精选高中数学第二章点线面的位置关系第7课时直线与平面同步练习新人教A版必修2
- 格式:doc
- 大小:216.50 KB
- 文档页数:4
高中数学 第二章《点、直线、平面之间的位置关系》练习(提高版) 新人教A 版必修2一、选择题(共12小题,每小题 5分,共60分)1.关于空间中点、线、面之间的关系描述正确的是( )A .若直线a 在平面α外,则α//aB .若点A 在直线a 上,则a A ∈C .若直线a 与b 不相交,则b a //D .若b a ⊥,则a 与b 必相交 2.已知直线a 、b ,且a ∥α,b ⊂α,则( )A .a ∥bB .a 与b 相交C .a 与b 异面D .a 与b 平行或异面 3.在正方体1111D C B A ABCD -中,与对角线1BD 异面的棱有( )条 A . 3 B . 4 C . 6 D . 8 4.直线⊥a 平面α,直线a b ⊥,则b 和α的位置关系是( )A .α⊥bB .b ∥αC .α⊂bD .b ∥α或α⊂b 5.已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是( ) A .βαβα⊂⊂n m ,,//n m //⇒ B .αα//,//n m n m //⇒ C .n m m =⊂βαβα ,,//n m //⇒ D .αα⊂n m ,//n m //⇒6.三棱锥A —BCD 的棱长全相等, E 是AD 中点, 则直线CE 与直线BD 所成角的余弦值为( )A .63B.23 C .633 D .217.如果正四棱锥的侧面积等于底面积的2倍,则侧面与底面所成的角等于( ) A .30° B .45° C .60° D .75°8.如下图,⊥PD 矩形ABCD 所在的平面,图中相互垂直的平面有( )对A .2B .3C .4D .59.下列推断错误的是( )A .一条直线与两个平行平面所成的角相等B .两个平行平面与第三个平面所成的角相等C .两条平行直线与同一个平面所成的角相等DABCPD .两条直线与一个平面所成的角相等,则这两条直线平行 10.如图为一正方体的平面展开图,在这个正方体中: ①BM ∥平面DE ②CN ∥AF③ED 与AF 成的角为60 ④平面BMD ∥平面AFN其中正确的序号是( )A .①④B .①②④C .①③④D .①②③④ 11.已知直线⊥l 平面α,直线⊂m 平面β,在下列命题中正确的是( )①m l ⊥⇒βα// ②m l //⇒⊥βα ③βα⊥⇒m l // ④βα//⇒⊥m l A .①② B .③④ C .②④ D .①③ 在空间四边形ABCD 中,CD AB =,且异面直线AB 与CD 所成的角为60,E 、F 分别为边BC 和AD 的中点,则异面直线EF 和AB 所成的角为 ( )A . 30B . 45C . 60D . 30或60填空题(共4小题,每小题5分,共20分) 13.如图长方体中,32==AD AB ,21=CC ,则二面角C BD C --1的大小为 . 14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①n m ⊥ ②βα⊥ ③β⊥m ④α⊥n . 以其中三个作为条件,余下一个作为结论, 请写出正确的一个命题:______________________________.15.如图,在四棱锥P ABCD -中,底面为直角梯形,AD ∥BC , 90BAD ∠=︒,PA ⊥底面ABCD ,且AB AD PA ==, M 、N 分别为PC 、PB 的中点,则直线BD 与平面ADMN 所成的角为_______.16.以下是关于直线、平面的平行与垂直关系推断:①若b a ⊥,且c a //,则c b ⊥ ②若b a ⊥,且b c ⊥,则c a // ③若βα⊥,且βγ⊥,则γα// ④若α⊥a ,且β⊂a ,则βα⊥ 其中不对的有 .(只填序号)DA BCEFGA BCDA1B1C1 D1NM PDCBA 三、解答题(共6小题,其中第17小题10分,其他各题12分,共70分)17.( 10分) 在正方体1111D C B A ABCD -中,且O 为底面正方形1111D C B A 的中心. (1)求证:⊥C A 1平面BD C 1; (2 ) 求证:AO ∥平面BD C 1.18.(12分) 已知P 是平行四边形ABCD 所在平面外一点,E 是PC 的中点,在DE 上任取一点F ,过点F 和AP 作平面交平面BDE 于FG , 求证:GF AP //.19.(12分) 如图,PA ⊥矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点.(1)求证://MN 平面PAD ; (2)求证:MN CD ⊥;(3)若4PDA π∠=,求证:MN ⊥平面PCD C20.( 12分) 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且 DC AB EA ==,F 是BE 的中点. (1)求证://FD 平面ABC ; (2)求证:⊥AF 平面EDB .1D 1C 1B 1A D CBAo21.(12分)如图,O 是正方形ABCD 的中心,⊥PO 底面ABCD ,E 是PC 的中点, 且2=PO ,2=AB .(1)求证://PA 平面BDE ; (2)求证:平面⊥PAC 平面BDE ; (3)求二面角A BD E --的大小.22.(12分)如图,在矩形ABCD 中,33=AB ,3=BC ,沿对角线BD 将BCD ∆折起,使点C移到P 点,且P 在平面ABD 上的射影O 恰好落在AB 上. (1)求证:⊥PB 平面PAD ; (2)求证:平面PAD ⊥平面PBD ;(3)求点A 到平面PBD 的距离;(4)求直线AB 与平面PBD 所成角的正弦值.A B()P C DOAB CD。
人教新课标A版高中数学必修2 第二章点、直线、平面之间的位置关系 2.3直线、平面垂直的判定及其性质同步测试共 25 题一、单选题1、下列命题中错误的是()A.如果α⊥β,那么α内一定存在直线平行于平面βB.如果α⊥β,那么α内所有直线都垂直于平面βC.如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面βD.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ2、平面α,β及直线l满足:α⊥β,l∥α,则一定有( )A.l∥βB.l⊂βC.l与β相交D.以上三种情况都有可能3、在四边形ABCD中,AD∥BC,AD=AB,,,将沿BD折起,使平面平面,构成三棱锥,则在三棱锥中,下列命题正确的是()A.平面平面ABCB.平面平面BCDC.平面平面BCDD.平面平面ABC4、若a,b,c表示直线,α表示平面,下列条件中,能使a⊥α的是( )A.a⊥b,a⊥c,b⊂α,c⊂α,b∩c=AB.a⊥b,b∥αC.a∩b=A,b⊂α,a⊥bD.α∥b,b⊥a5、如图,已知四边形ABCD为正方形,PD⊥平面ABCD且PD=AD,则下列命题中错误的是( )A.过BD且与PC平行的平面交PA于M点,则M为PA的中点B.过AC且与PB垂直的平面交PB于N点,则N为PB的中点C.过AD且与PC垂直的平面交PC于H点,则H为PC的中点D.过P、B、C的平面与平面PAD的交线为直线l,则l∥AD6、在三棱锥A﹣BCD中,若AD⊥BC,BD⊥AD,△BCD是锐角三角形,那么必有( )A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BCDD.平面ABC⊥平面BCD7、ABCD为正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC,平面PAB与平面PAD的位置关系是()A.平面PAB与平面PAD,PBC垂直B.它们都分别相交且互相垂直C.平面PAB与平面PAD垂直,与平面PBC相交但不垂直D.平面PAB与平面PBC垂直,与平面PAD相交但不垂直8、如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是( )A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P﹣BC﹣A的大小为45°D.BD⊥平面PAC9、已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是( )A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β10、PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是( )①面PAB⊥面PBC②面PAB⊥面PAD③面PAB⊥面PCD④面PAB⊥面PAC.A.①②B.①③C.②③D.②④11、若平面α⊥平面β,平面β⊥平面γ,则( )A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能12、如图所示,AB⊥平面BCD,∠BCD=90°则图中互相垂直的平面有()A.3对B.2对C.1对D.4对13、已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有( )A.2对B.3对C.4对D.5对14、如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°15、已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有( )(1)MN⊥AB;(2)若N为中点,则MN与AD所成角为60°;(3)平面CDM⊥平面ABN;(4)不存在点N,使得过MN的平面与AC垂直.A.1B.2C.3D.4二、填空题16、如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是________17、已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为________18、ABCD是矩形,AB=4,AD=3,沿AC将△ADC折起到△AD′C,使平面AD′C⊥平面△ABC,F是AD′的中点,E是AC上的一点,给出下列结论:①存在点E,使得EF∥平面BCD′;②存在点E,使得EF⊥平面ABD′;③存在点E,使得D′E⊥平面ABC;④存在点E,使得AC⊥平面BD′E.