性时,就具有周期性.(1)()f x 的图象关于点(,0)m 对称,又关于直线xn =对称,则()f x 是周期函数,4m n -是它的一个周期;(2)()f x 的图象关于点(,0)m 对称,又关于点(,0)n (m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期;(3)()f x 的图象关于直线x m =对称,又关于直线x n =(m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期.18.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案 【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =,令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠;所以31(())0(2)22f f f ==,所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭ 故答案为:43【点睛】关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 19.【分析】首先将时函数写成分段函数的形式并求函数的最小值根据奇函数的性质可知时的最小值是建立方程求【详解】当时解得:此时令解得此时所以时函数又因为此时是定义在上的奇函数所以图象关于原点对称时函数的最小解析:±【分析】首先将0x >时,函数()f x 写成分段函数的形式,并求函数的最小值,根据奇函数的性质可知0x >时的最小值是1-,建立方程求a 【详解】当0x >时,22240x x x a a -+-+≥,解得:202x a <≤,此时()22x f x x a =-+,令22240x x x a a-+-+<,解得22x a >,此时()24f x x a =-, 所以0x >时,函数()222224,2,02x a x a f x x x x a a⎧-≥⎪=⎨-<≤⎪⎩,又因为此时()f x 是定义在R 上的奇函数,所以图象关于原点对称,0x ∴>时,函数的最小值是-1, 当22x a ≥时,函数单调递增,()222min 242f x a a a =-=-,当202x a <≤时,()222222124x a a f x x x a a ⎛⎫=-=--+ ⎪⎝⎭,函数的()()22min 22f x f aa==-,所以0x >时,函数的最小值是22a -,即221a -=-,解得:2a =±.故答案为:2± 【点睛】思路点睛:本题主要考查分段函数与函数性质的综合应用,首先根据新定义,正确写出函数()f x 的表达式,这是本题最关键的一点,然后就转化为分段函数求最值问题.20.②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③【详解】函数①由于所以是非奇非偶函数所以①不正确;②可得所以函数有且仅有3个零点;所以②正确;③函数的值域是正确;正确结论的解析:②③ 【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③. 【详解】 函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩,①由于()()1,sin 0f f πππ-=-==,所以()f x 是非奇非偶函数,所以①不正确;②()0f x =,可得2x π=-,0x =,x π=,所以函数有且仅有3个零点;所以②正确;③函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩,()f x 的值域是[]1,1-,正确;正确结论的序号是:②③. 故答案为:②③. 【点睛】本小题主要考查函数的奇偶性、零点、值域.21.【分析】根据题意讨论时是二次函数在对称轴对称轴左侧单调递减时是对数函数在时单调递减;再利用端点处的函数值即可得出满足条件的的取值范围【详解】解:由函数在区间上是减函数当时二次函数的对称轴为在对称轴左解析:1324a ≤≤ 【分析】根据题意,讨论1x <时,()f x 是二次函数,在对称轴对称轴左侧单调递减,1x 时,()f x 是对数函数,在01a <<时单调递减;再利用端点处的函数值即可得出满足条件的a 的取值范围. 【详解】解:由函数242(1)()(1)a x ax x f x log x x ⎧-+<=⎨⎩在区间(,)-∞+∞上是减函数,当1x <时,2()42f x x ax =-+,二次函数的对称轴为2x a =, 在对称轴左侧单调递减,21a ∴,解得12a; 当1x 时,()log a f x x =,在01a <<时单调递减; 又2142log 1a a -+, 即34a; 综上,a 的取值范围是1324a . 故答案为:1324a . 【点睛】本题考查了分段函数的单调性问题,也考查了分类讨论思想的应用问题,属于中档题.22.【分析】可将原函数化为可设可判断为奇函数再根据奇函数与最值性质进行求解即可【详解】因为设所以;则是奇函数所以在区间上的最大值为即在区间上的最小值为即∵是奇函数∴则故答案为:2【点睛】本题主要考查奇函 解析:2【分析】可将原函数化为()2222+11x x x f x x -+-=+,可设()22221x xx g x x -+-=+,可判断()g x 为奇函数,再根据奇函数与最值性质进行求解即可. 【详解】因为()222(1)22222=+111x x x xx x f x x x --++-+-=++ 设()[]()22222019,20191x xx g x x x -+-=∈-+,,所以()()()()2222222211x xx x x x g x g x x x ---+-+--==-=-+-+ ; 则()g x 是奇函数,所以()f x 在区间[]2019,2019-上的最大值为M ,即()1max M g x =+,()f x 在区间[]2019,2019-上的最小值为m ,即()min 1m g x =+,∵()g x 是奇函数,∴()()max min 0g x g x +=, 则()()22max min M m g x g x +=++= . 故答案为:2. 【点睛】本题主要考查奇函数的性质,利用奇函数最值性质进行转化是解决本题的关键.属于中档题.23.-1【解析】试题解析:-1 【解析】 试题因为2()y f x x =+是奇函数且(1)1f =,所以,则,所以.考点:函数的奇偶性.24.【分析】利用奇函数的定义进行计算即可【详解】由函数是奇函数可知恒成立即解得故答案为:【点睛】本题考查函数奇偶性定义的应用属于基础题 解析:1-【分析】利用奇函数的定义()()0f x f x -+=进行计算即可. 【详解】由函数()31x xx a e f x e -++=+是奇函数可知()()0f x f x -+=恒成立, 即3311x xx x x a x a e e e e---+++++++220x x a e e -+==+,解得1a =-. 故答案为:1- 【点睛】本题考查函数奇偶性定义的应用,属于基础题.25.②③【解析】①错∵∴不是偶函数②∵由图象知在上单调递增正确③时关于原点对称正确④若时只有一个零点错误综上正确命题为②③解析:②③ 【解析】①错,∵()f x x x b =+,()()f x x x b f x -=-+≠,∴()y f x =不是偶函数.②∵22(0)()(0)x b x f x x b x ⎧+>=⎨-+≤⎩,由图象知()f x 在R 上单调递增,正确.③0b =时,22(0)()(0)x x f x x x ⎧>=⎨-≤⎩,()f x 关于原点对称,正确.④若0b =时,()f x 只有一个零点,错误.综上,正确命题为②③.26.①②④【分析】先求出从而得到为周期函数再根据函数为偶函数可逐项判断命题的正误【详解】令得故又函数是偶函数故;根据①可得则函数的周期是4由于偶函数的图象关于轴对称故也是函数图象的一条对称轴;根据函数的解析:①②④ 【分析】先求出()20f =,从而得到()f x 为周期函数,再根据函数为偶函数可逐项判断命题的正误. 【详解】令2x =-,得()()()222f f f =-+,故()20f =. 又函数()f x 是偶函数,故()20f =;根据①可得()()4f x f x +=,则函数()f x 的周期是4,由于偶函数的图象关于y 轴对称,故4x =-也是函数()y f x =图象的一条对称轴; 根据函数的周期性可知,函数()f x 在[]8,10上单调递减,③不正确; 由于函数()f x 的图象关于直线4x =-对称,故如果方程()f x m =在区间[]6,2-- [-6,-2]上的两根为12,x x ,则1242x x +=-,即128x x +=-.故正确命题的序号为①②④. 故答案为:①②④.. 【点睛】本题考查函数的奇偶性、周期性和单调性,注意偶函数在对称两侧区间上的单调性相反,具有周期性的偶函数的图象的对称轴有无数条,本题属于基础题.。
天津市高一数学必修三知识点总结最新
以下是天津市高一数学必修三的知识点总结:
1. 向量的基本概念和表示方法:向量的模、方向角、方向余弦、平行和共线、向量的加法和减法、数量积和向量积等。
2. 平面向量的基本性质:平面向量的运算性质、平面向量的线性相关性、平面向量的投影公式等。
3. 数量积的运算和性质:数量积的定义、数量积的运算性质、数量积的几何意义、数量积的坐标表示等。
4. 向量积的运算和性质:向量积的定义、向量积的运算性质、向量积的几何意义、向量积的坐标表示等。
5. 向量积的运用:向量积的坐标表示、向量积的几何应用、向量积的物理应用等。
6. 空间直线和平面的交角和距离:空间直线的方向向量、空间直线的位置关系、空间直线与平面的位置关系、两直线交角的计算、直线与平面的距离的计算等。
7. 空间直线的方程和距离:点到直线的距离公式、平面的一般式方程和点法式方程、直线的对称式方程和参数式方程等。
8. 空间直线与平面的位置关系:直线与平面的位置关系判定、直线与平面的方程联立解题等。
9. 空间曲线的方程和位置关系:参数方程和参数关系式、点到曲线的距离的计算、切
线和法平面等。
10. 空间曲线平面图形的方程和性质:求空间曲线与平面的交点、曲线在平面上的投影、曲线在空间的投影等。
11. 空间中直线和平面的距离:直线之间的距离、两平面之间的距离等。
12. 空间中曲线和曲面的距离:曲线之间的距离、曲面之间的距离等。
希望以上总结对你有帮助!。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年天津市南开区高中数学人教B 版 必修三第七章-三角函数专项提升(2)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分) 1. 已知角 为锐角,则下列各角中为第四象限角的是()A. B. C.D.充分不必要条件必要不充分条件充要条件既不充分也不必要条件2. 在中,“角为锐角”是“”的( )A. B.C. D. 或1 或-1 或1 或-1 3. 已知 ,则()A. B. C.D. 4. 如果角 的终边过点,那么 等于( )A. B. C. D.05. 函数y=sin (2x+φ)的图象沿x 轴向左平移 个单位后,得到一个偶函数的图象,则φ的一个可能的值为( )A. B. C. D.第一或第三象限第一或第二象限第二或第四象限第三或第四象限6. 若角, ,则角 的终边落在( )A. B. C. D. 7. 已知扇形OAB 的周长为12,圆心角大小为,则该扇形的面积是( )cm.2369A. B. C. D.8. 等于()A. B. C. D.9. 若,且为第二象限角,则()A. B. C. D.10. 已知角的终边上一点的坐标为,则角的最小正值为()A. B. C. D.向右平移个单位长度向右平移个单位长度向左平移个单位长度向左平移个单位长度11. 要得到函数的图象,只需将函数的图象()A. B. C. D.12. 函数的部分图象如图所示,则图象的一个对称中心为()A. B. C. D.阅卷人得分二、填空13. ﹣630°化为弧度为14. 设函数f(x)=Asin(2x+φ),其中角φ的终边经过点P(﹣l,1),且0<φ<π,f()=﹣2,则φ= ,A=,f(x)在[﹣,]上的单调减区间为.15. 如果,那么等于.16. 已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是 cm,这条弧所在的扇形面积是 cm2.阅卷人三、解答题(共6题,共70分)得分17. 已知函数的图象经过点,函数的部分图象如图所示.(1) 求,;(2) 若,求 .18.(1) 计算:(2) 已知,,,,求的值.19. 已知函数f(x)=2sin(2x )+a,a为常数(1) 求函数f(x)的最小正周期;(2) 若x∈[0, ]时,f(x)的最小值为﹣2,求a的值.20. 已知,求下列各式的值:(1) ;(2) .21. 已知向量, .若 .(1) 求函数的单调递增区间;(2) 在中,角,,的对边分别为,,,若,,,为的角平分线,为中点,求的长.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.(1)(2)第 11 页 共 11 页。
2022-2023学年天津市南开中学高一(下)期末数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.本大题共8小题,每小题4分,共32分.1.为帮助乡村学校的学生增加阅读、开阔视野、营造更浓厚的校园读书氛围,南开中学发起了“把书种下,让梦发芽”主题捐书活动,现拟采用按年级比例分层抽样的方式随机招募12名志愿者,已知我校高中部共2040名学生,其中高一年级680名,高二年级850名,高三年级510名,那么应在高三年级招募的志愿者数目为( ) A .3B .4C .5D .62.一组数据:16,21,23,26,33,33,37,37的第85百分位数为( ) A .34B .35C .36D .373.已知三个不同的平面α,β,γ和两条不重合的直线m ,n ,则下列四个命题中正确的是( ) A .若m ∥α,α∩β=n ,则m ∥n B .若α∩β=n ,m ⊂α,m ⊥n ,则α⊥βC .若α⊥β,γ⊥β,则α∥γD .若α∩β=m ,m ⊥γ,则α⊥γ4.从装有4个白球和3个红球的盒子里摸出3个球,则以下哪个选项中的事件A 与事件B 互斥却不互为对立( )A .事件A :3个球中至少有1个红球;事件B :3个球中至少有1个白球 B .事件A :3个球中恰有1个红球;事件B :3个球中恰有1个白球C .事件A :3个球中至多有2个红球;事件B :3个球中至少有2个白球D .事件A :3个球中至多有1个红球;事件B :3个球中至多有1个白球5.为弘扬民族精神、继承传统文化,某校高二年级举办了以“浓情端午,粽叶飘香”为主题的粽子包制大赛.已知甲、乙、丙三位同学在比赛中成功包制一个粽子的概率分别为12,34,25,且三人成功与否互不影响,那么在比赛中至少一人成功的概率为( ) A .1720B .3140C .3740D .19206.如图,A ,B 是以CD 为直径的半圆圆周上的两个三等分点,AN →=23AB →,点M 为线段AC 中点,则DM →=( )A .13DC →+12DN →B .12DC →+23DN →C .12DC →+13DN →D .23DC →+12DN →7.如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,点E 在棱A 1B 1(不含端点)上运动,现有如下命题: ①平面AA 1D 1D 内不存在直线与DE 垂直; ②平面A 1DE 与平面ABCD 所成的锐二面角为π4;③当点E 运动到棱A 1B 1的中点时,线段A 1C 上存在点P ,使得BC ∥平面AEP ; ④设点P 为线段A 1C 的中点,则三棱锥E ﹣PBC 1的体积为定值. 