高考数学大题突破训练文科(9-12)
- 格式:doc
- 大小:1.36 MB
- 文档页数:19
2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。
考查角度2 三种常用的数列求和方法分组转化法求和已知等差数列{a n }满足a 2=2,a 1+a 4=5. {a n }的通项公式;(2)若数列{b n }满足b 1=3,b 2=6,{b n -a n }为等比数列,求数列{b n }的前n T n .利用已知条件求出等差数列{a n }的通项公式;(2)因为{b n n ,所以数列{b n }的前n 项和T n 可以看成数列{b n -a n }{a n }的前n 项和的总和.设等差数列{a n }的公差为d , {a n }满足a 2=2,a 1+a 4=5,∴{2=a 1+d ,5=2a 1+3d ,解得a 1=d=1, ∴a n =1+(n-1)×1=n.(2)设等比数列{b n -a n }的公比为q ,∵b 1=3,b 2=6, ∴b 1-a 1=3-1=2,b 2-a 2=6-2=4, ∴q=2.∴b n -a n =2×2n-1=2n , ∴b n =n+2n ,∴数列{b n }的前n 项和T n =(1+2+3+…+n )+(2+22+ (2))=n (n+1)2+2(1-2n )1-2=n (n+1)2+2n+1-2.从求和数列的通项入手,将其转化为等差数列与等比,再利用等差数列与等比数列的求和公式进行分组求和.错位相减法求和已知{a n }的前n 项和S n =4n-n 2+4. {a n }的通项公式;(2)求数列{7-a n 2n}的前n 项和T n .由{a n }的前n 项和求出数列{a n }的通项公式;(2)利用错(当n=1时要单独考虑).当n ≥2时,a n =S n -S n-1=4n-n 2-[4(n-1)-(n-1)2]=5-2n ; 1时,a 1=S 1=7.∴a n ={7,n =1,5-2n ,n ≥2.(2)令b n =7-a n 2n,当n=1时,T 1=b 1=7-721=0;当n ≥2时,b n =7-a n 2n=n+12n -1,∴T n =0+32+422+523+…+n2n -2+n+12n -1,12T n =322+423+524+…+n2n -1+n+12n , 两式相减得12T n =1+12+122+…+12n -1-n+12n=1-(12)n1-12-n+12n =2-n+32n ,∴T n =4-n+32n -1(n ≥2).当n=1时,满足上式. 综上所述,T n =4-n+32n -1.用错位相减法求和时,应注意:,特别是等比数列的公比为负数的情形; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比未知,应分公比等于1和不等于1两种情况求解.分类透析三 a n =1n (n+k )型的裂项相消法求和已知数列{a n }为单调递增数列,S n 为其前n 项和,2S n =a n 2+n.(1)求{a n }的通项公式. (2)若b n =a n+22n+1·a n ·a n+1,T n 为数列{b n }的前n 项和,证明:T n <12.由递推公式2S n =a n 2+n 求出{a n }的通项公式;(2)先用裂项相消法求和,再进行适当放缩证明.当n=1时,2S 1=2a 1=a 12+1,即(a 1-1)2=0,解得a 1=1.又{a n }为单调递增数列,所以a n ≥1.由2S n =a n 2+n 得2S n+1=a n+12+n+1, 所以2S n+1-2S n =a n+12-a n 2+1,整理得2a n+1=a n+12-a n 2+1,所以a n 2=(a n+1-1)2.所以a n =a n+1-1,即a n+1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n.(2)b n =a n+22n+1·a n ·a n+1=n+22n+1·n ·(n+1)=12n ·n -12n+1·(n+1),所以T n =(11-12)+(122×2-123×3)+…+[12n ×n -12n+1×(n+1)]=12-12n+1×(n+1)<12.用裂项相消法求和时,抵消后并不一定只剩下第一也有可能前面剩两项,后面也剩两项,或者前面剩几项,后面也剩几项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n+1=1d (1a n-1an+1),1an a n+2=12d (1a n-1an+2).分类透析四 a n =√n+√n+k型的裂项相消法求和已知数列{a n }的首项为a 1=1,且(a n +1)a n+1=a n ,n ∈N *. (1)求证:数列{1an}是等差数列.