其中正确结论的序号是________ .(写出所有正确结论的序号)19、把Rt△ABC沿斜边上的高CD折起使平面ADC⊥平面BDC,如图所示,互相垂直的平面有________ 对.20、如图所示,四棱锥P﹣ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=a,则它的5个面中,互相垂直的面有________ 对.三、解答题21、三棱锥S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC=, SB=.(1)证明:SC⊥BC;(2)求三棱锥的体积V S﹣ABC.22、如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.(1)判定AE与PD是否垂直,并说明理由.(2)设AB=2,若H为PD上的动点,若△AHE面积的最小值为,求四棱锥P﹣ABCD的体积.23、如图,在三棱锥P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE的中点,N点在PB上,且4PN=PB.(Ⅰ)证明:平面PCE⊥平面PAB;(Ⅱ)证明:MN∥平面PAC.24、如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.(Ⅰ)求证:AC⊥DE;(Ⅱ)求四棱锥P﹣ABCD的体积.25、已知三棱锥S﹣ABC,SC∥截面EFGH,AB∥截面EFGH.求证:截面EFGH是平行四边形.参考答案一、单选题1、【答案】B【解析】【解答】如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,故可推断出A命题正确.B选项中α内与两平面的交线平行的直线都平行于面β,故B命题错误.C根据平面与平面垂直的判定定理可知C命题正确.D根据两个平面垂直的性质推断出D命题正确.故选B【分析】如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,进而可推断出A命题正确;α内与两平面的交线平行的直线都平行于面β,故可判断出B命题错误;根据平面与平面垂直的判定定理可知C命题正确;根据两个平面垂直的性质推断出D命题正确.2、【答案】D【解析】【解答】∵平面α,β及直线l满足:α⊥β,l∥α,∴l∥β,l⊂β,l与β相交都有可能,故选D.【分析】利用条件,直接可以得出结论.3、【答案】D【解析】【解答】∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD.故CD⊥平面ABD,则CD⊥AB,又AD⊥AB,故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.【分析】中档题,对于折叠问题,要特别注意“变”与“不变”的几何元素,及几何元素之间的关系。
描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第二章 点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系一、学习任务理解空间点、线、面的位置关系,会用数学语言规范地表述空间点、线、面的位置关系;了解可以作为推理依据的公理和定理,能正确地判断空间线线、线面与面面的位置关系.二、知识清单平面的概念与基本性质 点、线、面的位置关系三、知识讲解1.平面的概念与基本性质平面的概念生活中的一些物体通常呈平面形,课桌面、黑板面、海面都给我们以平面的形象.几何里所说的平面就是从这样的一些物体中抽象出来的,但是几何中的平面是没有厚度、无限延展的.平面的画法我们常常把水平的平面画成一个平行四边形,用平行四边形表示平面,平行四边形的锐角通常画为 ,且横边长等于其邻边长的 倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡的部分用虚线画出来.平面的表示为了表示平面,常把希腊字母 等等写在代表平面的平行四边形的一个角上,如平面 、平面 ;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称,如图中的平面可以表示为平面 、平面 或者平面 .集合符号在立体几何中的应用以点作为元素,直线和平面都是由点构成的集合.几何中许多符号的规定都是源于将图形视为点集.例如:点 在平面 内,记作 ;点 不在平面 内,记作 .直线 在平面 内,记作 ;直线 不在平面 内,记作 ;直线 与 相交于点 ,记作 ;平面 与平面 相交于直线 ,记作 .平面的基本性质平面的基本性质是由三条公理描述的:公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.45∘2α,β,γαβABCD AC BD A αA ∈αA αA ∉αl αl ⊂αl αl ⊄αl m A l ∩m =A αβa α∩β=a A ∈l A ∈α例题:符号语言:,,且 ,.公理2 过不在一条直线上的三点,有且只有一个平面.推论1 经过一条直线和直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言:,且 ,且 .空间位置关系与几何量的基础平行公理 平行于同一条直线的两条直线互相平行.等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.A∈l B∈l A∈αB∈α⇒l⊂αP∈αP∈β⇒α∩β=l P∈l用符号语言表示下列语句.(1)点 在平面 外,点 在平面 内,直线 经过点 ,;(2) 与 交于 , 与 交于 .解:(1),,,.(2),.AαBαl A B平面ABD平面BCD BD平面ABC平面ADC ACa∉αB∈αA∈l B∈l平面ABD∩平面BCD=BD平面ABC∩平面ADC=AC如图所示,在四面体 中,、、、 分别是 、、、 上的点,且 ,求证 ,, 三点共线.ABCD E F G H AB AD BC CDEF∩GH=PB D P2.点、线、面的位置关系证明:因为 ,,所以 ,同理,,又,所以 ,,而 ,所以 ,即 ,, 三点共线.E ∈ABF ∈AD EF ⊂平面 ABD GH ⊂平面 BCD EF ∩GH =P P ∈平面 ABD P ∈平面 BCD 平面 ABD ∩平面 BCD =BD P ∈直线BD B D P 已知:如图,,,.求证:直线 ,, 在同一平面内.证法一:(同一法)因为 ,所以 和 确定一个平面 . 因为 ,所以 .又因为 ,所以 .同理可证 .又 ,,所以 .因此,直线 ,, 在同一个平面内.证法二:(重合法)因为 ,所以 , 确定一个平面 .因为 ,所以 , 确定一个平面 .又因为 ,,所以 .又 ,,所以 .同理可证得 ,,,.所以不共线的三个点 ,, 在平面 内,又在平面 内.所以平面 和平面 重合,即直线 ,, 在同一平面内.∩=A l 1l 2∩=B l 2l 3∩=C l 1l 3l 1l 2l 3∩=A l 1l 2l 1l 2α∩=B l 2l 3B ∈l 2⊂αl 2B ∈αC ∈αB ∈l 3C ∈l 3⊂αl 3l 1l 2l 3∩=A l 1l 2l 1l 2α∩=B l 2l 3l 2l 3βA ∈l 2⊂αl 2A ∈αA ∈l 2⊂βl 2A ∈βB ∈αB ∈βC ∈αC ∈βA B C αβαβl 1l 2l 3结合空间想象回答下列问题:(1) 个平面可以分空间为______部分;(2) 个平面可以分空间为______部分;(3)正方体的各个面延伸后将空间分成______部分.解:(1),;(2),,,;(3).对于(1):当 个平面平行时,分成 部分;当两个面相交时,分成 部分;对于(2):当 个平面两两平行时,分成 部分;当其中两个平面平行,和另外一个平面相交或者三个平面相交于一条直线时,分成 部分;当 个平面两两相交且交线两两平行时,分成 部分;当 个平面两两相交且交线相交于一点时,分成 部分;对于(3):首先,将正方体的四个侧面延伸,可知将空间分成 部分,然后,将正方体的上下底面延伸可知将之前部分分成了 层,每层 部分,共 部分 .233446782723434637389393×9=27若直线 、、 相交于一点,则这 条直线可能确定的平面有( )A. 个 B. 个 C.无数个 D. 个或 个解:D当 、、 三线共面时,平面只有 个;当三线不共面时,任意两条可确定一个平面,共 个.a b c 30113a b c 13描述:例题:点与平面的位置关系平面内有无数个点,平面可以看成点的集合.点 在平面 内,记作 ;点 不在平面 内,记作 .直线与直线的位置关系空间直线与直线的位置关系共有以下两种:共面直线 在同一平面内的两条直线.更进一步,若这两条直线有且只有一个公共点,则称它们是相交直线 ,若这两条直线没有公共点,则称它们是平行直线;异面直线 不同在任何一个平面内的两条直线.直线垂直如果两条直线所成的角是直角,那么我们就说这两条直线互相垂直,记作 .在空间,两条直线垂直包括两种情形:共面垂直和异面垂直.直线与平面的位置关系空间直线与平面的位置关系共有以下三种:直线在平面内 直线上的所有点都在平面内;直线与平面相交 直线与平面有且仅有一个公共点;直线与平面平行 直线与平面没有公共点.平面与平面的位置关系空间平面与平面的位置关系共有以下两种:平行 两个平面没有公共点,则称这两个平面平行;相交 两个平面有一条公共直线,则称这两个平面相交,此时这条公共直线称为这两个平面的交线.A αA ∈αA αA ∉αa ⊥b 如果在两个平面内分别各有一条直线,这两条直线互相平行,那么这两个平面的位置关系是()A.平行 B.相交 C.平行或相交 D.垂直相交解:C可根据题意作图判断,如图所示,分别为两个平面平行、相交的情况 .分别和两条异面直线都相交的两条直线的位置关系是( )A.相交 B.