其中真命题的个数为( )A .1B .2C .3D .48.月明天是我校一位登山爱好者,某天傍晚,她登上一座山尖(图中点A 处),刚好望到另一座远山,瞬间想起《送别》中“夕阳山外山”的歌词,在这诗意的时刻,她正眺望到远山上一座凉亭(位于点B 处),于是她想测算出凉亭到那座山顶(点C 处)的距离,她在点A 处利用测角仪器测得点B 的俯角为5°,点C 的仰角为40°,此后,她沿山坡下行100米至点D 处,测得点A ,B ,C 的仰角分别为80°,25°,55°,根据这些数据,明天同学计算得到了凉亭到山顶的距离BC =( )A .50(√3+1)米B .50(√3−1)米C .50(√6+√2)米D .50(√6−√2)米二、填空题:本大题共6小题,每小题4分,共24分.试题中包含两个空的,答对1个的给2分,全部答对的给4分.9.i 为虚数单位,若复数z =2i+1i−2,则|z |= . 10.已知正四面体ABCD 的棱长为1,则直线AB 与平面BCD 所成角的余弦值为 .11.已知向量a →=(4,3),向量a →在向量b →上的投影向量c →=(2,4),则|a →−b →|的最小值为 . 12.在5袋牛奶中,有2袋已经过了保质期,从中任取2袋,则取到的全是未过保质期的牛奶的概率为 .13.设三角形ABC 是等边三角形,它所在平面内一点M 满足AM →=13AB →+23AC →,则向量AM →与BC →夹角的余弦值为 .14.为迎接我校建校120周年校庆,数学学科在八角形校徽中生发灵感,设计了一枚“立体八角形”水晶雕塑,寓意南开在新时代中国“保持真纯初心,骏骏汲汲前行”,以下为该雕塑的设计图及俯视图,它由两个中心重合的正四棱柱组合而成,其中一个正四棱柱可看作由另一个正四棱柱旋转45°而成,已知正四棱柱的底面边长为1,侧棱长为2,设该雕塑的表面积为S 1,该雕塑内可容纳最大球的表面积为S 2,该雕塑外接球表面积为S 3,则S 1= ,S 2:S 3= .三、解答题:本大题共3小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(14分)某校从高一年级学生中随机抽取40名,将他们的期中考试数学成绩(满分100分,所有成绩均为不低于40分的整数)分为6组:[40,50),[50,60),…,[90,100],绘制出如图所示的频率分布直方图.(Ⅰ)求出图中实数a 的值;(Ⅱ)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数; (Ⅲ)若从成绩来自[40,50)和[90,100]两组的学生中随机选取两名学生: (i )写出该试验的样本空间:(ii )求这两名学生数学成绩之差的绝对值不大于10的概率.16.(15分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知acosA=b+c cosB+cosc.(Ⅰ)求A ; (Ⅱ)已知a =3, (i )若△ABC 的面积为√32,求△ABC 的周长: (ii )求△ABC 周长的取值范围.17.(15分)如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 为平行四边形,∠DAB =60°,AB =AD =AA 1,过A 1作底面的垂线,垂足在线段AC 上,点M ,N 分别为棱AB 和C 1D 1的中点. (Ⅰ)证明D ,M ,B 1,N 四点共面,且AD 1∥平面DMB 1N ; (Ⅱ)证明直线A 1C 与平面DMB 1N 不垂直; (Ⅲ)若AC 1⊥平面A 1BD ,求∠BAA 1的大小.2022-2023学年天津市南开中学高一(下)期末数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.本大题共8小题,每小题4分,共32分.1.为帮助乡村学校的学生增加阅读、开阔视野、营造更浓厚的校园读书氛围,南开中学发起了“把书种下,让梦发芽”主题捐书活动,现拟采用按年级比例分层抽样的方式随机招募12名志愿者,已知我校高中部共2040名学生,其中高一年级680名,高二年级850名,高三年级510名,那么应在高三年级招募的志愿者数目为()A.3B.4C.5D.6解:该校高中部共2040名学生,其中高一年级680名,高二年级850名,高三年级510名,采用按年级比例分层抽样的方式随机招募12名志愿者,则应在高三年级招募的志愿者数目为12×5102040=3.故选:A.2.一组数据:16,21,23,26,33,33,37,37的第85百分位数为()A.34B.35C.36D.37解:0.85×8=6.8,则一组数据:16,21,23,26,33,33,37,37的第85百分位数为:37.故选:D.3.已知三个不同的平面α,β,γ和两条不重合的直线m,n,则下列四个命题中正确的是()A.若m∥α,α∩β=n,则m∥nB.若α∩β=n,m⊂α,m⊥n,则α⊥βC.若α⊥β,γ⊥β,则α∥γD.若α∩β=m,m⊥γ,则α⊥γ解:对于A,m∥α,α∩β=n,则m∥n,错误,原因是β不一定是经过直线m的平面;故A错误;对于B,若α∩β=n,m⊂α,m⊥n,则α⊥β错误,如下图所示,原因是由题设条件无法推出一个平面经过另一个平面的垂线,故无法判定是否α与β一定垂直,故B错误;对于C ,若α⊥β,γ⊥β,则α∥γ,错误,例如教室的墙角,不妨设α为东墙面,γ为北墙面,β 为地面,满足α⊥β,γ⊥β,但α与γ相交,故C 错误;对于D ,因为α∩β=m ,m ⊥γ,由面面垂直的判定定理得:α⊥γ,故D 正确. 故选:D .4.从装有4个白球和3个红球的盒子里摸出3个球,则以下哪个选项中的事件A 与事件B 互斥却不互为对立( )A .事件A :3个球中至少有1个红球;事件B :3个球中至少有1个白球 B .事件A :3个球中恰有1个红球;事件B :3个球中恰有1个白球C .事件A :3个球中至多有2个红球;事件B :3个球中至少有2个白球D .事件A :3个球中至多有1个红球;事件B :3个球中至多有1个白球解:对于A ,事件A 与事件B 可能同时发生,例如摸出2个白球和1个红球,所以事件A 与事件B 不是互斥事件,故A 错误;对于B ,事件A 与事件B 不可能同时发生,但不是一定有一个发生,还有可能是3个白球或3个红球,所以事件A 与事件B 互斥却不互为对立,故B 正确;对于C ,事件A 与事件B 可能同时发生,例如摸出2个白球和1个红球,所以事件A 与事件B 不是互斥事件,故C 错误;对于D ,事件A 与事件B 不可能同时发生,但必有一个发生,所以事件A 与事件B 是互斥事件也是对立事件,故D 错误. 故选:B .5.为弘扬民族精神、继承传统文化,某校高二年级举办了以“浓情端午,粽叶飘香”为主题的粽子包制大赛.已知甲、乙、丙三位同学在比赛中成功包制一个粽子的概率分别为12,34,25,且三人成功与否互不影响,那么在比赛中至少一人成功的概率为( ) A .1720B .3140C .3740D .1920解:由题意,甲、乙、丙三位同学在比赛中成功包制一个粽子的概率分别为12,34,25, 则甲、乙、丙三位同学在比赛中不能成功包制一个粽子的概率分别为12,14,35.则没有一人成功的概率为12×14×35=340,∴至少一人成功的概率为1−340=3740. 故选:C .6.如图,A ,B 是以CD 为直径的半圆圆周上的两个三等分点,AN →=23AB →,点M 为线段AC 中点,则DM →=( )A .13DC →+12DN →B .12DC →+23DN →C .12DC →+13DN →D .23DC →+12DN →解:由圆的几何性质知,2AB =CD 且AB ∥CD ,因为AN →=23AB →,点M 为线段AC 中点,所以DM →=12(DC →+DA →)=12DC →+12(DN →+NA →)=12DC →+12DN →+12×23BA →=12DC →+12DN →+13BA →=12DC →+12DN →+13×12DC →=23DC →+12DN →. 故选:D .7.如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,点E 在棱A 1B 1(不含端点)上运动,现有如下命题: ①平面AA 1D 1D 内不存在直线与DE 垂直; ②平面A 1DE 与平面ABCD 所成的锐二面角为π4;③当点E 运动到棱A 1B 1的中点时,线段A 1C 上存在点P ,使得BC ∥平面AEP ; ④设点P 为线段A 1C 的中点,则三棱锥E ﹣PBC 1的体积为定值. 其中真命题的个数为( )A .1B .2C .3D .4解:对①,如图,易知DE 在平面AA 1D 1D 内的射影为A 1D ,而AD1⊥A1D,∴根据三垂线定理可知AD1⊥DE,∴①错误;对②,如图,由正方体的性质易知:平面A1DE即为对角面A1DCB1,又易知DC⊥平面B1CB,∴平面A1DE与平面ABCD所成的锐二面角即为∠B1CB=π4,∴②正确;对③,如图,当点E运动到棱A1B1的中点时,设AE∩A1B=F,则易知F为线段A1B上靠近A1的三等分点,∴在A1C上取靠近A1的三等分点P,连接FP,则FP∥BC,连接PE,P A,又BC⊄平面AEP,FP⊂平面AEP,∴BC∥平面AEP,∴③正确;对④,如图,当点P为线段A1C的中点时,由正方体的性质易知:平面PBC1即为对角面ABC1D1,又易知A1B1∥对角面ABC1D1,∴E到平面ABC1D1的距离为定值,又三角形PBC1的面积也为定值,∴三棱锥E ﹣PBC 1的体积为定值,∴④正确. 故②③④为真命题,共计3个. 故选:C .8.月明天是我校一位登山爱好者,某天傍晚,她登上一座山尖(图中点A 处),刚好望到另一座远山,瞬间想起《送别》中“夕阳山外山”的歌词,在这诗意的时刻,她正眺望到远山上一座凉亭(位于点B 处),于是她想测算出凉亭到那座山顶(点C 处)的距离,她在点A 处利用测角仪器测得点B 的俯角为5°,点C 的仰角为40°,此后,她沿山坡下行100米至点D 处,测得点A ,B ,C 的仰角分别为80°,25°,55°,根据这些数据,明天同学计算得到了凉亭到山顶的距离BC =( )A .50(√3+1)米B .50(√3−1)米C .50(√6+√2)米D .50(√6−√2)米解:由题意知,AD =100,∠BAC =45°,∠BAD =75°,∠ADC =45°,∠BDC =30°, 在△ABD 中,∠ADB =∠ADC +∠BDC =75°,∠ABD =180°﹣(∠BAD +∠ADB )=30°, 由正弦定理知,AB sin∠ADB=AD sin∠ABD,所以AB =100⋅sin75°sin30°=100sin(45°+30°)sin30°=100⋅√22⋅(√32+12)12=50√2(√3+1), 在△ACD 中,∠ACD =180°﹣(∠BAC +∠BAD +∠ADC )=15°, 由正弦定理知,AC sin∠ADC=AD sin∠ACD,所以AC =100sin45°sin15°=100sin45°sin(45°−30°)=100⋅√22√22(√32−12)=100(√3+1),在△ABC 中,由余弦定理知,BC 2=AB 2+AC 2﹣2AB •AC cos ∠BAC =5000(√3+1)2, 所以BC =50√2(√3+1)=50(√6+√2)米. 故选:C .二、填空题:本大题共6小题,每小题4分,共24分.试题中包含两个空的,答对1个的给2分,全部答对的给4分.9.i 为虚数单位,若复数z =2i+1i−2,则|z |= 1 . 解:z =2i+1i−2, 则|z |=|1+2i −2+i |=|1+2i||−2+i|=√22√(−2)+1=1.故答案为:1.10.已知正四面体ABCD 的棱长为1,则直线AB 与平面BCD 所成角的余弦值为 √33. 解:如图所示:在正四面体ABCD 中,点A 在等边△BCD 的投影为△BCD 的中心O , 则AB 与平面BCD 所成角为∠ABO , 因为正四面体ABCD 的棱长为1, 所以BE =√32,BO =23⋅BE =√33, 所以cos ∠ABO =BOAB =√33. 故答案为:√33. 11.已知向量a →=(4,3),向量a →在向量b →上的投影向量c →=(2,4),则|a →−b →|的最小值为 √5 . 解:向量a →在向量b →上的投影向量c →=(2,4),则b →∥c →,设b →=λc →=(2λ,4λ),a →=(4,3),则a →−b →=(4−2λ,3−4λ),故|a →−b →|2=(4﹣2λ)2+(3﹣4λ)2=20(λ﹣1)2+5, 当λ=1时,|a →−b →|的最小值为√5. 故答案为:√5.12.在5袋牛奶中,有2袋已经过了保质期,从中任取2袋,则取到的全是未过保质期的牛奶的概率为310.解:记2袋已经过了保质期的牛奶为A ,B ,3袋未过保质期的牛奶为a ,b ,c ,从5袋牛奶中任取2袋,所有情况为:AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc ,共10种情况, 其中全是未过保质期的牛奶的情况为:ab ,ac ,bc ,共3种情况, 所以所求概率为310.故答案为:310.13.设三角形ABC 是等边三角形,它所在平面内一点M 满足AM →=13AB →+23AC →,则向量AM →与BC →夹角的余弦值为√714. 解:设△ABC 边长为1,AM →=13AB →+23AC →,则|AM →|2=(13AB →+23AC →)2=19AB →2+49AB →⋅AC →+49AC →2=19+49×1×1×cos60°+49=79,所以|AM →|=√73,因为AM →⋅BC →=(13AB →+23AC →)(AC →−AB →)=−13AB →2+23AC →2−13AB →⋅AC →=−13+23−13×1×1×cos60°=16,设向量AM →与BC →夹角为θ, 则cos θ=AM →⋅BC →|AM →||BC →|=16√73=√714.故答案为:√714.14.为迎接我校建校120周年校庆,数学学科在八角形校徽中生发灵感,设计了一枚“立体八角形”水晶雕塑,寓意南开在新时代中国“保持真纯初心,骏骏汲汲前行”,以下为该雕塑的设计图及俯视图,它由两个中心重合的正四棱柱组合而成,其中一个正四棱柱可看作由另一个正四棱柱旋转45°而成,已知正四棱柱的底面边长为1,侧棱长为2,设该雕塑的表面积为S 1,该雕塑内可容纳最大球的表面积为S 2,该雕塑外接球表面积为S 3,则S 1=1189,S 2:S 3= 1:6 .解:由题意,该雕塑的表面积是16个矩形及两个正方形与8个等腰直角三角形的面积的和,所以S 1=13×2×16+2×1×1+8×12×13×13=1189; 该雕塑内可容纳最大球的半径为12,表面积为S 2=4π×(12)2=π,该雕塑外接球的半径为√12+(√22)2=√62,表面积为S 3=4π×(√62)2=6π,所以S 2:S 3=1:6.故答案为:1189,1:6.三、解答题:本大题共3小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(14分)某校从高一年级学生中随机抽取40名,将他们的期中考试数学成绩(满分100分,所有成绩均为不低于40分的整数)分为6组:[40,50),[50,60),…,[90,100],绘制出如图所示的频率分布直方图.(Ⅰ)求出图中实数a 的值;(Ⅱ)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数; (Ⅲ)若从成绩来自[40,50)和[90,100]两组的学生中随机选取两名学生: (i )写出该试验的样本空间:(ii )求这两名学生数学成绩之差的绝对值不大于10的概率.