第22页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
点评:本题所求分式可以进行配方,发现式子结构的特征为“二元齐次”,所给 不等式条件联想线性规划的思想,利用几何法求解最值.
第23页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
第7页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
(4) 设 a∈R,若 x>0 时均有(x2+ax-5)·(ax-1)≥0 成立,则 a=________.
1 2
解析:解法一:当 a=0 时,显然不能使原不等式对任意的 x>0 恒成立,故 a≠0.
当 x=1a,a≠0 时,原不等式恒成立.易知 a>0,对于方程 x2+ax-5=0,设其两
第19页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
x2+y2 为可行域内的点到原点距离的平方.可以看出图中点 A 距离原点最近,此时 距离为原点到直线 2x+y-2=0 的距离,d= -4+21=255,则(x2+y2)min=45; 图中点 B 距离原点最远,点 B 为 x-2y+4=0 与 3x-y-3=0 的交点,则 B(2,3), 则(x2+y2)max=13.
第11页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
2. 已知函数 f(x)=|xx+|+11,x∈R,则不等式 f(x2-2x)<f(3x-4)的解集是________. (1,2) 解析:f(x)=|xx+ |+11=1x--,21-1,xx<≥00,, f(x)在(-∞,0)上单调递增,在[0,