异面 C.异面或相交 D.平行解:C如图所示,可能相交,也可能异面,若两直线平行,则此两条直线确定一个平面,且原两条异面直线均在此平面内,故矛盾 .四、课后作业 (查看更多本章节同步练习题,请到快乐学)若直线 不平行于平面 ,且 ,则( )A. 内的所有直线与 异面 B. 内不存在与 平行的直线 C. 内存在唯一的直线与 平行 D. 内的直线与 都相交解:B依题意,设直线 ,如图. 内的直线若经过点 ,则与直线 相交;若不经过点 ,则与直线 是异面直线,但不可能与 平行.l αl ⊄ααl αl αl αl l ∩α=A αA l A l l 答案:解析:1. 如图,在正方体 中, 是底面正方形 的中心, 是 的中点, 是 上的动点,则直线 、 的位置关系是 .A .平行B .相交C .异面垂直D .异面不垂直C和点 确定平面 ,且 平面 , 判定 与平面 的位置关系,只需判定直线 的位置关系即可.ABCD −A 1B 1C 1D 1O ABCD M D D 1N A 1B 1NO AM ()A 1B 1O O A 1B 1NO ⊂O A 1B 1∴MA O A 1B 1NO 、AM 答案:2. 平行六面体 中,既与 共面也与 共面的棱的条数为 A .B .C .D .C ABCD −A 1B 1C 1D 1AB C C 1()3456答案:3. 正方体 中, 、 、 分别是 、 、 的中点.那么,正方体的过 、 、 的截面图形是 A .三角形B .四边形C .五边形D .六边形D ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P Q R ()4. 下列正方体或正四面体中,,,, 分别是所在棱的中点,这四个点不共面的一个图是 P Q R S ()高考不提分,赔付1万元,关注快乐学了解详情。
8.4.2空间点、直线、平面之间的位置关系基础巩固1.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行3.下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.34.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条5.已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l()A.相交B.平行C.垂直D.异面6.若a,b是两条异面直线,且a∥平面α,则b与α的位置关系是.7.如图的直观图,用符号语言表述为(1),(2).8.如图,正方体ABCD A1B1C1D1中,M,N分别是A1B1,B1C1的中点,问(1)AM和CN是否是异面直线?(2)D1B和CC1是否是异面直线?说明理由.能力提升9.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在唯一一条与a平行的直线10.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.素养达成12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC 与平面β的交线与l有什么关系?证明你的结论.8.4.2空间点、直线、平面之间的位置关系基础巩固答案1.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行【答案】C【解析】一条直线与两条平行线中的一条异面,则它与另一条可能相交,也可能异面.故选C.2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【答案】C【解析】如图,a′与b异面,但a′∥c,故A错;a与b异面,且都与c相交,故B错;若a∥c,b∥c,则a∥b,与a,b异面矛盾,故D错.3.下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.3【答案】B【解析】对于①,当直线l与α相交时,直线l上有无数个点不在平面α内,故①不正确;对于②,直线l与平面α平行时,l与平面α内的直线平行或异面,故②不正确:对于③,当两条平行直线中的一条与一个平面平行时,另一条与这个平面可能平行,也有可能在这个平面内,故③不正确;对于④,由线面平行的定义可知④正确.4.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条【答案】D【解析】由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的直线有无数条,且它们都不在平面D1EF内,则它们都与平面D1EF平行,故选D.5.已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l()A.相交B.平行C.垂直D.异面【答案】C【解析】当直线l与平面α平行时,在平面α内至少有一条直线与直线l垂直;当直线l⊂平面α时,在平面α内至少有一条直线与直线l垂直;当直线l与平面α相交时,在平面α内至少有一条直线与直线l垂直,所以无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l垂直.故选C.6.若a,b是两条异面直线,且a∥平面α,则b与α的位置关系是.【答案】b与α平行或相交或b在α内【解析】如图,在正方体ABCD-A1B1C1D1中,设平面ABCD为α,A1B1为a,则a∥α,当分别取EF,BC1,BC为b 时,均满足a与b异面,于是b∥α,b∩α=B,b⊂α(其中E,F为棱的中点).7.如图的直观图,用符号语言表述为(1),(2).【答案】(1)a∩b=P,a∥平面M,b∩平面M=A;(2)平面M∩平面N=l,a∩平面N=A,a∥平面M【解析】(1)a∩b=P,a∥平面M,b∩平面M=A(2)平面M∩平面N=l,a∩平面N=A,a∥平面M8.如图,正方体ABCD A1B1C1D1中,M,N分别是A1B1,B1C1的中点,问(1)AM和CN是否是异面直线?(2)D1B和CC1是否是异面直线?说明理由.【答案】(1) 不是异面直线;(2)是异面直线,证明见解析.【解析】由于M,N分别是A1B1和B1C1的中点,可证明MN∥AC,因此AM与CN不是异面直线.由空间图形可感知D1B和CC1为异面直线的可能性较大,判断的方法可用反证法.(1)不是异面直线.理由:因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A C1C,所以A1ACC1为平行四边形.所以A1C1∥AC,得到MN∥AC,所以A,M,N,C在同一个平面内, 故AM和CN不是异面直线.(2)是异面直线,证明如下:假设D1B与CC1在同一个平面CC1D1D内,则B∈平面CC1D1D,C∈平面CC1D1D.所以BC⊂平面CC1D1D,这与ABCD A1B1C1D1是正方体相矛盾.所以假设不成立,故D1B与CC1是异面直线.能力提升9.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在唯一一条与a平行的直线【答案】D【解析】因为α∥β,B∈β,所以B∉α.因为a⊂α,所以B,a可确定平面γ且γ∩α=a,设γ与β交过点B的直线为b,则a∥b.因为a,B在同一平面γ内.所以b唯一,即存在唯一一条与a平行的直线.10.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)【答案】③④【解析】①错.a与b也可能异面.②错.a与b也可能平行.③对.因为α∥β,所以α与β无公共点.又因为a⊂α,b⊂β,所以a与b无公共点.④对.由③知a与b无公共点,那么a∥b或a与b异面.⑤错.a与β也可能平行.11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.【答案】a,b无公共点, a∥β,证明见解析.【解析】a∥b,a∥β,理由:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,因为α∥β,a⊂α,b⊂β,所以a,b无公共点.又因为a⊂γ,且b⊂γ,所以a∥b.因为α∥β,所以α与β无公共点,又a⊂α,所以a与β无公共点,所以a∥β.素养达成12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC 与平面β的交线与l有什么关系?证明你的结论.【答案】平面ABC与β的交线与l相交,证明见解析.【解析】平面ABC与β的交线与l相交.证明:因为AB与l不平行,且AB⊂α,l⊂α,所以AB与l一定相交,设AB∩l=P,则P∈AB,P∈l.又因为AB⊂平面ABC,l⊂β,所以P∈平面ABC,P∈β.所以点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,所以直线PC就是平面ABC与β的交线.即平面ABC∩β=PC,而PC∩l=P,所以平面ABC与β的交线与l相交.。