解:(Ⅰ)因为图中所有小矩形的面积之和等于1, 所以10×(0.005+0.01+0.02+a +0.025+0.01)=1, 解得a =0.03;(Ⅱ)根据频率分布直方图,成绩不低于60分的频率为1﹣10×(0.005+0.01)=0.85, 由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544;(Ⅲ)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,则记在[40,50)分数段的两名同学为A 1,A 2,在[90,100]分数段内的同学为B 1,B 2,B 3,B 4,(i )从这6名学生中随机抽取2人样本空间Ω={(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4)};(ii )如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10,则所取2名学生的数学成绩之差的绝对值不大10的取法有(A 1,A 2),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4),共7种取法, 所以所求概率为P =715. 16.(15分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a cosA=b+c cosB+cosc.(Ⅰ)求A ; (Ⅱ)已知a =3, (i )若△ABC 的面积为√32,求△ABC 的周长: (ii )求△ABC 周长的取值范围. 解:(Ⅰ)由题意及正弦定理可得:sinA cosA=sinB+sinC cosB+cosC,整理可得:sin A cos B ﹣cos A sin B =sin C cos A ﹣cos C sin A ,即sin (A ﹣B )=sin (C ﹣A ),在三角形中,可得A ﹣B =C ﹣A , 即2A =B +C =π﹣A , 解得A =π3;(Ⅱ)(i )因为S △ABC =12bc sin A =12bc •√32=√32,可得bc =2, 由余弦定理可得a 2=b 2+c 2﹣2bc cos A =(b +c )2﹣3bc ,而a =3, 即(b +c )2=15,解得b +c =√15, 所以三角形的周长为a +b +c =3+√15;(ii )a 2=b 2+c 2﹣2bc cos A =(b +c )2﹣3bc ,而a =3, 所以(b +c )2=a 2+3bc ≤9+3•(b+c 2)2,当且仅当b =c 时取等号,解得b +c ≤6,而b +c >a =3, 所以b +c ∈(3,6].所以三角形的周长为a +b +c ∈(6,9].17.(15分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD为平行四边形,∠DAB=60°,AB=AD=AA1,过A1作底面的垂线,垂足在线段AC上,点M,N分别为棱AB和C1D1的中点.(Ⅰ)证明D,M,B1,N四点共面,且AD1∥平面DMB1N;(Ⅱ)证明直线A1C与平面DMB1N不垂直;(Ⅲ)若AC1⊥平面A1BD,求∠BAA1的大小.(Ⅰ)证明:取A1B1的中点E,连接EM,ED1,因为点M,N分别为棱AB和C1D1的中点,所以D1N∥B1E,D1N=B1E,DD1∥EM,DD1=EM,所以四边形B1ED1N和四边形DD1EM是平行四边形,所以B1N∥D1E∥DM,所以D,M,B1,N四点共面,因为D1N∥AM,D1N=AM,所以四边形D1AMN是平行四边形,所以AD1∥MN,又AD1⊄平面DMB1N,MN⊂平面DMB1N,所以AD1∥平面DMB1N.(Ⅱ)证明:因为过A1作底面的垂线,垂足在线段AC上,且垂线在平面ACC1A1上,所以平面ACC1A1⊥平面ABCD,所以A1C在底面ABCD上的投影为AC,假设直线A1C与平面DMB1N垂直,因为DM ⊂平面DMB 1N ,所以A 1C ⊥DM , 所以AC ⊥DM ,因为底面ABCD 为平行四边形,∠DAB =60°,AB =AD , 所以四边形ABCD 是菱形,所以AC ⊥BD , 所以点M 与点B 重合,这与题意相矛盾,故假设不成立,即直线A 1C 与平面DMB 1N 不垂直.(Ⅲ)解:若AC 1⊥平面A 1BD ,因为A 1D ⊂平面A 1BD ,所以AC 1⊥A 1D , 因为AC 1→=AB →+AD →+AA 1→,A 1D →=AD →−AA 1→,所以AC 1→•A 1D →=(AB →+AD →+AA 1→)•(AD →−AA 1→)=AB →⋅AD →−AB →⋅AA 1→+AD →2−AD →⋅AA 1→+AD →⋅AA 1→−AA 1→2=AB →⋅AD →−AB →⋅AA 1→=|AB →|2cos60°−|AB →|2cos ∠BAA 1=0, 所以cos ∠BAA 1=12,又∠BAA 1∈(0°,90°),所以∠BAA 1=60°.。
天津市高一数学必修三知识点总结最新天津市高一数学必修三的知识点总结如下:
1. 数列与数列的第n项:
- 等差数列的通项公式:an = a1 + (n-1)d
- 等比数列的通项公式:an = a1 * r^(n-1)
- 等差数列的前n项和公式:Sn = (n/2)(a1 + an)
- 等比数列的前n项和公式:Sn = a1 * (1 - r^n)/(1-r)
2. 统计与概率:
- 频率与频率分布表
- 用频率直方图描述数据分布
- 用累积频率分布图描述数据分布
- 事件的概率计算
- 互斥事件和对立事件的概率计算
3. 函数与常用函数:
- 函数的概念和表示
- 奇函数和偶函数
- 反函数的概念和性质
- 幂函数、指数函数和对数函数的图像和性质
- 三角函数的图像和性质
4. 数学归纳法与递归公式:
- 数学归纳法的基本原理和步骤
- 递推数列和递归公式的概念
- 用数学归纳法证明递推数列的性质
- 求解递推数列的通项公式
5. 平面向量和向量运算:
- 向量的概念和表示
- 向量的基本运算:加法、数乘、数量积、向量积
- 向量的共线和垂直
- 向量共线条件和垂直条件的判定
- 平面向量的投影、模长、单位向量和方向角
6. 三角函数的基本概念与恒等变换:
- 弧度制与角度制的换算
- 各三角函数的定义和性质
- 三角函数的恒等变换公式:和差化积、积化和差、倍角公式、半角公式等
这些知识点是天津市高一数学必修三的重要内容,希望对你有帮助。
请注意参考你所用的教材和教学大纲,以确保知识点的准确性和完整性。
重庆南开中学校高2026级数学测试一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=,1sin 4B =,则b =( )A.B.12C. 2D. 【答案】B 【解析】【分析】直接利用正弦定理,结合题中所给的条件,求得结果. 【详解】根据正弦定理可得sin sin a bA B=, 即11124b=,解得12b =, 故选:B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有利用正弦定理解三角形,属于基础题目. 2.已知向量1(2BA =,1),2BC 则∠ABC = A. 30 B. 45C. 60D. 120【答案】A 【解析】【详解】试题分析:由题意,得cos BA BC ABC BA BC⋅∠==,所以30ABC ∠=°,故选A .【考点】向量的夹角公式.【思维拓展】(1)平面向量a 与b 的数量积为||||cos a b a b θ⋅=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ≤≤ ;(2)由向量的数量积的性质知|a ,,·0a b a b ⇔⊥=,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.3. 下列各式中不能..化简为PQ的是( ) A. ()AB PA BQ ++B. PA AB BQ +−C. QC QP CQ −+D. ()()AB PC BA QC ++−【答案】B 【解析】【分析】根据平面向量加、减运算法则及运算律计算可得.【详解】对于A :()AB PA BQ PA AB BQ PQ ++=++=,故A 不合题意;对于B :PA AB BQ PB BQ +−=−,故B 满足题意;对于C :QC QP CQ QC CQ PQ PQ +++=−=,故C 不合题意;对于D :()()AB PC BA QC BA AB PC CQ PQ ++−=+++=,故D 不合题意.故选:B4. 已知单位向量a ,b满足0a b ⋅= ,若向量c =+ ,则sin ,a c =( )A.B.C.D.【答案】B 【解析】【分析】计算出a c ⋅ ,及c ,从而利用向量余弦夹角公式计算得到cos ,a c = ,再利用同角三角函数平方关系求出sin ,a c.【详解】因为a ,b是单位向量,所以1ab == ,又因为0a b ⋅= ,c =,所以3c = ,)2a c ab ⋅=⋅+=⋅=,所以cos ,a c a c a c⋅==⋅因为[],0,πa c ∈,所以sin ,a c 故选:B .5. 若平面向量a ,b满足2a b a b ==⋅= ,则对于任意实数λ,()1a b λλ+− 的最小值是( )A.B.C. 2D. 1【答案】A 【解析】 【分析】设向量,a b夹角为θ,设()a b + 与(1)a b λλ+− 的夹角为γ,利用1cos2ab a b θ==和()(1)46a b a b a b λλ +⋅+−=+⋅= ,得到(1)cos 6a b a b λλγ+⋅+−=,进而得到()1+−λλa b 的最小值【详解】由题意得,设向量,a b夹角为θ,则1cos2ab a b θ==, ()(1)46a b a b a b λλ +⋅+−=+⋅= ,设()a b + 与(1)a b λλ+−的夹角为γ, ∴(1)cos 6a b a b λλγ+⋅+−= ,222212a b a b a b +=++⋅=,∴(1)cos a b λλγ+− ,0,2πγ∈,(1)a b λλ+−≥ 故选:A【点睛】关键点睛:解题关键在于利用1cos2ab a b θ==, 得到()(1)46a b a b a b λλ +⋅+−=+⋅=,关键点在于根据()a b + 与(1)a b λλ+−的夹角γ,得出()1+−λλa b 的最小值,难度属于中档题6. 如图,在平行四边形ABCD 中,12DE EC =,F 为BC 的中点,G 为EF 上的一点,且79AG AB mAD =+ ,则实数m 的值为A.23B.13C. 13−D. 23−【答案】A 【解析】 【分析】可根据条件得出11,32DE AB BF AD ==,并可设(1)AG AE AF λλ=+−,然后根据向量加法的几何意义和向量的数乘运算即可得出21(1)()322AG AB AD λλ=−++ ,从而根据平面向量基本定理即可得出27139122m λλ −= =+,解出m 即可. 【详解】解:12DE EC =,F 为BC 的中点, 1,3DE AB =∴ 12BF AD = ,设(1)AG AE AF λλ=+−()(1)()AD DE AB BF λλ++−+ 11(1)32AD AB AB AD λλ ++−+211322AB AD λλ =−++,又79AG AB mAD =+ ,27139122m λλ −= ∴ =+,解得23m =.故选:A.【点睛】本题考查了向量加法和数乘的几何意义,向量的数乘运算,平面向量基本定理,考查了计算能力,属于中档题.7. ABC ∆所在平面内一点P 满足22sin cos CP CA CB θθ=⋅+⋅ ,若2PA BP =,则cos 2θ=( )A.B. C.13D. 13−【答案】C 【解析】 【分析】根据平面向量基本定理,用,CA CB 作为基底表示出CP.即可求得22sin ,cos θθ,由余弦二倍角公式即可求得cos 2θ.【详解】ABC ∆所在平面内一点P ,2PA BP =所以CP CB BP =+13CB BA =+()13CB CA CB =+−2133CB CA +=因为22sin cos CP CA CB θθ=⋅+⋅所以2212sin ,cos 33θθ== 由余弦二倍角公式可得cos 2θ=22211cos sin 333θθ−=−= 故选:C【点睛】本题考查了平面向量基本定理的应用,用基底表示向量形式,余弦二倍角公式的简单应用,属于基础题.8. 已知函数()22sin cos 4cos 1f x x x x =+−,若实数a 、b 、c 使得()()3af x bf x c −+=对任意的实数x 恒成立,则2cos a b c +−的值为( )A.12B.32C. 2D.52【答案】B 【解析】【分析】设()()21f x x ϕ=++,得到()()221f x c x c ϕ+=+++,根据题意转化为)()()()cos 2sin 2sin 2cos 230a b c x c x a b ϕϕ−+++−−=,由此得出方程组cos 20sin 2030a b c b c a b −== −−=①②③,分0b =和sin 20c =,两种情况讨论,即可求解. 【详解】设()()22sin cos 4cos 1sin 22cos 2121f x x x x x x x ϕ=+−=++=++,可得()()221f x c x c ϕ+=+++,其中02πϕ<<,且tan 2ϕ=,因为实数,,a b c 使得()()3af x bf x c −+=对任意的实数x 恒成立,()()sin 2sin 223x x c a b ϕϕ+−+++−=恒成立,()()()sin 2sin 2230x x c a b ϕϕ+−+++−−=恒成立,)()()()cos 2sin 2sin 2cos 230a b c x c x a b ϕϕ−+−++−−=由上式对任意x ∈R 恒成立,故必有cos 20sin 2030a b c b c a b −== −−=①②③, 若0b =,则由式①知0a =,显然不满足式③,所以0b ≠, 所以,由式②知sin 20c =,则cos 21c =±, 当cos 21c =时,则式①,③矛盾.所以cos 21c =−,由式①,③知32a b =−=,所以32cos 2a b c +−=. 故选:B.【点睛】知识方法:有关三角函数综合问题的求解策略:1、根据题意问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质.2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9. 已知a 、b 、c均为非零向量,下列命题错误的是( )A. R λ∃∈,()a b a b λ+=⋅B. ()()a b c a b c ⋅⋅=⋅⋅ 可能成立 C. 若a b b c ⋅=⋅,则a c =D. 若1a b ⋅=,则1a = 或1b =【答案】ACD 【解析】【分析】利用平面向量积的定义可判断A 选项;利用特例法可判断BCD 选项.【详解】()+a b λ 仍是向量,a b ⋅不是向量,A 错;不妨取()1,1a =,()2,2b = ,()3,3c = ,则()()()43,312,12a b c ⋅⋅== ,()()1212,12a b c a ⋅⋅==,此时()()a b c a b c ⋅⋅=⋅⋅,B 对;若()1,0b = ,()3,2a = ,()3,3c = ,则3a b b c ⋅=⋅= ,但a c ≠,C 错;若()2,1a = ,()1,1b=− ,则1a b ⋅=,但1a > ,1b > ,D 错.故选:ACD. 10. 若直线()00x ky k +=≠与函数()()()22112sin 21xx x f x −−=+图象交于不同的两点A ,B ,已知点()9,3C ,O 为坐标原点,点(),D m n 满足DA DB CD +=,则下列结论正确的是( )A. ()()11f x f x +=−−B. 3CO OD =C. 3n m =D. 80CA CB DA DB ⋅−⋅=【答案】CD 【解析】【分析】首先判断()f x 的奇偶性,即可判断A ,从而得到A 、B 两点关于原点对称,再根据平面向量的坐标运算求出m 、n ,即可判断B 、C ,设()00,A x y ()00x ≠,则()00,B x y −−,根据数量积的坐标运算判断D.