(2)设b n =√a n a n+1√n+1+√n,求数列{b n }的前n 项和T n .通过递推公式(a n +1)a n+1=a n 证明数列{1a n}是等差数列;(2)将b n =√a n a n+1√n+1+√n裂项,再求和.由a n+1=a n a n +1,得1a n+1=a n +1a n=1a n+1,则1an+1-1a n=1,又a 1=1,所以1a 1=1.所以数列{1an}是以1为首项,1为公差的等差数列.(2)由(1)可知,1a n=n ,故a n =1n.又b n =√a n a n+1√n+1+√n=√1n (n+1)√n+1+√n=√n+1-√n√n (n+1)=√n -√n+1,所以T n =b 1+b 2+b 3+…+b n=(1-1√2)+(1√2-1√3)+(1√3-1√4)+…+1√n -1√n+1=1-1√n+1.方法技巧 本题主要考查等差数列的定义与通项公式,以及裂项,属于中档难度题.常见的裂项技巧:(1)1n (n+k )=1k (1n -1n+k);(2)√n+k+√n =1k(√n +k -√n ); (3)1(2n -1)(2n+1)=12(12n -1-12n+1); (4)1n (n+1)(n+2)=12[1n (n+1)-1(n+1)(n+2)].此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.1.(2017年天津卷,理18改编)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d=2. (1)求数列{a n },{b n }的通项公式; (2)记c n =an b n ,求数列{c n }的前n 项和T n .由题意知a 1=b 1=1, a n =2n-1,b n =2n-1. (2)由(1)得c n =2n -12n -1,则T n =1+32+522+723+924+…+2n -12n -1, ①12T n =12+322+523+724+925+…+2n -12n. ②由①-②可得12T n =2+12+122+…+12n -2-2n -12n=3-2n+32n,故T n =6-2n+32n -1.2.(2015年全国Ⅰ卷,理17改编)设各项均为正数的数列{a n }的前n 项和S n 满足S n =(n3+r)a n ,且a 1=2.(1)求数列{a n }的通项公式. (2)设b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为T n .求证:T n ≥n 2n+1.∵Sn a n =13n+r ,a 1=2,∴a 1a 1=13+r=1,解得r=23.∴S n =n+23a n ,当n ≥2时,a n =S n -S n-1=n+23a n -n+13a n-1,化为a n a n -1=n+1n -1,∴a n =an a n -1·an -1a n -2·an -2a n -3·…·a3a 2·a2a 1·a 1=n+1n -1·n n -2·n -1n -3·…·42·31·2=n (n+1),当n=1时也成立,∴a n =n (n+1). (2)b n =1a 2n -1=1(2n -1)(2n -1+1)≥1(2n -1)(2n+1)=1212n -1-12n+1,∴数列{b n }的前n 项和为 T n ≥12(1-13)+(13-15)+…+12n -1-12n+1=12(1-12n+1)=n2n+1.∴T n ≥n 2n+1.3.(2014年全国Ⅰ卷,文17改编)已知等差数列{b n },正项等比数列{a n },a 1=b 1=1,a 2+b 2=7,且a 22=b 1(b 3+2).(1)求数列{a n },{b n }的通项公式;(2)-1)n b n +a n b 2n ,求数列{c n }的前n 项和T n .设等比数列{a n }的公比为q ,等差数列{b n }的公差为d ,由{a 22=b 1(b 3+2),a 2+b 2=7,得{q 2=3+2d ,q +1+d =7,解得{q =3,d =3或{q =-5,d =11.因为{a n }中各项均为正数,所以q=3,即d=3, 故a n =3n-1,b n =3n-2.(2)由(1)得c n =(-1)n (3n-2)+(6n-2)·3n-1,设数列{(-1)n (3n-2)}的前n 项和为A n ,数列{(6n-2)·3n-1}的前n 项和为B n .当n 为偶数时,A n =-1+4-7+10+…+[-(3n-5)]+(3n-2)=3n2;当n 为奇数时,A n =A n-1-(3n-2)=3n -32-3n+2=1-3n 2.