描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第二章 点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质一、学习任务认识和理解空间中线面垂直的有关判定定理和性质定理,能用图形语言和符号语言表述这些定理,并能证明有关性质定理;能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识清单空间的垂直关系 点面距离三、知识讲解1.空间的垂直关系直线与平面垂直的判定如果直线 与平面 内的任意一条直线都垂直,我们就说直线 与平面 互相垂直.记作.直线 叫做平面 的垂线,平面 叫做直线 的垂面.直线与平面垂直时,它们唯一的公共点 叫做垂足.直线与平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.用符号表示:,,,,.平面与平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.用符号表示:,.l αl αl ⊥αl ααl P a b ⊂αa ∩b =P l ⊥a l ⊥b ⇒l ⊥αl ⊥αl ⊂β⇒α⊥β例题:直线与平面垂直的性质定理 垂直于同一个平面的两条直线平行.用符号表示:,.平面与平面垂直的性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.用符号来表示:,,,.a ⊥αb ⊥α⇒a ||b α⊥βα∩β=CD AB ⊂αAB ⊥CD ⇒AB ⊥β下列命题中,正确的序号是______.①若直线 与平面 内的无数条直线垂直,则 ;②若直线 与平面 内的一条直线垂直,则 ;③若直线 不垂直于平面 ,则 内没有与 垂直的直线;④若直线 不垂直于平面 ,则 内也可以有无数条直线与 垂直;⑤过一点与已知平面垂直的直线有且只有一条.解:④⑤当直线 与平面 内的无数条平行直线垂直时, 与 不一定垂直,所以①不正确;当 与 内的一条直线垂直时,不能保证 与平面 垂直,所以②不正确;当 与 不垂直时,可能与 内的无数条平行直线垂直,所以③不正确,④正确;过一点有且只有一条直线垂直于已知平面,所以⑤正确.故填④⑤.l αl ⊥αl αl ⊥αl ααl l ααl l αl αl αl αl αl α如图,三棱锥 中,,底面 的斜边为 , 为 上一点.求证: .证明:因为 ,,所以 .又 ,,所以 .又 ,所以 .P −ABC P A ⊥平面 ABC Rt△ABC AB F P C BC ⊥AF P A ⊥平面 ABC BC ⊂平面 ABC P A ⊥BC AC ⊥BC AC ∩P A =A BC ⊥平面 P AC AF ⊂平面 P AC BC ⊥AF 如图,已知四棱锥 ,底面 是菱形,,,,点 为 的中点.求证:.P −ABCD ABCD ∠DAB =60∘P D ⊥平面 ABCD P D =AD E AB 平面P ED ⊥平面 P ABAB⊂平面P AB又 ,所以3P C⊥AC C,求点 到平面P A⊥ABCD高考不提分,赔付1万元,关注快乐学了解详情。
人教新课标A版高中数学必修2第二章点、直线、平面之间的位置关系 2.2直线、平面平行的判定及其性质同步测试共 25 题一、单选题1、如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD为底面,则四边形EFGH的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定2、若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3、若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A. B.1C. D.4、已知直线l及两个平面α、β,下列命题正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l∥β,则α⊥βC.若l⊥α,l⊥β,则α∥βD.若l⊥α,l⊥β,则α⊥β5、已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为( )A. B.C.或24D.或126、下列条件中,能判断两个平面平行的是( )A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内的任何一条直线都平行于另一个平面7、已知平面α∥平面β,直线m⊂α,直线n⊂β,点A∈m,点B∈n,记点A、B之间的距离为a,点A到直线n的距离为b,直线m和n的距离为c,则()A.b≤a≤cB.a≤c≤bC.c≤a≤bD.c≤b≤a8、已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n9、A是平面BCD外一点,E,F,G分别是BD,DC,CA的中点,设过这三点的平面为α,则在直线AB,AC,AD,BC,BD,DC中,与平面α平行的直线有( )A.0条B.1条C.2条D.3条10、若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是( )A.MN∥βB.MN与β相交或MN⊊βC.MN∥β或MN⊊βD.MN∥β或MN与β相交或MN⊊β11、点 E,F,G,H分别为空间四边形ABCD的边AB,BC,CD,AD的中点,则四边形EFGH是( )A.菱形B.梯形C.正方形D.平行四边形12、给出下列命题:(1)平行于同一直线的两个平面平行(2)平行于同一平面的两个平面平行(3)垂直于同一直线的两直线平行(4)垂直于同一平面的两直线平行其中正确命题的序号为( )A.(1)(2)B.(3)(4)C.(2)(4)D.(1)(3)13、如图,下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是( )A.①②B.③④C.②③D.①④14、已知a,b是空间中两不同直线,α,β是空间中两不同平面,下列命题中正确的是( )A.若直线a∥b,b⊂α,则a∥αB.若平面α⊥β,a⊥α,则a∥βC.若平面α∥β,a⊂α,b⊂β,则a∥bD.若a⊥α,b⊥β,a∥b,则α∥β④平面PAE⊥平面ABC.、已知m、n是两条不重合的直线,1AP= ,过、如图四棱锥S﹣ABCD中,底面ABCD 、如图所示,在三棱锥A﹣BCD中,________ 时,四边形EFGH为菱形.三、解答题21、如图所示,在棱长为2cm的正方体ABCD﹣A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.22、如图,在棱长为a的正方体ABCD﹣A1B1C1D1, E,F,P,Q分别是BC,C1D1, AD1, BD的中点,求证:(1)PQ∥平面DCC1D1(2)EF∥平面BB1D1D.23、求证:夹在两个平行平面间的平行线段相等.24、如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分别在线段B1C1和AC上,B1E=3EC1,AC=BC=CC1=4(1)求证:BC⊥AC1;(2)试探究满足EF∥平面A1ABB1的点F的位置,并给出证明.25、直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.(Ⅰ)求证:AC⊥B1C;(Ⅱ)求证:AC1∥平面B1CD参考答案一、单选题1、【答案】B【解析】【解答】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH平行且相等,故四边形的形状为平行四边形,选B。
2021年高中数学第二章点,直线,平面位置关系2同步练习新人教版必修21. a,b是两条异面直线,()A.若P为不在a、b上的一点,则过P点有且只有一个平面与a,b都平行B.过直线a且垂直于直线b的平面有且只有一个C.若P为不在a、b上的一点,则过P点有且只有一条直线与a,b都平行D.若P为不在a、b上的一点,则过P点有且只有一条直线与a,b都垂直2.若三棱锥S—ABC的项点S在底面上的射影H在△ABC的内部,且是在△ABC的垂心,则( )A.三条侧棱长相等 B.三个侧面与底面所成的角相等C.H到△ABC三边的距离相等 D.点A在平面SBC上的射影是△SBC的垂心3. a、b是异面直线,下面四个命题:①过a至少有一个平面平行于b;②过a至少有一个平面垂直于b;③至少有一条直线与a、b 都垂直;④至少有一个平面分别与a、b都平行,其中正确命题的个数是()A.0 B.1 C.2 D.34. 把正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的正棱锥体积最大时,直线BD和平面ABC所成的角的大小为 ( )A. 90° B .60° C. 45° D.30°5. 在长方体ABCD—A1B1C1D1中,A1A=AB=2,若棱AB上存在一点P,使得D1P⊥PC,则棱AD的长的取值范围是()A.B.C.D.二、填空题6. 已知直线m,n,平面,给出下列命题:①若;②若;③若;④若异面直线m,n互相垂直,则存在过m的平面与n垂直. 其中正确的命题的题号为③④7. 设是三条不同的直线,是三个不同的平面,下面有四个命题:①②③④其中假命题的题号为①③8. 在右图所示的是一个正方体的展开图,在原来的正方体中,有下列命题:①AB与EF所在的直线平行;②AB与CD所在的直线异面;③MN与BF所在的直线成60°角;④MN与CD所在的直线互相垂直.其中正确的命题是②④9. 有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为 . F C BD10. 下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是(写出所有真命题的编号).三、解答题11. 下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)12. 如图,正三棱柱ABC—A1B1C1的底面边长的3,侧棱AA1=D是CB延长线上一点,且BD=BC.(Ⅰ)求证:直线BC1//平面AB1D;(Ⅱ)求二面角B1—AD—B的大小;(Ⅲ)求三棱锥C1—ABB1的体积.13. 如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=4,AB=2,求点A到平面SBD的距离;(3)当SAAB的值为多少时,二面角B-SC-D的大小为120º.14. 如图,正三角形ABC的边长为2,D、E、F分别为各边的中点将△ABC沿DE、EF、DF折叠,ACDES使A、B、C三点重合,构成三棱锥A— DEF.(I)求平面ADE与底面DEF所成二面角的余弦值(Ⅱ)设点M、N分别在AD、EF上, (λ>O,λ为变量)①当λ为何值时,MN为异面直线AD与EF的公垂线段? 请证明你的结论②设异面直线MN与AE所成的角为a,异面直线MN与DF所成的角为β,试求a+β的值29793 7461 瑡35959 8C77 豷33003 80EB 胫!134704 8790 螐38361 95D9 闙W40509 9E3D 鸽 22818 5922 夢28176 6E10 渐。