【详解】对A ,因为()()()()22112sin 21cos 22121xxxxx x f x −−−==++定义域为R ,则()()()1121cos 22121x x x f x ++−++=+,()()()()()()111121cos 2221cos 22112121xx xx x x f x f x −−+−−+−−−−+−−==−=−+++,故A 错误;对B ,由()()110f x f x ++−−=,所以()()0f x f x +−=,所以()f x 为奇函数, 又直线()00x ky k +=≠与函数()f x 图象交于不同的两点A ,B , 则A 、B 两点关于原点对称,且A 、B 的中点为坐标原点O ,所以()22,2DA DB DO m n +==−− ,又()9,3CD m n =−− ,DA DB CD += , 所以2923m m n n −=− −=−,解得31m n ==,所以()3,1D ,则()3,1OD = ,又()9,3CO =−− ,所以3CO OD =−,故B 错误;对C ,又133n m ==,故C 正确;对D ,不妨设()00,A x y ()00x ≠,则()00,B x y −−,所以()009,3CA x y =−− ,()009,3CB x y =−−−− , ()003,1DA x y =−− ,()03,1CB x y =−−−− ,所以CA CB DA DB ⋅−⋅ ()()()()()()()()0000000099333311x x y y x x y y −−−+−−−−−−−−−−−222200008199180x y x y =−+−−+−+=,故D 正确.故选:CD11. 已知()()20f x ax bx c a ++≠,且方程()f x x =无实数根,下列命题正确的是( )A. 方程()f f x x = 也一定没有实数根B. 若0a >,则不等式()f f x x > 对一切实数都成立C. 若a<0,则必存在实数0x ,使()00f f x x > 成立D. 若0a b c ++=,则不等式()f f x x < 对一切实数都成立 【答案】ABD【解析】【分析】依题意可得函数()f x 的图象与直线y x =没有交点,所以()(0)f x x a >>或()(0)f x x a <<恒成立,从而得到()()f f x f x x >> 或()()f f x f x x << 恒成立,然后再逐一判断即可得出答案. 【详解】因为方程()f x x =无实数根,即函数()f x 的图象与直线y x =没有交点, 所以()(0)f x x a >>或()(0)f x x a <<恒成立.因为()()f f x f x x >> 或()()f f x f x x << 恒成立, 所以()f f x x = 没有实数根,故A 正确;若0a >,则不等式()()f f x f x x >> 对一切实数x 都成立,故B 正确; 若a<0,则不等式()f f x x < 对一切实数x 都成立, 所以不存在实数0x ,使()00f f x x > ,故C 错误;若0a b c ++=,则()101f =< ,可得a<0 ,因此不等式()f f x x < 对一切实数都成立,故D 正确; 故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量a ,b 满足4a = ,()1,2b = ,a 与b 的夹角为π3,则a 在b 上的投影向量为_____(用坐标表示).【答案】 【解析】【分析】直接利用向量在向量上的投影向量的定义求解.【详解】向量a 在向量b上的投影向量是)π1cos 41,232b a b ⋅⋅=⋅=,故答案为:. 13. 如图,在ABC 和AEF △中,B 是EF 的中点,2AB EF ==,3CACB ==,若7AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于______.【答案】13【解析】【分析】由题设得27AB AB AC BE AB C BF A +=+⋅+⋅⋅,由AC AB BC −=求AC AB ⋅ ,又()AB BE AB BF ⋅=⋅− ,即可得112EF BC ⋅=,进而求EF 与BC 的夹角的余弦值. 【详解】由图知: AE AB BE =+ ,AF AB BF =+,∴2()()7AB AE AC AF AB AB BE AB B AC A F BE AB B B A F B AC AC ⋅+⋅=⋅+⋅=+⋅++++=⋅⋅,又2222()29AC AB AC AC AB AB BC −=−⋅+== ,且3CA =,2AB =, ∴2AC AB ⋅=,∴1AB A F C BE B =⋅+⋅,而()AB BE AB BF ⋅=⋅− ,即1()12BF AC AB EF BC ⋅−=⋅= , 又2EF =,3CB =∴1cos ,3EF BC <>= .故答案为:13. 【点睛】关键点点睛:根据几何图形,结合向量加减法的几何应用及数量积的运算律,得到1()12BE BF BF AC AB AB A E C F BC =⋅−=⋅=⋅+⋅,进而求向量夹角余弦值.14. 已知平面向量1e ,2e ,3e ,p ,满足1231e e e === ,120e e ⋅= ,1p ≤ ,则()()12p e p e −⋅−+ ()()()()2331p e p e p e p e −⋅−+−⋅−的最大值为______.【答案】5+【解析】【分析】先将所求向量式转化变形,参变向量分离,再由变形向量式的几何意义判断最值状态,最后坐标运算求解最值.【详解】设()()()()()()122331M p e p e p e p e p e p e =−⋅−+−⋅−+−⋅−,则()()()()21223311231233M p e e p e e p e e p e e e e e e =−+⋅++⋅++⋅+ ⋅+⋅+⋅()()212312323132e e e e e p e e e p e ⋅+⋅+=−++⋅+⋅()()22123123123231333e e e e e e e e e e p e e ++ ++=−−+⋅+⋅+⋅()()23222212312311231231232333e e e e e e e e e e e e e e e e e e p ⋅+⋅++++ ++=−−+ ⋅⋅+⋅+⋅21213132323133e e e e e e e e e p ++=−+− ⋅+⋅+⋅设(,)OP p x y ==,120e e ⋅= ,不妨设11(1,0)OE e == ,22(0,1)OE e == , 33(cos ,sin )OE e θθ== ,[0,2)θπ∈,1233e e e OG ++=,即G 为123E E E 的重心. 则221233e e e p PG ++−=, 点P 位于圆上或圆内,故当P 在射线GO 与圆周交点时,2PG 最大,即()21OG +最大时.()22123312(1cos ,1sin )sin cos 311311333e e e e M e OG e θθθθ⋅+ +++∴≤++−=++− +⋅ ⋅2sin cos 3113θθ+ =+−由sin cos θθ≤+≤23115M ≤−=+. 当且仅当4πθ=时,M取到最大值5+.故答案为:5+.【点睛】向量式的最值问题求解,要重视三个方面的分析:一是其本质上与函数的最值求解一致,变形时要搞清参变向量,从而把握变形方向;二是要重视向量本身数形兼具的特点,利用几何意义求解最值;三是坐标应用,向量坐标化将问题转化为函数最值问题求解.四、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程或演算步骤.15. 如图,在△OAB 中,G 为中线OM 上一点,且2OG GM =,过点G 的直线与边OA ,OB 分别交于点P ,Q .(1)用向量OA ,OB 表示OG;(2)设向量43OA OP = ,OB nOQ =,求n 的值.【答案】(1)1133OA OB +;(2)53【解析】【分析】(1)根据23OG OM = ,结合向量线性运算,再用OA ,OB表达OM 即可;(2)用OP ,OQ 表达OG ,结合,,P G Q 三点共线即可求得n .【小问1详解】∵G 中线OM 上一点,且2OG GM =,.的为∴()22213333OG OM OA AM OA AB ==×+=+()21113333OA OB OAOA OB =+×−=+; 小问2详解】∵43OA OP = ,OB nOQ = ,1133OG OA OB =+, ∴111443333393n n OG OA OB OP OQ OP OQ =+=×+=+,又G ,P ,Q 三点共线, ∴4193n +=,解得53n =,故n 的值为53. 16. 在平面直角坐标系中,O 为坐标原点,点A ,B ,C 满足1233OC OA OB =+.(1)求ACCB的值; (2)已知(1,cos )A x ,(1cos ,cos )B x x +,[,0]3x π∈−,若函数2()(2)3f x OA OC m AB =⋅−+最大值为3,求实数m 的值.【答案】(1)2;(2)12−. 【解析】【分析】(1) 化简得2BC CA =,即得AC CB的值;(2)先求出2()cos 2cos 1f x x m x =−+,再换元利用二次函数的图像和性质求实数m 的值.【详解】(1)由题意知,32OC OA OB =+ ,即2()OC OB OA OC −=−,所以2BC CA =,即2AC CB=. (2)易知(1,cos )OA x = ,(1cos ,cos )OB x x =+ ,(cos ,0)AB x =,则2(1cos ,cos )3OCx x =+ ,cos AB x = , 所以2()cos 2cos 1f x x m x =−+, 令cos t x =,则2()21g t t mt =−+,1[,1]2t ∈,其对称轴方程是t m =. 当34m ≤时,()g t 的最大值为(1)1213g m =−+=,解得12m =−;【的当34m >时,()g t 的最大值为11()1324g m =−+=,解得74m =−(舍去). 综上可知,实数m 的值为12−.【点睛】本题主要考查向量的线性运算和平面向量的数量积,考查二次函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.17. 如图,在等腰梯形ABCD 中,//AD BC ,2AD =,60ABC ∠= ,E 是AD 的中点.(1)记BD m = ,BA n =且228m n −=,求m ,n 值;(2)记()12BC AD λλ=<< ,F 是线段CD 上一动点,且CD CF λ=,求22BE BF λ⋅− 的取值范围.【答案】(1)2n =,m =(2)15,2 −【解析】【分析】(1)由BD BA AD =+,将两边平方,结合数量积的运算律及定义得到方程,解得即可; (2)建立平面直角坐标系,利用坐标法表示出数量积,再根据对勾函数的性质计算可得. 【小问1详解】依题意BD BA AD =+,所以()22222BD BA ADBA BA AD AD =+=+⋅+,即2222cos 60BD BA BA AD AD =+⋅°+ ,即2224m n n =++,又228m n −=,解得2n =,m =(负值舍去); 【小问2详解】过点A 作AO BC ⊥,如图建立平面直角坐标系,因为()12BC AD λλ=<<,2AD =, 所以()1,0B λ−,()1,0C λ+,)()1A λ−,)()1E λ−,)()1D λ−,所以)()1BEλλ=−,)()11CD λλ=−−,()2,0BC λ=,因为CD CF λ=,所以1CF CD λ=所以()21122,0BF BC CF λλλλλλ −−+=+=+= ,所以2221222BE BF λλλλ⋅−+=−−()2313125λλλλλ−=−+=+−,令()32f x x x=+,()1,2x ∈, 设()12,1,2x x ∈且12x x <,则()()()121212121212233322x x f x f x x x x x x x x x −−=+−+=− ,当12,x x ∈ 时,12312x x <<,则12230x x −<,又120x x −<, 所以()()120f x f x −>;当12,2x x ∈时,12342x x <<,则12230x x −>,又120x x −<, 所以()()120f x f x −<;所以()f x在上单调递减,在上单调递增, 又()15f =,()1122f =,f =1152<<, 所以()112f x∈,所以31255,2λλ+−∈−,即22BE BF λ⋅−的取值范围为15,2 .18. 如图,A 、B 是单位圆上的相异两定点(O 为圆心),且AOB θ∠=(θ为锐角).点C 为单位圆上的动点,线段AC 交线段OB 于点M .(1)求OA AB ⋅(结果用θ表示); (2)若60θ=①求CA CB ⋅的取值范围:②设(01)OM tOB t <<= ,记()COMBMA S f t S = ,求函数()f t 的值域. 【答案】(1)22sin 2OA AB θ⋅=− (2)①[]0,3;②()0,2 【解析】【分析】(1)根据数量积的定义以及几何意义结合图形分析运算; (2)①根据数量积结合三角函数运算求解;②结合图形分析可得⋅=⋅COMBMAS OM CMS MB AM,根据向量的相关知识运算整理,再结合函数单调性与最值,运算求解.【小问1详解】2()1cos 12sin 2OA AB OA OB OA OA OB θθ⋅=⋅−=⋅−=−=−【小问2详解】①()()2⋅=−⋅−=⋅−⋅−⋅+ CA CB OA OC OB OC OA OB OA OC OC OB OC .设BOC α∠=.由题意得2π0,3α∈,则2πc 1,=os cos ,3,12αα +⋅= ⋅⋅==OA OB OA OC OC OB OC所以3π31cos cos cos cos 2322ααααα⋅=−+−=−+−CA CB33313πcos sin .222226ααααα=−+=−−=+ 因为2π0,3α∈,则ππ5π,666α +∈所以πcos 6α+∈ ,则[]0,3CA CB ⋅∈ ;(2)设(01)AM AC λλ=<<,则()1OM OA AM OA AC OA OC tOB λλλ=+=+=−+=, 所以1t OC OB OA λλλ−=− ,由1OC = 得11t OB OA λλλ−−=, 即221121OA t t OB λλλλλλ−−+−×××⋅=,整理得212t t t λ−+=−, 所以22111CM t AM t t λλ−−==−+, 所以22221111COM BMA OM CM S t t t tS t t t t t MB AM⋅−+==×=−−+−+⋅. 即()()2222221(01),1111t t t t t f t t f t t t t t t t ++−=<<==+−+−+−+.()22421(11),11,311122aat a a g a a a a −=−<<=+=++++ −+令()12,1,1∀∈−a a ,令12<a a()()()()()()1212121222221212434411=,3333−− −=+−+ ++++a a a a a a g a g a a a a a ∵()()22121212330,0,30++>−<−>a a a a a a ,则()()120g a g a −<,即()()12g a g a <∴()2413=++ag a a 在()1,1−上单调递增,则()()0,2∈g a 所以函数()22(01)1t tf t t t t +=<<−+值域是()0,2.19. 