第二章点、直线、平面之间的位置关系[基础训练A组]一、选择题1. 下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行其中正确的个数为()A. 0 B . 1 C . 2 D . 32. 下面列举的图形一定是平面图形的是()A.有一个角是直角的四边形 B .有两个角是直角的四边形C•有三个角是直角的四边形 D .有四个角是直角的四边形3. 垂直于同一条直线的两条直线一定()A.平行 B .相交C .异面D .以上都有可能4. 如右图所示,正三棱锥V—ABC (顶点在底面的射影是底面正三角形的中心)中,D,E,F分别是VC,VA,AC 的中点,P为VB上任意一点,则直线DE与PF所成的角的大小是()A. 300 B . 900 C . 60°D .随P点的变化而变化。
5. 互不重合的三个平面最多可以把空间分成()个部分A. 4 B . 5 C . 7 D . 86 .把正方形ABCD沿对角线AC折起,当以代B,C, D四点为顶点的三棱锥体积最大时,直线BD 和平面ABC所成的角的大小为()A . 90B . 60C . 45D . 30二、填空题1 .已知a,b是两条异面直线,c//a,那么c与b的位置关系_____________________ 。
2. 直线I与平面〉所成角为300,丨门〉二代m二:JA,m,则m与I所成角的取值范围是_______________3. 棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,贝U d1d2d3d4的值为__________________ 。
4 .直二面角:-l - ■的棱l上有一点A,在平面〉「内各有一条射线AB,AC第二章点、直线、平面之间的位置关系与丨成45°, AB : , AC [,贝U . BAC 二_______________ 。
姓名,年级:时间:2.3。
3 直线与平面垂直的性质2。
3.4 平面与平面垂直的性质知识导图学法指导1.线面垂直、面面垂直的性质定理揭示了“平行”与“垂直”之间的内在联系,提供了它们之间相互转化的依据.因此,在应用时要善于运用转化的思想.2.利用面面垂直的性质定理时,找准两平面的交线是解题的关键.3.学习线面垂直的性质定理时,要注意区分与其相似的几个结论.高考导航1.直线与平面垂直的性质定理较少单独考查,常与平行关系及面面垂直关系综合,以解答题的形式出现,分值5~7分.2.平面与平面垂直的性质定理常与推理、计算结合,考查空间想象能力和逻辑推理能力,以选择题或解答题的其中一问的形式出现,分值5~7分.知识点一直线与平面垂直的性质文字语垂直于同一个平面的两条直线平行言符号语⇒a∥b言错误!图形语言作用①线面垂直⇒线线平行;②作平行线1.直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.2.定理揭示了空间中“平行”与“垂直"关系的内在联系,提供了“垂直”与“平行”关系转化的依据.知识点二平面与平面垂直的性质文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直符号语言错误!⇒a⊥β图形语言作用①面面垂直⇒线面垂直;②作面的垂线对面面垂直的性质定理的理解1.定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直.2.已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.[小试身手]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是()A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥α D.m⊥n,且n∥β解析:错误!⇒m⊥β,故选B.答案:B2.已知△ABC和两条不同的直线l,m,l⊥AB,l⊥AC,m⊥AC,m⊥BC,则直线l,m的位置关系是( )A.平行 B.异面C.相交 D.垂直解析:因为直线l⊥AB,l⊥AC,所以直线l⊥平面ABC,同理直线m⊥平面ABC,根据线面垂直的性质定理得l∥m.答案:A3.如图,BC是Rt△BAC的斜边,PA⊥平面ABC,PD⊥BC于点D,则图中直角三角形的个数是()A.3 B.5C.6 D.8解析:由PA⊥平面ABC,知△PAC,△PAD,△PAB均为直角三角形,又PD⊥BC,PA⊥BC,PA∩PD=P,∴BC⊥平面PAD。
高中数学新人教版必修2精品讲义+基础过关测试2.1空间点、直线、平面之间的位置关系2.1.1平面1.了解平面的概念,掌握平面的画法及表示方法.(难点)2.能用符号语言描述空间点、直线、平面之间的位置关系.(重点)3.能用图形、文字、符号三种语言描述三个公理,理解三个公理的地位与作用.(难点、易错点)[基础·初探]教材整理1平面阅读教材P40~P41“思考”以上的内容,完成下列问题.1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图211①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图211②.图①图②图2113.平面的表示法图211①的平面可表示为平面α、平面ABCD、平面AC或平面BD.下列说法:①书桌面是平面;②8个平面重叠后,要比6个平面重叠后厚;③有一个平面的长是100 m,宽是90 m;④平面是绝对平滑,无厚度,无限延展的抽象概念.其中正确的个数为()A.0 B.1C.2 D.3【解析】①错误,因为平面具有延展性;②错误,平面无厚度;③错误,因为平面无厚度、大小之分;④正确,符合平面的概念.【答案】 B教材整理2平面的基本性质阅读教材P41“思考”以下至P43“例1”以上的内容,完成下列问题.判断(正确的打“√”,错误的打“×”)(1)三点可以确定一个平面.()(2)一条直线和一个点可以确定一个平面.()(3)四边形是平面图形.()(4)两条相交直线可以确定一个平面.()【解析】(1)错误.不共线的三点可以确定一个平面.(2)错误.一条直线和直线外一个点可以确定一个平面.(3)错误.四边形不一定是平面图形.(4)正确.两条相交直线可以确定一个平面.【答案】(1)×(2)×(3)×(4)√[小组合作型]出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.【精彩点拨】解答本题要正确理解立体几何中表示点、线、面之间位置关系的符号“∈”,“∉”,“⊂”,“⊄”,“∩”的意义,在此基础上,由已知给出的符号表示语句,写出相应的点、线、面的位置关系,画出图形.【自主解答】(1)点A在平面α内,点B不在平面α内;(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上;(3)直线l经过平面α外一点P和平面α内一点Q.图形分别如图(1),(2),(3)所示.图(1)图(2)图(3)1.用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.2.要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“∉”表示,直线与平面的位置关系只能用“⊂”或“⊄”表示.3.由符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.[再练一题]1.根据图形用符号表示下列点、直线、平面之间的关系.图212(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.【解】(1)点P∈直线AB;(2)点C∉直线AB;(3)点M∈平面AC;(4)点A1∉平面AC;(5)直线AB∩直线BC=点B;(6)直线AB⊂平面AC;(7)平面A1B∩平面AC=直线AB.内.【精彩点拨】四条直线两两相交且不共点,可能有两种情况:一是有三条直线共点;二是任意三条直线都不共点,故要分两种情况.【自主解答】已知:a,b,c,d四条直线两两相交,且不共点,求证:a,b,c,d四线共面.证明:(1)若a,b,c三线共点于O,如图所示,∵O∉d,∴经过d与点O有且只有一个平面α.∵A、B、C分别是d与a、b、c的交点,∴A、B、C三点在平面α内.由公理1知a、b、c都在平面α内,故a、b、c、d共面.(2)若a、b、c、d无三线共点,如图所示,∵a∩b=A,∴经过a、b有且仅有一个平面α,∴B、C∈α.由公理1知c⊂α.同理,d⊂α,从而有a、b、c、d共面.综上所述,四条直线两两相交,且不共点,这四条直线在同一平面内.证明点线共面常用的方法1.纳入法:先由部分直线确定一个平面,再证明其他直线也在这个平面内.2.重合法:先说明一些直线在一个平面内,另一些直线也在另一个平面内,再证明两个平面重合.[再练一题]2.已知直线a∥b,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.【证明】如图所示,由已知a∥b,所以过a,b有且只有一个平面α.设a ∩l=A,b∩l=B,∴A∈α,B∈α,且A∈l,B∈l,∴l⊂α.即过a,b,l有且只有一个平面.[探究共研型]探究111111ABC1D1=E.能否判断点E在平面A1BCD1内?图213【提示】如图,连接BD1,∵A1C∩平面ABC1D1=E,∴E∈A1C,E∈平面ABC1D1.∵A1C⊂平面A1BCD1,∴E∈平面A1BCD1.探究2上述问题中,你能证明B,E,D1三点共线吗?【提示】由于平面A1BCD1与平面ABC1D1交于直线BD1,又E∈BD1,根据公理3可知B,E,D1三点共线.B1C1D1中,点M,N,E,F分别是棱如图214,在正方体ABCDACD,AB,DD1,AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线. 【导学号:97602006】图214【精彩点拨】欲证D、A、Q三点共线,只需说明三点均在平面AD1和平面AC的交线DA上即可.