如图所示,ABC 为等边三角形,AB =I 为ABC 的内心,点P 在以I 为圆心,1为半径的圆上运动.(1)求出()()()222PA PB PC ++ 的值.(2)求PA PB ⋅的范围.(3)若()0,,xPA yPB z C x y z P ∈++=R ,当x y最大时,求zx y +的值.【答案】(1)51 (2)[]11,3−− (3)35【解析】【分析】(1)以I 为原点,IA 为y 轴建立平面直角坐标系如图所示,依题意点P 在圆221x y +=上,设()cos ,sin P θθ,即可表示PA ,PB,PC ,根据平面向量模的坐标表示及同角三角函数的基本关系计算可得;(2)由(1)知π4sin 73PA PB θ⋅=−−−,根据正弦函数的性质计算可得;(3)根据平面向量线性运算的坐标表示得到cos 422sin x y z x y z θθ = −− = ++,再根据同角三角函数的基本关系,得到2225556660x y z xy xz yz ++−−−=,又0y ≠,两边同除2y ,令x m y =,zn y=,将原式化为()225665650n m n m m −++−+=,再根据0∆≥求出m 的取值范围,即可得解;【小问1详解】以I 为原点,IA 为y 轴建立平面直角坐标系如图所示. 由正弦定理得ABC 外接圆半径142R ==,则()0,4A,进而可得()2B −−,()2C −.因为点P 在以I 为圆心,1为半径的圆上运动,故设()cos ,sin P θθ,则()cos ,4sin PA θθ=−−,)cos ,2sin PB θθ=−−−,()cos ,2sin PCθθ=−−− ,所以()()()222PA PB PC ++()()()()()222222cos 4sin cos 2sin cos 2sin θθθθθθ+−++++++()223cos sin 4851θθ++=. 【小问2详解】由(1)知π2sin 74sin 73PA PB θθθ⋅−−=−−−,又因为[]πsin 1,13θ −∈−,所以π114sin 733θ−≤−−−≤−, 即[]11,3PA PB ⋅∈−−.【小问3详解】因为0xPA yPB zPC =++)()()()cos ,422sin z y x y z x y z x y z θθ−−++−−−++,所以cos 422sin x y z x y z θθ =−− = ++, 代入22sin cos 1θθ+=整理得2225556660x y z xy xz yz ++−−−=,(),,x y z ∈R , 显然0y ≠,两边同时除以2y ,得222225556660x z x xz zy y y y y++−−−=, 令x m y =,zn y=,则225556660m n m mn n ++−−−=, 即()225665650n m n m m −++−+=, 所以()()22Δ66455650m m m =+−××−+≥,即2310m m −+≤,m ≤≤,所以x y (即m此时Δ0=,所以335m n +=, 所以335m z y +=,x my =,所以33355m yz x ymy y +==++. 【点睛】关键点点睛:本题解答的关键是建立平面直角坐标系,将问题转化为三角函数及不等式问题.。
一、选择题1.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2=2.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =3.已知()()514,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩是(),-∞+∞上的减函数,那么a 的取值范围是( ).A .()0,1B .10,5⎛⎫ ⎪⎝⎭C .11,95⎡⎫⎪⎢⎣⎭D .1,19⎡⎫⎪⎢⎣⎭4.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<5.已知正实数a ,b ,c 满足:21()log 2a a =,21()log 3b b =,2log c c 1=,则( ) A .a b c <<B .c b a <<C .b c a <<D .c a b <<6.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( ) A .b a c << B .b c a << C .a b c << D .c b a <<7.设52a -=,5log 2b =,8log 5c =,则( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<8.已知2log 0.8a =,0.7log 0.6b =,0.60.7c =,则a ,b ,c 的大小关系是( ) A .a b c << B .b a c <<C .a c b <<D .b c a <<9.函数y =)A .(41)--,B .(41)-,C .(11)-,D .(11]-, 10.已知函数()a f x x 满足(2)4f =,则函数()log (1)a g x x =+的图象大致为( )A .B .C .D .11.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ). A .b a c <<B .a b c <<C .a b c >>D .a c b <<12.对数函数log (0a y x a =>且1)a ≠与二次函数()21y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .二、填空题13.当x >0时,212()log (32)f x x x -=-+,则y =f (x )在(,0)-∞内的单调增区间为_____. 14.已知函数()212log y x ax a =-+在()3,+∞上是减函数,则a 的取值范围是______. 15.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 16.已知11225x x-+=22165x x x x --+-=+-______.17.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.18.有以下结论:①将函数xy e =的图象向右平移1个单位得到1x y e -=的图象; ②函数()x f x e =与()g x lnx =的图象关于直线y =x 对称③对于函数()xf x a =(a >0,且1a ≠),一定有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭④函数()22log (2)f x x x =-+的图象恒在x 轴上方.其中正确结论的序号为_________.19.已知函数2()log x f x =,实数,a b 满足0a b <<,且()()f a f b =,若()f x 在2,a b ⎡⎤⎣⎦上的最大值为2,则1b a+=________. 20.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ .三、解答题21.已知函数()13xf x ⎛⎫= ⎪⎝⎭,函数()13log g x x =.(1)若函数()22y g mx mx =++的定义域为R ,求实数m 的取值范围;(2)是否存在非负实数,m n ,使得函数()2y g f x ⎡⎤=⎣⎦的定义域为[],m n ,值域为[]2,2m n ,若存在,求出,m n 的值;若不存在,则说明理由;(3)当[]1,1x ∈-时,求函数()()223y f x af x =-+⎡⎤⎣⎦的最小值()h a . 22.已知函数()ln(32)f x x =+,()ln(32)g x x =-.设函数()()()F x f x g x =-. (1)求函数()F x 的定义域; (2)判断()F x 奇偶性并证明; (3)若()0F x >成立,求x 的取值范围. 23.已知函数()()()lg 2lg 2f x x x =+--.(1)求()f x 的定义域; (2)判断()f x 的奇偶性并予以证明; (3)求不等式()1f x >的解集.24.已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,且1)a ≠. (1)求函数()()f x g x -的定义域;(2)判断函数()()f x g x -的奇偶性,并说明理由;(3)当2a =时,判断函数()()f x g x -的单调性,并给出证明. 25.已知:2256x ≤且21log 2x ≥ (1)求x 的取值范围;(2)求函数f (x)=2log 2x ⎛⎫⎪⎝⎭⎝⎭的最大值和最小值. 26.设函数()log (1)a f x ax =-,其中01a << (1)证明()f x 是1(,)a-∞上的增函数; (2)解不等式()1f x >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 2.A解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.3.C解析:C 【分析】由51001514log 1a a a a a -<⎧⎪<<⎨⎪-+≥⎩解得结果即可得解. 【详解】 因为()()514,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩是(),-∞+∞上的减函数,所以51001514log 1a a a a a -<⎧⎪<<⎨⎪-+≥⎩,解得1195a ≤<.故选:C 【点睛】易错点点睛:容易忽视两段交界点处函数值的大小关系.4.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.5.B解析:B 【分析】a 、b 、c 的值可以理解为图象交点的横坐标,则根据图象可判断a ,b ,c 大小关系.【详解】因为21()log 2a a =,21()log 3b b =,2log c c 1=, 所以a 、b 、c 为2log y x =与1()2x y =,1()3xy =,y x =-的交点的横坐标,如图所示:由图象知: c b a <<. 故选:B 【点睛】本题主要考查对数函数,指数函数的图象性质以及函数零点问题,还考查了数形结合的思想方法,属中挡题.6.C解析:C 【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系.【详解】1133log 2log 10a =<=,310110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<. 故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.7.A解析:A 【分析】由551112,2332log -<<<,8152log >,即可得出a ,b ,c 的大小关系. 【详解】52112243--<=<,11325551152532log log log =<<=,12881582log log >=, a b c ∴<<.故选:A 【点睛】本题主要考查了指数函数、对数函数的单调性,对数的运算性质,还考查了转化求解问题的能力,属于中档题.8.C解析:C 【解析】因为22log 0.8log 10a =<=,0.70.7log 0.6log 0.71b =>=,0.6000.70.71c <=<=,所以a c b <<,故选C.9.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C10.C解析:C 【分析】由已知求出a ,得()g x 表达式,化简函数式后根据定义域和单调性可得正确选项. 【详解】由恬24a=,2a =,222log (1),10()log (1)log (1),0x x g x x x x -+-<<⎧=+=⎨+≥⎩,函数定义域是(1,)-+∞,在(1,0)-上递减,在(0,)+∞上递增. 故选:C . 【点睛】本题考查对数型复合函数的图象问题,解题方法是化简函数后,由定义域,单调性等判断.11.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>> 所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.12.A解析:A 【分析】由对数函数,对a 分类,01a <<和1a >,在对数函数图象确定的情况下,研究二次函数的图象是否相符.方法是排除法. 【详解】由题意,若01a <<,则log a y x =在()0+∞,上单调递减, 又由函数()21y a x x =--开口向下,其图象的对称轴()121x a =-在y 轴左侧,排除C ,D.若1a >,则log a y x =在()0+∞,上是增函数, 函数()21y a x x =--图象开口向上,且对称轴()121x a =-在y 轴右侧,因此B 项不正确,只有选项A 满足. 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可按照其中一个函数的图象分类确定另一个函数图象,排除错误选项即可得.二、填空题13.【分析】由已知函数解析式求出时的函数解析式由真数大于0得到的范围再由复合函数的单调性求解【详解】令则当时且或二次函数在上为减函数在上为增函数而对数式在上为减函数在内的单调增区间为故答案为:【点睛】本 解析:(,2)-∞-【分析】由已知函数解析式求出0x <时的函数解析式,由真数大于0得到x 的范围,再由复合函数的单调性求解. 【详解】令0x <,则0x ->,当0x >时,212()log (32)f x x x -=-+, 221122()[()][()3()2](32)(0f x f x log x x log x x x ∴=--=---+=++<且2320)x x ++>.2x ∴<-或10x -<<.二次函数232t x x =++在(,2)-∞-上为减函数,在(1,0)-上为增函数, 而对数式12y log t =在(0,)t ∈+∞上为减函数,()y f x ∴=在(,0)-∞内的单调增区间为(,2)-∞-.故答案为:(,2)-∞-. 【点睛】本题考查函数解析式的求解及常用方法,考查复合函数的单调性,对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.14.【分析】函数为复合函数且原函数为减函数根据题意需要满足一元二次函数在上是增函数且在上恒大于或等于零然后求解关于a 的不等式即可得到结果【详解】令则原函数化为此函数为定义域内的减函数要使函数在上是减函数解析:9,2⎛⎤-∞ ⎥⎝⎦【分析】函数为复合函数,且原函数为减函数,根据题意需要满足一元二次函数2x ax a -+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,然后求解关于a 的不等式即可得到结果. 【详解】令2t x ax a =-+,则原函数化为12()log gt t =,此函数为定义域内的减函数,要使函数()212log y x ax a =-+在()3,+∞上是减函数,则函数2t x ax a =-+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,即有232330aa a ⎧≤⎪⎨⎪-+≥⎩,解得92a ≤. 故答案为:9,2⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了复合函数的单调性,需要掌握复合函数的同增异减,本题还要注意对数函数的定义域是求解的前提,这里容易漏掉,需要掌握此类题目的解题方法.15.