【自主解答】∵MN∩EF=Q,∴Q∈直线MN,Q∈直线EF,又∵M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD.∴M、N∈平面ABCD,∴MN⊂平面ABCD.∴Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.∴Q∈平面ADD1A1,又∵平面ABCD∩平面ADD1A1=AD,∴Q∈直线AD,即D,A,Q三点共线.点共线与线共点的证明思路1.点共线的思路:证明这些点都分别在两个相交的平面内,因此也在两个平面的交线上.2.线共点的思路:先由两条直线交于一点,再证明该点在第三条直线上.[再练一题]3.如图215,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线.图215【证明】∵AB∥CD,∴AB,CD确定一个平面β,又∵AB∩α=E,AB⊂β,∴E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E,F,G,H四点必定共线.1.用符号表示“点A在直线l上,l在平面α外”,正确的是()A.A∈l,l∉αB.A∈l,l⊄αC.A⊂l,l⊄αD.A⊂l,l∉α【解析】点与直线,直线与平面间的关系分别用“∈或∉”和“⊂或⊄”表示.【答案】 B2.下列说法中正确的个数为()①三角形一定是平面图形;②若四边形的两对角线相交于一点,则该四边形是平面图形;③圆心和圆上两点可确定一个平面;④三条平行线最多可确定三个平面.A.1 B.2C.3 D.4【解析】③中若圆心和圆上两点共线时,可以作出无数个平面,故①②④正确,故选C.【答案】 C3.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.【解析】∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.【答案】C4.有以下三个说法:①平面外的一条直线与这个平面最多有一个公共点;②直线l在平面α内,可以用符号“l∈α”表示;③已知平面α与β不重合,若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交.其中正确的序号是________.【解析】若直线与平面有两个公共点,则这条直线一定在这个平面内,故①正确;直线l在平面α内用符号“⊂”表示,即l⊂α,②错误;由a与b相交,说明两个平面有公共点,因此一定相交,故③正确.【答案】①③5.如图216,已知平面α,β,且α∩β=l.在梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点(相交于一点).图216【证明】∵梯形ABCD,AD∥BC,∴AB,CD是梯形ABCD的两腰,∴AB,CD必定相交于一点.如图,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β,∴M∈α∩β,又∵α∩β=l,∴M∈l,即AB,CD,l共点.2.1.2空间中直线与直线之间的位置关系1.了解空间中两条直线的三种位置关系,理解两异面直线的定义,会用平面衬托来画异面直线.2.理解平行公理(公理4)和等角定理.(重点)3.会用异面直线所成的角的定义找出或作出异面直线所成的角,会在直角三角形中求简单异面直线所成的角.(难点、易错点)[基础·初探]教材整理1 空间直线的位置关系阅读教材P 44~P 45“探究”以上的内容,完成下列问题. 1.异面直线(1)定义:把不同在任何一个平面内的两条直线叫做异面直线. (2)画法:(通常用平面衬托)图21102.空间两条直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎨⎧相交直线:同一平面内,有且只有一个公共点.平行直线:同一平面内,没有公共点.异面直线:不同在任何一个平面内,没有公共点.判断(正确的打“√”,错误的打“×”)(1)两条直线无公共点,则这两条直线平行.( ) (2)两直线若不是异面直线,则必相交或平行.( )(3)过平面外一点与平面内一点的连线,与平面内的任意一条直线均构成异面直线.( )(4)和两条异面直线都相交的两直线必是异面直线.( )【解析】 (1)错误.空间两直线无公共点,则可能平行,也可能异面. (2)正确.因空间两条不重合的直线的位置关系只有三种:平行、相交或异面.(3)错误.过平面外一点与平面内一点的连线,和平面内过该点的直线是相交直线.(4)错误.和两条异面直线都相交的两直线也可能是相交直线. 【答案】 (1)× (2)√ (3)× (4)×教材整理2 公理4及等角定理阅读教材P 45“探究”以下至P 46倒数第7行的内容,完成下列问题.1.公理4文字表述:平行于同一条直线的两条直线互相平行.这一性质叫做空间平行线的传递性.符号表述:⎭⎬⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.已知AB ∥PQ ,BC ∥QR ,若∠ABC =30°,则∠PQR 等于( )A .30°B .30°或150°C .150°D .以上结论都不对 【解析】 因为AB ∥PQ ,BC ∥QR ,所以∠PQR 与∠ABC 相等或互补.因为∠ABC =30°,所以∠PQR =30°或150°.【答案】 B教材整理3 异面直线所成的角阅读教材P 46下面的两个自然段至P 47“探究”以上的内容,完成下列问题.1.定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).2.异面直线所成的角θ的取值范围:0°<θ_≤90°.3.当θ=90°时,a 与b 互相垂直,记作a ⊥b .如图2111,正方体ABCDA ′B ′C ′D ′中异面直线A ′B ′与BC 所成的角为________.异面直线AD ′与BC 所成的角为________.图2111【解析】∵A′B′∥AB,∴∠ABC为A′B′与BC所成的角,又∠ABC=90°,∴A′B′与BC所成的角为90°.∵BC∥AD,∴∠D′AD为AD′与BC所成的角,因为∠D′AD=45°,故AD′与BC所成的角为45°.【答案】90°45°[小组合作型]1111图2112①直线A1B与直线D1C的位置关系是________;②直线A1B与直线B1C的位置关系是________;③直线D1D与直线D1C的位置关系是________;④直线AB与直线B1C的位置关系是________.【精彩点拨】判断两直线的位置关系,主要依据定义判断.【自主解答】根据题目条件知道直线A1B与直线D1C在平面A1BCD1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A1、B、B1在一个平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C“异面”.同理,直线AB与直线B1C“异面”.所以②④都应该填“异面”;直线D1D与直线D1C 相交于D1点,所以③应该填“相交”.【答案】①平行②异面③相交④异面1.判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.2.判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.[再练一题]1.(1)若a、b是异面直线,b、c是异面直线,则()A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面(2)若直线a、b、c满足a∥b,a、c异面,则b与c()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】(1)若a、b是异面直线,b、c是异面直线,那么a、c可以平行,可以相交,可以异面.(2)若a∥b,a、c是异面直线,那么b与c不可能平行,否则由公理4知a∥c.【答案】(1)D(2)CAD和A1D1的中点.图2113(1)求证:四边形BB1M1M为平行四边形;(2)求证:∠BMC=∠B1M1C1.【精彩点拨】(1)欲证四边形BB1M1M是平行四边形,可证其一组对边平行且相等;(2)可结合(1)利用等角定理证明或利用三角形全等证明.【自主解答】(1)∵ABCDA1B1C1D1为正方体.∴AD=A1D1,且AD∥A1D1,又M、M1分别为棱AD、A1D1的中点,∴AM=A1M1且AM∥A1M1,∴四边形AMM1A1为平行四边形,∴M1M=AA1且M1M∥AA1.又AA1=BB1且AA1∥BB1,∴MM1=BB1且MM1∥BB1,∴四边形BB1M1M为平行四边形.(2)法一由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角.∴∠BMC=∠B1M1C1.法二由(1)知四边形BB1M1M为平行四边形,∴B1M1=BM.同理可得四边形CC1M1M为平行四边形,∴C1M1=CM.又∵B1C1=BC,∴△BCM≌△B1C1M1,∴∠BMC=∠B1M1C1.1.空间两条直线平行的证明一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行.2.求证角相等一是用等角定理;二是用三角形全等或相似.[再练一题]2.如图2114,已知在棱长为a的正方体ABCDA1B1C1D1中,M,N分别是棱CD,AD的中点.图2114求证:(1)四边形MNA 1C 1是梯形;(2)∠DNM =∠D 1A 1C 1.【证明】 (1)如图,连接AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点,∴MN 是△ACD 的中位线,∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形.(2)由(1)可知MN ∥A 1C 1.又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均为锐角,∴∠DNM =∠D 1A 1C 1.[探究共研型]探究1 直线所成的角?图2115【提示】 如图,在空间中任取一点O ,作直线a ′∥a ,b ′∥b ,则两条相交直线a ′,b ′所成的锐角(或直角)角θ即两条异面直线a ,b 所成的角.