【分析】画出分段函数的图像根据图像结合解析式进行求解【详解】根据分段函数的解析式以及函数为奇函数作图如下:由图容易知因为在区间上关于对称且在区间上关于对称故其与直线的所有交点的横坐标之和为0故所有根 解析:21-【分析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =. 21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.16.【分析】对平方可得再平方可得即可求解【详解】两边同时平方得:所以对两边同时平方得:则故答案为:【点睛】此题考查指数式的化简求值进行整体变形处理利用平方关系得出等量关系 解析:12- 【分析】 对1122x x -+=13x x -+=,再平方可得227x x -+=,即可求解.【详解】1122x x -+=125x x -++=,所以13x x -+=对13x x -+=两边同时平方得:2229x x -++=,227x x -+= 则22167615352x x x x --+--==-+--. 故答案为:12-【点睛】此题考查指数式的化简求值,进行整体变形处理,利用平方关系得出等量关系. 17.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可.【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立.故实数k 的取值范围是[)0,4.故答案为:[)0,4【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.18.②③④【分析】①根据图象的平移规律直接判断选项;②根据指对函数的对称性直接判断;③根据指数函数的图象特点判断选项;④先求的范围再和0比较大小【详解】①根据平移规律可知的图象向右平移1个单位得到的图象解析:②③④【分析】①根据图象的平移规律,直接判断选项;②根据指对函数的对称性,直接判断;③根据指数函数的图象特点,判断选项;④先求22x x -+的范围,再和0比较大小.【详解】①根据平移规律可知x y e =的图象向右平移1个单位得到1x y e -=的图象,所以①不正确;②根据两个函数的对称性可知函数()x f x e =与()g x lnx =的图象关于直线y =x 对称,正确;③如下图,设1a >,122x x f +⎛⎫⎪⎝⎭对应的是曲线上横坐标为122x x +的点C 的纵坐标,()()122f x f x +是线段AB 的中点D 的纵坐标,由图象可知()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,同理,当01a <<时,结论一样,故③正确;④2217721244x x x ⎛⎫-+=-+≥> ⎪⎝⎭ 根据函数的单调性可知()222log 2log 10x x -+>=,所以函数()22log (2)f x x x =-+的图象恒在x 轴上方,故④正确.故答案为:②③④【点睛】思路点睛:1.图象平移规律是“左+右-”,相对于自变量x 来说,2.本题不易判断的就是③,首先理解122x x f +⎛⎫ ⎪⎝⎭和()()122f x f x +的意义,再结合图象判断正误. 19.4【分析】先画出函数图像并判断再根据范围和函数单调性判断时取最大值最后计算得到答案【详解】如图所示:根据函数的图象得所以结合函数图象易知当时在上取得最大值所以又所以再结合可得所以故答案为:4【点睛】 解析:4【分析】先画出函数图像并判断01a b <<<,再根据范围和函数单调性判断2x a =时取最大值,最后计算得到答案.【详解】如图所示:根据函数2()log x f x =的图象得01a b <<<,所以201a a <<<.结合函数图象,易知当2=x a 时()f x 在2,a b ⎡⎤⎣⎦上取得最大值,所以()222log 2f a a ==又01a <<,所以12a =, 再结合()()f a fb =,可得2b =,所以2241b a+=+=. 故答案为:4【点睛】 关键点睛:解题关键在于,作出对数函数2()log x f x =的图象,得到01a b <<<,进而求解,属于中档题20.【解析】由于对数函数y=lnx 在区间(0+∞)上的增长速度慢于一次函数y=x 所以函数y =x2比函数y =xlnx 在区间(0+∞)上增长较快填解析:2y x【解析】由于对数函数y=lnx 在区间(0,+∞)上的增长速度慢于一次函数y=x ,所以函数y =x 2比函数y =x ln x 在区间(0,+∞)上增长较快,填2y x =. 三、解答题21.(1)08m ≤<;(2)存在,0,2m n ==;(3)答案不唯一,见解析.【分析】(1)根据函数定义域为R ,转化为220mx mx ++>恒成立,分类讨论求解;(2)根据二次函数单调性可得2222m m n n⎧=⎨=⎩,求解即可; (3)换元,令11,333x t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,分类讨论求二次函数的最小值即可. 【详解】(1)∵定义域为R ,即220mx mx ++>恒成立∴0m =, 或00m >⎧⎨∆<⎩得08m << 综上得08m ≤<(2)2y x 的定义域为[],m n ,值域为[]2,2m n∴222(0)2m m m n n n⎧=≤<⎨=⎩ ,解得0,2m n ==. (3)令11,333x t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,则223y t at =-+ 若13a ≤,则228()39a h a =-+; 若133a <<,则2()3h a a =-; 若3a ≥,则()612h a a =-+;【点睛】关键点点睛:涉及指数型复合函数的单调性最值问题,多采用换元法,能够使问题简捷,突出问题本质,大多转化为二次函数,利用二次函数的图象和性质,体现转化思想,属于中档题.22.(1)33,22⎛⎫-⎪⎝⎭;(2)奇函数,证明见解析;(3)302x << 【分析】(1)由320320x x +>⎧⎨->⎩可解得结果; (2)()F x 是奇函数,根据奇函数的定义可证结论正确;(3)根据对数函数的单调性可解得结果.【详解】(1)由320320x x +>⎧⎨->⎩,解得3322x -<<,所以函数()F x 的定义域为33(,)22-. (2)()F x 是奇函数. 证明如下: x ∀∈33(,)22-,都有x -∈33(,)22-,因为 ()ln(32)ln(32)()F x x x F x -=--+=-, ∴()F x 是奇函数.(3)由()0F x >可得()()0f x g x ->,得ln(32)ln(32)0x x +-->,即ln(32)ln(32)x x +>-,由对数函数的单调性得32320x x ,解得302x <<. 【点睛】易错点点睛:利用对数函数的单调性解对数不等式时,容易忽视函数的定义域. 23.(1)()2,2-.(2)见解析;(3)18,211⎛⎫⎪⎝⎭. 【详解】试题分析:(1)根据对数函数的定义,列出关于自变量x 的不等式组,求出()f x 的定义域;(2)由函数奇偶性的定义,判定()f x 在定义域上的奇偶性;(3)化简()f x ,根据对数函数的单调性以及定义域,求出不等式()f x >1的解集.试题(1)要使函数()f x 有意义.则20{20x x +>->, 解得22x -<<.故所求函数()f x 的定义域为()2,2-.(2)由(1)知()f x 的定义域为()2,2-,设()2,2x ∀∈-,则()2,2x -∈-. 且()()()()lg 2lg 2f x x x f x -=-+-+=-, 故()f x 为奇函数.(3)因为()f x 在定义域()2,2-内是增函数, 因为()1f x >,所以2102x x+>-,解得1811x >. 所以不等式()1f x >的解集是18,211⎛⎫⎪⎝⎭. 24.(1)(1,1)-;(2)是奇函数,理由见解析;(3)单调递增,证明见解析.【分析】(1)由对数有意义的条件列出不等式组1010x x +>⎧⎨->⎩,解之即可; (2)由(1)知,函数()()f x g x -的定义域关于原点对称,再根据函数奇偶性的概念进行判断即可;(3)当2a =时,函数()()f x g x -单调递增.根据用定义证明函数单调性的“五步法”:任取、作差、变形、定号、下结论,即可得证.【详解】(1)10x +>,10x ->,11x ∴-<<,∴函数()()f x g x -的定义域为(1,1)-.(2)由(1)知,函数()()f x g x -的定义域关于原点对称,()()log (1)log (1)log (1)log (1)[()()]a a a a f x g x x x x x f x g x ---=-+-+=--+=--,∴函数()()f x g x -是奇函数.(3)当2a =时,函数()()f x g x -单调递增.理由如下:当(1,1)x ∈-时,1()()log 1ax f x g x x+-=-, 设1211x x -<<<, 则2121211222112121211211111[()()][()()]log log log (?)log 11111aa a a x x x x x x x x f x g x f x g x x x x x x x x x +++-+-----=-==---+-+-,1211x x -<<<,2121x x x x ∴->-+,21122112110x x x x x x x x ∴+-->-+->, ∴21122112111x x x x x x x x +-->-+-,即211221121log 01a x x x x x x x x +-->-+-, 2211()()()()f x g x f x g x ∴->-,故当2a =时,函数()()f x g x -单调递增.【点睛】本题考查函数的单调性与奇偶性的判断、对数的运算法则,熟练掌握用定义证明函数单调性和奇偶性的方法是解题的关键,考查学生的逻辑推理能力和运算求解能力,属于中档题. 25.(18x ;(2)min max 1(),()24f x f x =-=【分析】(1)利用指数与对数不等式求出x 的范围,求出交集即可.(2)通过x 的范围求出log 2x 的范围,化简函数表达式,通过二次函数的最值求出函数的最值即可.【详解】(1)由2x ≤256得x≤8,21log 2x >得2,28x x ∴. (2)由(18x 得21log 32x , f (x)=2log 2x ⎛⎫ ⎪⎝⎭⎝⎭=(log 2x ﹣log22)()2 =(log 2x ﹣1)(log 2x ﹣2)=2231log 24x ⎛⎫-- ⎪⎝⎭, 当log 2x =32,f (x )min =﹣14; 当log 2x =3,f (x )max =2.【点睛】 本题考查指数函数、对数函数的单调性,考查换元,配方法,考查学生的计算能力,属于中档题.26.(1)见解析;(2)11{|}a x x a a-<< 【分析】(1)根据函数单调性的定义及对数函数的性质,即可证出结果;(2)根据函数()f x 的单调性,可将不等式()1f x >转化为一元一次不等式,即可得到原不等式的解集.【详解】(1)由10ax ->,01a <<得1x a<,所以()f x 的定义域为1(,)a -∞, 设1x ,2x 为区间1(,)a -∞的任意两个值,且211x x a<<,则 211ax ax ->->-,所以21110ax ax ->->,又01a <<,所以21log (1)log (1)a a ax ax -<-,即21()()f x f x <, 所以()f x 是1(,)a -∞上的增函数.(2)由()1f x >得log (1)1log a a ax a ->=,又01a <<, 所以01ax a <-<,所以11ax a -<-<-,所以11a x a a -<<, 所以不等式()1f x >的解集为11{|}a x x a a -<<. 【点睛】本题主要考查对数型复合函数单调性的证明及对数不等式的解法,属于中档题.。
一、选择题1.若lg 2a =,lg3b =,则5log 12等于( )A .21a b a++B .21a b a+C .21a b aD .21a b a-2.若函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a的取值范围为( ) A .[]3,2--B .[)3,2--C .(],2-∞-D .(),2-∞-3.已知()f x ,()g x 分别为定义在R 上的偶函数和奇函数,且满足()()2xf xg x +=,若对于任意的[]1,2x ∈,都有()()20f x a g x a -⋅-≤⎡⎤⎡⎤⎣⎦⎣⎦恒成立,则实数a 的取值范围是( ) A .317,44⎡⎤⎢⎥⎣⎦B .155,82⎡⎤⎢⎥⎣⎦ C .15,28⎡⎤⎢⎥⎣⎦D .172,4⎡⎤⎢⎥⎣⎦4.设log a m 和log b m 是方程2420x x -+=的两个根,则log a bm 的值为( )ABC.D.±5.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<6.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .127.若函数()()20.3log 54f x x x=+-在区间()1,1a a -+上单调递减,且lg 0.3=b ,0.32c =,则A .b a c <<B .b c a <<C .a b c <<D .c b a <<8.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,212(log )(log )2(1)f a f f a ≤+,则实数a 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .102⎛⎤ ⎥⎝⎦,C .[]1,2D .(]0,2 9.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 10.函数213()log 4f x x =-的单调减区间是( ) A .(]()2,02,-+∞ B .(]2,0-和(2,)+∞ C .(),20,2[)-∞-D .(,2)-∞-和[0,2)11.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭12.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<. 14.若3log 14a>(0a >且1a ≠),则实数a 的取值范围为________ 15.72log 2338log2lg 5lg 47-+++=______.16.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.17.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ .18.已知3(1)4,1()1,1aa x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,那么a 的取值范围是__________.19.已知2336m n ==,则11m n+=______.20.设函数()122,12log ,1x x f x x x +⎧≤=⎨->⎩,若()()04f f x =则0x ______.三、解答题21.计算下列各式的值: (1)3224031168()281π-⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭; (2)()2log 1483log 3log 3log 22+⨯+.22.计算: (1)1ln 224()9e-+; (2)()223lg 2lg5lg 20log 3log 4+⋅+⋅. 