探究2 异面直线a 与b 所成角的大小与什么有关,与点O 的位置有关吗?通常点O 取在什么位置?【提示】 异面直线a 与b 所成角的大小只由a ,b 的相互位置有关,与点O 的位置选择无关,一般情况下为了简便,点O 常选取在两条异面直线中的一条上.如图2116,在空间四边形ABCD 中,AD =BC =2,E 、F 分别是AB 、CD 的中点,若EF =3,求异面直线AD 、BC 所成角的大小.图2116【精彩点拨】 根据求异面直线所成角的方法,将异面直线AD 、BC 平移到同一平面上解决.【自主解答】 如图,取BD 的中点M ,连接EM 、FM .因为E 、F 分别是AB 、CD 的中点,所以EM 綊12AD ,FM 綊12BC ,则∠EMF 或其补角就是异面直线AD 、BC 所成的角.因为AD =BC =2,所以EM =MF =1,在等腰△MEF中,过点M作MH⊥EF于H,在Rt△MHE中,EM=1,EH=12EF=32,则sin∠EMH=32,于是∠EMH=60°,则∠EMF=2∠EMH=120°.所以异面直线AD、BC所成的角为∠EMF的补角,即异面直线AD、BC所成的角为60°.求两异面直线所成的角的三个步骤1.作:根据所成角的定义,用平移法作出异面直线所成的角.2.证:证明作出的角就是要求的角.3.计算:求角的值,常利用解三角形得出.可用“一作二证三计算”来概括.同时注意异面直线所成角θ的取值的范围是0°< θ≤90°.[再练一题]3.在正方体ABCDA1B1C1D1中,求A1B与B1D1所成的角.【解】如图,连接BD、A1D,∵ABCDA1B1C1D1是正方体,∴DD1綊BB1,∴四边形DBB1D1为平行四边形,∴BD∥B1D1.∵A1B、BD、A1D是全等的正方形的对角线,∴A1B=BD=A1D,△A1BD是正三角形,∴∠A1BD=60°.∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角,∴A1B与B1D1所成的角为60°.1.对于任意的直线l与平面α,在平面α内必有直线m,使m与l() A.平行B.相交C.垂直D.互为异面直线【解析】不论l∥α,l⊂α还是l与α相交,α内都有直线m使得m⊥l.【答案】 C2.下列命题中,正确的结论有()①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个【解析】由公理4及等角定理知,只有②④正确.【答案】 B3.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________.【解析】由等角定理可知β=135°.【答案】135°4.在长方体ABCDA1B1C1D1中,与棱AA1垂直且异面的棱有________.【解析】如图,与棱AA1垂直且异面的棱有DC,BC,D1C1,B1C1.【答案】DC,BC,D1C1,B1C15.如图2117所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,求EF和AB所成的角.图2117 【解】取AC的中点G,连接EG,FG,则FG∥CD,EG∥AB,所以∠FEG即为EF与AB所成的角,且FG=12CD,EG=12AB,所以FG=EG.又由AB⊥CD得FG⊥EG,所以∠FEG=45°.故EF和AB所成的角为45°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系1.了解直线与平面的三种位置关系,并会用图形语言和符号语言表示.(重点、易错点)2.了解不重合的两个平面之间的两种位置关系,并会用图形语言和符号语言表示.(难点)[基础·初探]教材整理1直线与平面的位置关系阅读教材P 48~P 49的内容,完成下列问题.判断(正确的打“√”,错误的打“×”)(1)若直线与平面不相交,则直线与平面平行.( )(2)过一点有且只有一条直线与已知直线平行.( )(3)过一点有且只有一条直线与已知直线垂直.( )(4)过平面外一点有且只有一条直线与该平面平行.( )【解析】 (1)错误.若直线与平面不相交,则直线在平面内或直线与平面平行,故(1)错.(2)错误.当点在已知直线上时,不存在过该点的直线与已知直线平行,故(2)错.(3)错误.由于垂直包括相交垂直和异面垂直,因而过一点与已知直线垂直的直线有无数条,故(3)错.(4)错误.过棱柱的上底面内的一点任意作一条直线都与棱柱的下底面平行,所以过平面外一点与已知平面平行的直线有无数条,故(4)错.【答案】 (1)× (2)× (3)× (4)×教材整理2 平面与平面的位置关系阅读教材P 50“探究”以上的内容,完成下列问题.三棱锥的四个面中,任两个面的位置关系是()A.相交B.平行C.异面D.不确定【解析】三棱锥的任两个面都相交,选A.【答案】 A[小组合作型]A.如果a、b是两条直线,a∥b,那么a平行于经过b的任何一个平面B.如果直线a和平面α满足a∥α,那么a平行于平面α内的任何一条直线C.如果直线a、b满足a∥α,b∥α,则a∥bD.如果直线a、b和平面α满足a∥b,a∥α,b⊄α,那么b∥α【精彩点拨】解答本题要牢牢地抓住直线和平面三种位置关系的特征,结合相关图形,依据位置关系的定义作出判断.【自主解答】如图,在长方体ABCDA′B′C′D′中,AA′∥BB′,AA′却在过BB′的平面AB′内,故选项A不正确;AA′∥平面B′C,BC⊂平面B′C,但AA′不平行于BC,故选项B不正确;AA′∥平面B′C,A′D′∥平面B′C,但AA′与A′D′相交,所以选项C不正确;选项D中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即选项D正确.故选D.【答案】 D空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.[再练一题]1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②经过两条异面直线中的一条直线有一个平面与另一条直线平行;③两条相交直线,其中一条与一个平面平行,则另一条一定与这个平面平行.A.0B.1C.2 D.3【解析】易知①正确,②正确.③中两条相交直线中一条与平面平行,另一条可能平行于平面,也可能与平面相交,故③错误.选C.【答案】 C[探究共研型]探究1【提示】如果两个平面有一个公共点,那么由公理3可知:这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面相互平行.探究2若一个平面内的任意一条直线都与另一个平面平行,那么这两个平面之间有什么位置关系?【提示】因为一个平面内任意一条直线都与另一个平面平行,所以该平面与另一平面没有公共点,根据两平面平行的定义知,这两个平面平行.探究3平面α内有无数条直线与平面β平行,那么α∥β是否正确?【提示】不正确.如图,设α∩β=l,则在平面α内与l平行的直线可以有无数条a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β都平行,但此时α不平行于β,而α∩β=l.已知下列说法:①两平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是________(将你认为正确的序号都填上).【精彩点拨】由平面间的位置关系逐一判断.【自主解答】①错.a与b也可能异面.②错.a与b也可能平行.③对.∵α∥β,∴α与β无公共点.又∵a⊂α,b⊂β,∴a与b无公共点.④对.由已知及③知:a与b无公共点,那么a∥b或a与b异面.⑤错.a与β也可能平行.【答案】③④1.仔细分析题目条件,将符号语言或自然语言转化为图形语言,通过图形借助定义确定两平面的位置关系.2.线、面之间的位置关系在长方体(或正方体)中都能体现,所以对于位置关系的判断要注意利用这一熟悉的图形找到反例或对应的关系.[再练一题]2.如果两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系是()A.平行B.相交C.平行或相交D.既不平行也不相交【解析】如果两平面的直线互相平行,可以有以下两种情况:【答案】 C1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交【解析】直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.【答案】 D2.如图2123所示,用符号语言可表示为()图2123A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂αD[显然题干图中α∥β,且l⊂α.]3.如图2124,在正方体ABCDA1B1C1D1中判断下列位置关系:图2124(1)AD1所在的直线与平面B1BCC1的位置关系是________.(2)平面A1BC1与平面ABCD的位置关系是________.【解析】(1)AD1所在的直线与平面B1BCC1没有公共点,所以平行.(2)平面A1BC1与平面ABCD有公共点B,故相交.【答案】(1)平行(2)相交4.a,b,c是三条直线,α,β是两个平面,如果a∥b∥c,a⊂α,b⊂β,c⊂β那么平面α与平面β的位置关系是__________.平行或相交[由正方体模型易知α∥β或α与β相交.]5.作出下列各题的图形.(1)画直线a,b,使a∩α=A,b∥α.(2)画平面α,β,γ,使α∥β,γ∩α=m,γ∩β=n.【解】如图所示:2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定1.理解直线与平面平行,平面与平面平行的判定定理.(重点)2.会用图形语言、文字语言、符号语言准确描述这两个判定定理,并知道其地位和作用.(易混点)3.能够应用两个判定定理证明直线与平面平行和平面与平面平行(难点)[基础·初探]教材整理1直线与平面平行的判定定理阅读教材P54~P55“例1”以上的内容,完成下列问题.