23.(1)求函数()22log 32y x x =-+的定义域;(2)求函数221y x x =-+-,[]2,2x ∈-的值域;(3)求函数223y x x =--的单调递增区间.24.(1)求值:)()141231()102208500---+⨯-(2)已知14,x x -+=3322x x -+.25.若函数()()()331xf x k a b a =++->是指数函数(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->- 26.已知函数11()ln 12f x x x ⎛⎫=+⎪-⎝⎭. (1)先求1(2)2f f ⎛⎫- ⎪⎝⎭的值,再求[]1111(11)(12)(29)(66)11122966f f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++-+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦的值; (2)求()f x 的定义域,并证明()f x 在定义域上恒正.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】利用对数的换底公式可将5log 12用a 、b 表示. 【详解】根据对数的换底公式得,5lg12lg3lg 4lg32lg 22log 12lg5lg10lg 21lg 21a ba+++====---, 故选:C . 【点睛】关键点点睛:该题考查的是有关对数的运算,解答本题的关键是熟记换底公式以及对数的运算性质,利用运算性质化简、运算,其中lg5lg10lg 2=-是题目的一个难点和易错点.2.A解析:A 【分析】判断复合函数的单调性,首先要分清楚内外层函数,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求即可. 【详解】由题意知,()f x 在区间(),1-∞上是递减函数, 由()()23log 5f x x ax a =+++可知,此复合函数外层函数为:()3log f x x =,在定义域上为增函数, 内层函数为()25h x x ax a =+++,要使()f x 在区间(),1-∞上是递减函数, 根据复合函数“同增异减”原则,内层函数为()h x 在区间(),1-∞上必须是递减函数, 同时须保证最大值()10h ≥,所以()1210a h ⎧-≥⎪⎨⎪≥⎩,解得32a --≤≤. 故选:A. 【点睛】易错点睛:判断复合函数的单调性,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求.3.B解析:B 【分析】利用奇偶性求出()222x x f x -+=,()222x x g x --=,讨论()22x xh x -=+和()g x 的单调性求最值可得()()h x g x >恒成立,则不等式恒成立等价于()()max min g x a h x ≤≤. 【详解】()()2x f x g x +=,()()2x f x g x --+-=∴,()f x 是偶函数,()g x 分是奇函数,()()2x f x g x -=∴-,可得()222x xf x -+=,()222x xg x --=,则不等式为()()1222202x xx x a a --⎡⎤+-⋅--≤⎢⎥⎣⎦,令()22xxh x -=+,令2x t =,由对勾函数的性质可得1y t t=+在[]2,4单调递增, 则()22xxh x -=+在[]1,2单调递增,则()()()()min max 5171,224h x h h x h ====, 对于()222x x g x --=,因为2xy =单调递增,2x y -=-单调递增,()g x ∴在[]1,2单调递增,()()()()min max 3151,248g x g g x g ∴====, ()()h x g x ∴>恒成立,则不等式()()0h x a g x a --≤⎡⎤⎡⎤⎣⎦⎣⎦,解得()()g x a h x ≤≤,()()max min g x a h x ∴≤≤,即15582a ≤≤. 故选:B. 【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是利用奇偶性求出函数解析式,根据函数的单调性求出最值将不等式等价为()()max min g x a h x ≤≤即可求解.4.D解析:D 【分析】利用换底公式先求解出+log log m m a b 、log log m m a b ⋅的结果,然后利用换底公式将log a bm 变形为1log log m m a b-,根据+log log m m a b 、log log m m a b ⋅的结果求解出log log m m a b -的结果,则log a bm 的值可求.【详解】因为log log 4log log 2a b a b m m m m +=⎧⎨⋅=⎩,所以114log log 112log log m m m m a b a b⎧+=⎪⎪⎨⎪⋅=⎪⎩ ,所以log +log 4log log 1log log 2m m m mm m a b a b a b ⎧=⎪⋅⎪⎨⎪⋅=⎪⎩,所以log +log 21log log 2m m m m a b a b =⎧⎪⎨⋅=⎪⎩, 又因为11log log log log a m m bmm aa b b==-,且()()22log log =log log lo +42g log m m m m m m a b a b b a -⋅=-,所以log log m m a b -=所以log 2a bm ==±,故选:D. 【点睛】关键点点睛:解答本题的关键是在于换底公式的运用,将log a bm 变形为1log log m m a b-,再根据方程根之间的关系求解出结果.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4x f f x -=,所以()341mf m m m =+=⇒= 则()31x f x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx=时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.7.A解析:A 【分析】求出原函数的定义域,再求出内函数二次函数的增区间,由题意列关于a 的不等式组,求得a 的范围,结合b=1g0.3<0,c=20.3>1得答案. 【详解】由5+4x-x 2>0,可得-1<x <5, 函数t=5+4x-x 2的增区间为(-1,2),要使f(x)=log 0.3(5+4x−x 2)在区间(a-1,a+1)上单调递减,则1112a a -≥-⎧⎨+≤⎩,即0≤a≤1. 而b=1g0.3<0,c=20.3>1, ∴b <a <c . 故选A . 【点睛】本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.8.A解析:A根据条件判断()f x 的奇偶性和单调性,把不等式212(log )(log )2(1)f a f f a ≤+转化为2log 1a ≤进行求解即可.【详解】当0x <时,0x ->,则2()2()f x x x f x -=-=, 当0x >时,0x -<,则2()2()-=+=f x x x f x , ∴函数()f x 为偶函数,∴222122(log )(log )(log )(log )2(log )f a f a f a f a f a +=+-=.又当0x ≥时,函数()f x 单调递增,∴22(log )2(1)f a f ≤可转化为2((log 1))f a f ≤,则2log 1a ≤, ∴21log 1a -≤≤,解得122a ≤≤. 故选:A. 【点睛】本题考查了分段函数的性质,考查函数的单调性与奇偶性,考查学生的推理能力与计算求解能力,属于中档题.9.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.10.B解析:B先分析函数的定义域,然后根据定义域以及复合函数的单调性判断方法确定出()f x 的单调递减区间. 【详解】因为240x ->,所以定义域为()()(),22,22,-∞--+∞,令()24u x x =-,13log y u =在()0,∞+上单调递减, 当(),2x ∈-∞-时,()u x 单调递减,所以()f x 单调递增; 当(]2,0x ∈-时,()u x 单调递增,所以()f x 单调递减; 当()0,2x ∈时,()u x 单调递减,所以()f x 单调递增; 当()2,x ∈+∞时,()u x 单调递增,所以()f x 单调递减; 综上可知:()f x 的单调递减区间为(]2,0-和()2,+∞. 故选:B. 【点睛】本题考查对数型复合函数的单调区间的求解,难度一般.分析复合函数的单调性,注意利用判断的口诀“同增异减”,当内外层函数单调性相同时,整个函数为增函数,当内外层函数单调性相反时,整个函数为减函数.11.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5, 由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.12.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4xf x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4xf x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确; ④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--,又1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确.故答案为:①③④ 【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1); (2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0), 解题时注意整体思想的应用.14.【分析】讨论和两种情况利用函数单调性解不等式得到答案【详解】当时满足不成立;当时综上所述:故答案为:【点睛】本题考查了利用函数单调性解不等式分类讨论是解题的关键解析:3,14⎛⎫⎪⎝⎭【分析】讨论1a >和01a <<两种情况,利用函数单调性解不等式得到答案. 【详解】3log 1log 4aa a >=,当1a >时,满足34a >,不成立;当01a <<时,34a >. 综上所述:3,14a ⎛⎫∈ ⎪⎝⎭. 故答案为:3,14⎛⎫ ⎪⎝⎭. 【点睛】本题考查了利用函数单调性解不等式,分类讨论是解题的关键.15.【分析】根据指数幂运算法则和对数运算法则化简可得【详解】故答案为:【点睛】此题考查指数对数的综合运算关键在于熟练掌握运算法则和相关公式准确化简求值解析:32【分析】根据指数幂运算法则和对数运算法则化简可得. 【详解】72log 2338log 2lg 5lg 47-+++()732log 232332log 32lg52lg 27=-++++34222=-+++32=故答案为:32【点睛】此题考查指数对数的综合运算,关键在于熟练掌握运算法则和相关公式,准确化简求值.16.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值.【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =,故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.17.【解析】由于对数函数y=lnx 在区间(0+∞)上的增长速度慢于一次函数y=x 所以函数y =x2比函数y =xlnx 在区间(0+∞)上增长较快填 解析:2yx【解析】由于对数函数y=lnx 在区间(0,+∞)上的增长速度慢于一次函数y=x ,所以函数y =x 2比函数y =x ln x 在区间(0,+∞)上增长较快,填2y x =.18.【分析】由在R 上单调减确定a3a-1的范围再根据单调减确定在分界点x=1处两个值的大小从而解决问题【详解】因为是上的减函数所以解得故答案为:【点睛】本题考查分段函数单调性问题关键根据单调性确定在分段解析:3,17⎡⎫⎪⎢⎣⎭【分析】由()f x 在R 上单调减,确定a , 3a -1的范围,再根据单调减确定在分界点x =1处两个值的大小,从而解决问题. 【详解】 因为3(1)4,1()1,1aa x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,所以10013(1)4log 10a a a a a -<⎧⎪<<⎨⎪-+≥=⎩,解得317a ≤<, 故答案为:3,17⎡⎫⎪⎢⎣⎭【点睛】本题考查分段函数单调性问题,关键根据单调性确定在分段点处两个值的大小,属于中档题.19.【分析】根据对数的定义和运算法则即可求解【详解】由可得所以所以故答案为:【点睛】本题主要考查对数的运算法则的应用考查了学生的计算能力属于中档题 解析:12【分析】根据对数的定义和运算法则即可求解. 【详解】由2336m n ==可得23log 36,log 36m n == 所以361log 2m =,361log 3n=, 所以363636111log 2log 3log 62m n +=+==, 故答案为:12【点睛】本题主要考查对数的运算法则的应用,考查了学生的计算能力,属于中档题.20.或2【分析】已知复合函数值求自变量从外层求出里层设求出对应的的值再由求出即可【详解】令则当若若当(舍去)故答案为:或【点睛】本题考查由函数值求自变量涉及到简单指数和对数方程考查分类讨论思想和数学计算解析:1-或2 【分析】已知复合函数值求自变量,从外层求出里层,设0()t f x =,求出()4f t =对应的t 的值,再由0()t f x =求出0x 即可. 【详解】令0()t f x =,则()4f t =,当11,24,1tt t +≤==,若010001,()21,1x x f x x +≤===-,若00202001,()2log 1,log 1,2x f x x x x >=-===, 当2211,()2log 4,log 2,4t f t t t t >=-==-=(舍去) 故答案为:1-或2. 【点睛】本题考查由函数值求自变量,涉及到简单指数和对数方程,考查分类讨论思想和数学计算能力,属于中档题.三、解答题21.(1)1927-;(2)116. 【分析】(1)利用指数的运算法则化简求解; (2)利用对数的运算法则化简求解. 【详解】 (1)()3224031168281π-⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭()324343224()13⎡⎤⎡⎤=-+-⎢⎥⎣⎦⎣⎦8194412727=-+-=-. (2)()2log 1483log 3log 3log 22++22311log 3log 3log 2123⎛⎫=++ ⎪⎝⎭235511log 3log 211666⎛⎫=+=+= ⎪⎝⎭.【点睛】方法点睛:指数对数的运算化简,一般先观察指数对数的形式,再利用合适的运算法则化简求解. 22.(1)32;(2)3.【分析】(1)利用指对数运算对数恒等式直接得解 (2)利用对数运算及换底公式得解. 【详解】 (1)1ln 22433()22922e -++=+-=, (2)223(lg 2)lg 5lg 20log 3log 4+⋅+⋅.22(lg 2)lg 5(1lg 2)log 4(lg 2)(lg 2lg 5)lg 52=+⋅++=+++lg 2lg523=++=【点睛】解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg51+=23.