能保证直线a与平面α平行的条件是()A.b⊂α,a∥bB.b⊂α,c∥α,a∥b,a∥cC.b⊂α,A、B∈a,C、D∈b,且AC=BDD.a⊄α,b⊂α,a∥b【解析】A错误,若b⊂α,a∥b,则a∥α或a⊂α;B错误,若b⊂α,c ∥α,a∥b,a∥c,则a∥α或a⊂α;C错误,若满足此条件,则a∥α或a⊂α或a与α相交;D正确.【答案】 D教材整理2平面与平面平行的判定定理阅读教材P56~P57“例2”以上的内容,完成下列问题.判断(正确的打“√”,错误的打“×”)(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(3)平行于同一平面的两条直线平行.()(4)若α∥β,且直线a∥α,则直线a∥β.()【解析】(1)错误.当这两条直线为相交直线时,才能保证这两个平面平行.(2)正确.如果两个平面平行,则在这两个平面内的直线没有公共点,则它们平行或异面.(3)错误.两条直线平行或相交或异面.(4)错误.直线a∥β或直线a⊂β.【答案】(1)×(2)√(3)×(4)×[小组合作型]已知公共边为AB的两个全等的矩形ABCD和ABEF不在同一平面内,P,Q分别是对角线AE,BD上的点,且AP=DQ(如图221).求证:PQ∥平面CBE.图221【精彩点拨】在平面CBE中找一条直线与PQ平行,从而证明PQ∥平面CBE.【自主解答】作PM∥AB交BE于点M,作QN∥AB交BC于点N,连接MN,如图,则PM∥QN,PMAB=EPEA,QNCD=BQBD.∵EA=BD,AP=DQ,∴EP=BQ.又AB=CD,∴PM綊QN,∴四边形PMNQ是平行四边形,∴PQ∥MN.又PQ⊄平面CBE,MN⊂平面CBE,∴PQ∥平面CBE.1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.图222[再练一题]1.如图222,四边形ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点,求证:SA∥平面MDB.【证明】连接AC交BD于点O,连接OM.∵M为SC的中点,O为AC的中点,∴OM∥SA,∵OM⊂平面MDB,SA⊄平面MDB,∴SA∥平面MDB.分别是A1B1、B1C1、C1D1、D1A1的中点.图223求证:(1)E、F、B、D四点共面;(2)平面MAN∥平面EFDB.【精彩点拨】(1)欲证E、F、B、D四点共面,需证BD∥EF即可.(2)要证平面MAN∥平面EFDB,只需证MN∥平面EFDB,AN∥平面BDFE即可.【自主解答】(1)连接B1D1,∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1.而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.(2)易知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB.∴MN∥平面EFDB.连接MF.∵M、F分别是A1B1、C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD,MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM⊄平面BDFE,DF⊂平面BDFE,∴AM∥平面BDFE.又∵AM∩MN=M,∴平面MAN∥平面EFDB.1.要证明面面平行,关键是要在其中一个平面中找到两条相交直线和另一个平面平行,而要证明线面平行,还要通过证明线线平行,注意这三种平行之间的转化.2.解决此类问题有时还需添加适当的辅助线(或辅助面)使问题能够顺利转化.[再练一题]2.如图224所示,已知四棱锥P ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点.图224求证:平面AFH∥平面PCE.【证明】因为F,H分别为CD,PD的中点,所以FH∥PC,因为PC⊂平面PCE,FH⊄平面PCE,所以FH∥平面PCE.又由已知得AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,而CE⊂平面PCE,AF⊄平面PCE,所以AF∥平面PCE.又FH⊂平面AFH,AF⊂平面AFH,FH∩AF=F,所以平面AFH∥平面PCE.[探究共研型]E,F,111111。
第7课时直线与平面、平面与平面
垂直的性质
基础达标(水平一 )
1.若△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则不重合的直线l,m的位置关系是().
A.相交
B.异面
C.平行
D.不确定
【解析】∵直线l⊥AB,l⊥AC,且AB∩AC=A,∴l⊥α.同理,m⊥α.由线面垂直的性质定理可得l∥m.
【答案】C
2.已知平面α、β和直线m、l,则下列命题中正确的是().
A.若α⊥β,α∩β=m,l⊥m,则l⊥β
B.若α∩β=m,l⊂α,l⊥m,则l⊥β
C.若α⊥β,l⊂α,则l⊥β
D.若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β
【解析】选项A缺少了条件l⊂α;选项B缺少了条件α⊥β;选项C缺少了条件
α∩β=m,l⊥m;选项D具备了面面垂直的性质定理的全部条件.故选D.
【答案】D
3.如图,PA⊥矩形ABCD,下列结论中不正确的是().
A.PD⊥BD
B.PD⊥CD
C.PB⊥BC
D.PA⊥BD
【解析】假设PD⊥BD,则BD⊥平面PAD.
因为BA⊥平面PAD,所以过平面外一点有两条直线与平面垂直,假设不成立,故A不正确.
因为PA⊥矩形ABCD,
所以PA⊥CD,AD⊥CD,
所以CD⊥平面PAD,所以PD⊥CD.
同理可证PB⊥B C.
因为PA⊥矩形ABCD,
所以由直线与平面垂直的性质得PA⊥BD.故选A.
【答案】A
4.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列说法正确的是().
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BCD
C.平面ABC⊥平面BDE,且平面ACD⊥平面BDE
D.平面ABC⊥平面ACD,且平面ACD⊥平面BDE
【解析】因为AB=CB,且E是AC的中点,所以BE⊥AC.同理得DE⊥AC,又BE∩DE=E,故AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE,故选C.
【答案】C
5.已知平面α,β和直线m,若α∥β,则满足下列条件中的(填序号)能使m⊥β成立.
①m∥α;②m⊥α;③m⊂α.
【解析】在上述条件中,仅由m⊥α,α∥β可得m⊥β.故选②.
【答案】②
6.若a,b表示两条不同的直线,α表示一个平面,则下列命题中正确的有.(填序号)
①a⊥α,b∥α⇒a⊥b;②a⊥α,a⊥b⇒b∥α;
③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.
【解析】由线面垂直的性质定理知①④正确.
【答案】①④
7.如图所示,在三棱锥P-ABC中,E,F分别为AC,BC边的中点.
(1)求证:EF∥平面PAB.
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°.求证:平面PEF⊥平面PBC.
【解析】(1)∵E,F分别为AC,BC边的中点,∴EF∥AB.
又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.
(2)∵PA=PC,E为AC的中点,∴PE⊥AC.
又平面PAC⊥平面ABC,PE⊂平面PAC,
∴PE⊥平面ABC,∴PE⊥BC.
又F为BC的中点,∴EF∥AB.
∵∠ABC=90°,∴AB⊥BC,∴BC⊥EF.
∵EF∩PE=E,∴BC⊥平面PEF.
∵BC⊂平面PBC,∴平面PBC⊥平面PEF.
拓展提升(水平二)
8.如图,在Rt△ACB中,∠ACB=90°,直线l过点A且垂直于平面ABC,动点P∈l,当点P逐渐远离点A时,∠PCB的大小().
A.变大
B.变小
C.不变
D.有时变大有时变小
【解析】∵BC⊥CA,l⊥平面ABC,
∴BC⊥l,BC⊥平面ACP,
∴BC⊥CP,∴∠PCB=90°,故选C.
【答案】C
9.如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是().
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
【解析】∵PA⊥平面ABC,
∴∠ADP是直线PD与平面ABC所成的角.
∵六边形ABCDEF是正六边形,
∴AD=2AB,即tan ∠ADP===1,
∴直线PD与平面ABC所成的角为45°,选D.
【答案】D
10.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形一定是.
【解析】如图,连接AC,BD,设AC与BD交于点O.
∵PA⊥平面ABCD,
∴PA⊥BD.
∵PC⊥BD,PA∩PC=P,
∴BD⊥平面PAC.
又AC⊂平面PAC,
∴BD⊥AC.又四边形ABCD为平行四边形,
∴四边形ABCD为菱形.
【答案】菱形
11.如图,已知四棱柱ABCD-A1B1C1D1的底面为菱形,且∠C1CB=∠C1CD=∠BCD=60°.
(1)证明:C1C⊥BD.
(2)当的值为多少时,能使A1C⊥平面C1BD?证明这个结论.
【解析】(1)如图,连接A1C1,AC,AC与BD交于点O,连接C1O.
因为四边形ABCD为菱形,所以AC⊥BD,BC=CD.
又因为∠C1CB=∠C1CD,C1C为公共边,
所以△C1BC≌△C1DC,所以C1B=C1D.
因为DO=OB,所以C1O⊥BD.
又AC⊥BD,AC∩C1O=O,所以BD⊥平面AA1C1C,
又C1C⊂平面AA1C1C,所以C1C⊥BD.
(2)当=1时,能使A1C⊥平面C1BD.证明如下:
由(1)可知BD⊥A1C.当=1时,四棱柱的六个面全都是菱形,同BD⊥A1C的证法类似可以证
得BC1⊥A1C.
又因为BD∩BC1=B,所以A1C⊥平面C1BD.。