(1)()(),12,-∞⋃+∞;(2)[]9,0-;(3)[]1,1-,[)3,+∞. 【分析】(1)解不等式2320x x -+>可求得函数()22log 32y x x =-+的定义域;(2)利用二次函数的基本性质可求得函数221y x x =-+-,[]2,2x ∈-的值域;(3)将函数223y x x =--的解析式表示为分段函数,利用二次函数的基本性质可求得原函数的单调递增区间. 【详解】(1)对于函数()22log 32y x x =-+,有2320x x -+>,解得1x <或2x >. 因此,函数()22log 32y x x =-+的定义域为()(),12,-∞⋃+∞;(2)当[]2,2x ∈-时,()[]222119,0y x x x =-+-=--∈-,因此,函数221y x x =-+-,[]2,2x ∈-的值域为[]9,0-;(3)解不等式2230x x -->,解得1x <-或3x >,所以,222223,12323,1323,3x x x y x x x x x x x x ⎧--<-⎪=--=-++-≤≤⎨⎪-->⎩.二次函数223y x x =--的图象开口向上,对称轴为直线1x =. 当1x <-时,函数223y x x =--单调递减;当13x -≤≤时,函数2y x 2x 3=-++在区间[]1,1-上单调递增,在区间[]1,3上单调递减;当3x >时,函数223y x x =--单调递增.综上所述,函数223y x x =--的单调递增区间为[]1,1-,[)3,+∞.【点睛】本题考查与二次函数相关问题的求解,考查了对数型复合函数的定义域、二次函数的值域以及含绝对值的二次函数单调区间的求解,考查计算能力,属于中等题.24.(1)16-;(2) 【分析】(1)由指数幂的运算法则直接计算即可;(2)由2111222x x x x --⎛⎫+=++ ⎪⎝⎭可求出1122x x -+,再利用()3311122221x xx x x x ---⎛⎫+=++- ⎪⎝⎭即可求出. 【详解】(1)原式412500102012=-⨯- )10201126=+-20201616=+-=-;(2)14x x -+=,2111222426x x x x --⎛⎫∴+=++=+= ⎪⎝⎭, 又11220x x->+,1122x x-∴=+())112233122141x x x x x x ---⎛⎫+=+-=-= ⎪⎝⎭+【点睛】本题考查指数幂的运算,考查完全平方公式和立方和公式的应用,属于基础题. 25.(1)2,3k b =-=;(2){}2x x <-. 【分析】(1)根据指数函数的定义列出方程,求解即可; (2)根据指数函数的单调性解不等式即可; 【详解】解:(1)∵函数()()()331xf x k a b a =++->是指数函数∴31,30k b +=-= ∴2,3k b =-= (2)由(1)得()()1xf x aa =>,则函数()f x 在R 上单调递增()()2743f x f x ->-2743x x ∴->-,解得2x <- 即不等式解集为{}2x x <-; 【点睛】本题主要考查了根据函数为指数函数求参数的值以及根据指数函数的单调性解不等式,属于中档题.26.(1)0;0,(2)定义域是(0,1)(1,)⋃+∞,见解析 【分析】(1)先求出1(2)02f f ⎛⎫-=⎪⎝⎭,再证明1()0f x f x ⎛⎫-= ⎪⎝⎭,即得解;(2)先求出函数()f x 的定义域是(0,1)(1,)⋃+∞,再分类讨论证明()f x 在定义域上恒正.【详解】 (1)1(2)02f f ⎛⎫-= ⎪⎝⎭. 对任意(0,1)(1,)x ∈+∞,111111()ln ln 11221f x f x x x xx ⎛⎫ ⎪⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪-⎝⎭1111111ln ln ln 1ln 121212121x x x x x x x x x x x x -⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++=+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭0=.所以[]1111(11)(12)(29)(66)11122966f f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++-+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1111(11)(12)(29)(66)011122966f f f f f f f f ⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦. (2)由题得0x >且1x ≠,所以函数()f x 的定义域是(0,1)(1,)⋃+∞,1()ln 2(1)x f x x x +=-.当(0,1)x ∈时,10x -<,ln 0x <,10x +>,所以()0f x >; 当(1,)x ∈+∞时,10x ->,ln 0x >,10x +>,所以()0f x >. 综上,()f x 在定义域上恒正.【点睛】本题主要考查函数定义域的求法,考查函数值的求法,考查函数值域的求法,意在考查学生对这些知识的理解掌握水平.。
南开中学2007~2008学年度高一复习试卷数 学(必修3&5)第I 卷一.选择题(每题4分,共40分)1.△ABC 中,已知下列条件解三角形,其中有唯一解的个数为( ) ①② ③ ④ A .0 B .1 C .2 D .32.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列, ∠B =30º,△ABC 的面积为 ,那么b 等于( )A .B .C .D .3.若x 、y 是正数,则 的最小值是( )A .3B .C .4D .4.已知函数2,0()2,x x f x x x +⎧=⎨-+>≤⎩,则不等式2()f x x ≥的解集是( )A .[1,1]-B .[2,2]-C .[2,1]-D .[1,2]-5.已知 ,则数列 的通项公式是( ) A . B . C . D .6.在△ABC 中,tan A 是以-4为第3项,4为第7项的等差数列的公差,tan B 是以 为第3项,9为第6项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .非等腰的直角三角形7.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )1,3,60===b a A 2,1,30===b a A 10,6,30===c a A 10,10,30===a c A 23231+31+232+32+222121⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+x y y x 2729()*1121,21N n a a a n n n ∈+==+{}n a 12123-⎪⎭⎫ ⎝⎛-n 1211-⎪⎭⎫⎝⎛-n n ⎪⎭⎫ ⎝⎛-2123n ⎪⎭⎫ ⎝⎛-2113113161819A .B .C .D .8.甲乙两人约定在6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去,则两人能会面的概率为( )A .B .C .D .9.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )A .511B .681 C .3061D .408110.如果执行如图的程序框图,那么输出的S =( ) A .2450 B .2500 C .2550 D .2652 二.填空题(每题4分,共24分) 11.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 . . . . . . .按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 。
12.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。
13.已知,,x y z R +∈,230x y z -+=,则2yxz的最小值 。
14.在平面直角坐标系中,从六个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)、F (3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示)。
15.函数f (x )=3sin x +sin(π2+x )的最大值是 。
16.若0<n <m ,且m +n =1,则四个代数式 ,m ,2mn ,m 2+n 2,按从小到大的顺序排列为三.解答题(每题6分,共36分)4131432117.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别为a 、b 、c ,设a 、b 、c 满足条件b 2+c 2-bc =a 2和 ,求∠A 和tan B 的值。
18.某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响。
(I )求5个工厂均选择星期日停电的概率; (II )求至少有两个工厂选择同一天停电的概率。
321+=bc19. 设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N . (Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.20.在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,n a 是3n a +与6n a +的等差中项.21.甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95。
(I )从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答); (II )从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答)。
22.已知函数f (x )=kx +b 的图像与x 、y 轴分别相交于点A 、B , (i 、j 分别是与x 、y 轴正半轴同方向的单位向量),设函数g (x )=x 2-x -6,当x 满足f (x )>g (x )时,求函数 的最小值。
j i AB 22+=)(1)(x f x g +南开中学2007~2008学年度高一复习试卷数学(必修3&5)参考答案一.选择题二.填空题 11.262n n -+12.(5,7) 13.3 14.3415.216.2mn < <m 2+n 2<m三.解答题 17.[方法一]由余弦定理知,∴∠A =60º,在△ABC 中,∠C =180º-∠A -∠B =120º-∠B由已知条件应用正弦定理得,解得cot B =2,从而tan B =[方法二]由余弦定理知 ,∴∠A =60º,由b 2+c 2-bc =a 2得, ∴ ①由正弦定理知 21212cos 222=-+=bc a c b A ()21cot 23sin sin 120cos cos 120sin sin 120sin sin sin 321+=-=-===+B B B B B B B C b c 21212cos 222=-+=bc a c b A 41532133411122=--+++=-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛b c b c b a 215=b a 5123152sin sin =⨯==A a b B由①式,a >b ,故∠B <∠A ,因此∠B 为锐角,于是 从而 18.(I )设5个工厂均选择星期日停电的事件为A ,则 (II )设5个工厂选择的停电时间各不相同的事件为B ,则。
因为至少有两个工厂选择同一天停电的事件为 , 所以 。
19.(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+, 由此得1132(3)n n n n S S ++-=-. 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .①(Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N ,于是,当2n ≥时, 1n n n a S S -=- 1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭≥≥ 9a ⇔-≥. 又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. 52sin1cos 2=-=B B 21cos sin tan ==BB B 16807171)(5==A P 24013607345677A )(5557=⨯⨯⨯⨯==B P B ()2401204124013601)(1=-=-=B P B P20.(Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得 11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥.又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ) 211a a -=, 32a a q -=, ……21n n a a q --=,(2n ≥).将以上各式相加,得211n n a a q q --+++= (2n ≥).所以当2n ≥时,11,,.1,111n n qq q a n q-≠=⎧-+⎪=-⎨⎪⎩上式对1n =显然成立.(Ⅲ)由(Ⅱ),当1q =时,显然3a 不是6a 与9a 的等差中项,故1q ≠. 由3693a a a a -=-可得5228q q q q -=-,由0q ≠得3611q q -=-, ① 整理得323()20q q +-=,解得32q =-或31q =(舍去).于是q =另一方面,21133(1)11n n n n n qqqa a q q q +--+--==---,15166(1)11n n n n n qqqa a q qq-+-+--==---.由①可得36n n n n a a a a ++-=-,*n N ∈.所以对任意的*n N ∈,n a 是3n a +与6n a +的等差中项. 21.(I )任取甲机床的3件产品恰有2件正品的概率为2233(2)0.90.10.243.P C =⨯⨯=(II )[解法一]记“任取甲机床的1件产品是正品”为事件A ,“任取乙机床的1件产品是 正品”为事件B 。
则任取甲、乙两台机床的产品各1件,其中至少有1件正品的概率为:(.)(.)(.)0.90.950.90.050.10.95P A B P A B P A B ++=⨯+⨯+⨯0.995.=[解法二]运用对立事件的概率公式,所求的概率为:1(.)10.10.050.995.P A B -=-⨯=22.由已知得A ,B (0,b ),则,于是 ,b =2,即k =1,b =2。
由f (x )>g (x )得x +2 > x 2-x -6,即(x +2)(x -4)<0,解得-2<x <4。
又由于x +2>0,故 ,当且仅当x +2=1,即x =-1时,有最小值-3⎪⎭⎫ ⎝⎛-0,k b ⎪⎭⎫⎝⎛=b k b AB ,2=kb521225)(1)(2-+++=+--=+x x x x x x f x g 3)(1)(-≥+x f x g )(1)(x f x g +。