又B n =4×30+10×31+16×32+…+(6n-2)×3n-1, ① 则3B n =4×31+10×32+16×33+…+(6n-2)×3n , ② 由①-②得-2B n =4+6(31+32+…+3n-1)-(6n-2)×3n=4+6×3-3n1-3-(6n-2)×3n =-5-(6n-5)×3n ,因此,B n =52+6n -52×3n .综上,T n ={3n+52+6n -52×3n ,n 为偶数,6-3n 2+6n -52×3n,n 为奇数.1.(2018新疆二模)在等差数列{a n }中,已知a 1+a 3+a 8=9,a 2+a 5+a 11=21.(1)求数列{a n }的通项公式;(2)若c n =2a n +3,求数列{a n ·c n }的前n 项和S n .设等差数列{a n }的公差为d , ∵{a 1+a 3+a 8=9,a 2+a 5+a 11=21,∴{3a 1+9d =9,3a 1+15d =21,解得{a 1=-3,d =2,∴a n =2n-5.(2)由(1)得c n =2a n +3=22(n-1)=4n-1,∴a n ·c n =(2n-5)·4n-1,∴S n =a 1·c 1+a 2·c 2+…+a n ·c n =-3×40+(-1)×41+1×42+…+(2n-5)×4n-1,4S n =-3×41+(-1)×42+1×43+…+(2n-5)×4n .两式相减得-3S n =-3×40+2×41+2×42+…+2×4n-1-(2n-5)×4n=-3+2×4(1-4n -1)1-4-(2n-5)×4n ,∴S n =179+6n -179×4n .2.(2018常德一模)已知数列{a n }的前n 项和为S n ,且a 1=2,(n+1)a n =2S n .(1)求数列{a n }的通项公式a n . (2)令b n =2(n+2)a n,设数列{b n }的前n 项和为T n ,求证:T n <34.由(n+1)a n =2S n ,得当n ≥2时,na n-1=2S n-1. (n-1)a n =na n-1, 即a n a n -1=n n -1,a n -1a n -2=n -1n -2,…,a 2a 1=21,利用累乘法,得a n a 1=n1,则a n =2n.当n=1时,a 1=2符合上式,故a n =2n. (2)由于a n =2n , 则b n =2(n+2)a n=1n (n+2)=12(1n -1n+2),T n =12(1-13+12-14+…+1n -1-1n+1+1n -1n+2) =12(1+12-1n+1-1n+2) =34-12(n+1)-12(n+2)<34.3.(2018海淀区二模)已知等差数列{a n }满足2a n+1-a n =2n+3. (1)求数列{a n }的通项公式;(2)若数列{a n +b n }是首项为1,公比为2的等比数列,求数列{b n }的前n设等差数列{a n }的公差为d , 2a n+1-a n =2n+3,所以{2a 2-a 1=5,2a 3-a 2=7,所以{a 1+2d =5,a 1+3d =7,所以{a 1=1,d =2.所以a n =a 1+(n-1)d=2n-1.(2)因为数列{a n +b n }是首项为1,公比为2的等比数列, 所以a n +b n =2n-1. 因为a n =2n-1,所以b n =2n-1-(2n-1).设数列{b n }的前n 项和为S n , 则S n =(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)]=1-2n 1-2-n (1+2n -1)2=2n -1-n 2.所以数列{b n }的前n 项和为2n-1-n 2.4.(厦门第一中学2017届高三上学期期中考试)设递增的等比数列{a n }的前n 项和为S n ,已知2(a n +a n+2)=5a n+1,且a 52=a 10.(1)求数列{a n }的通项公式及前n 项和S n ;(2)设b n =S n ·log 2a n+1(n ∈N *),求数列{b n }的前n 项和T n .设等比数列{a n}的公比为q,a n+a n+2)=5a n+1,得2q2-5q+2=0,或q=2.解得q=12因为{a n}为递增数列,所以q=2.又由a52=a10知,(a1q4)2=a1q9,所以a1=q,所以a1=q=2,a n=2n,S n=2n+1-2.(2)b n=S n·log2a n+1=(2n+1-2)(n+1)=(n+1)·2n+1-2(n+1),记数列{(n+1)·2n+1}的前n项和为P n,则P n=2×22+3×23+4×24+…+(n+1)·2n+1,2P n=2×23+3×24+…+n·2n+1+(n+1)·2n+2,两式相减得-(n+1)·2n+2=-n -P n=23+(23+24+…+2n+1)-(n+1)·2n+2=23+23(2n-1-1)2-1·2n+2,即P n=n·2n+2.又数列{2(n+1)}的前n项和为2[2+3+4+…+(n+1)]=n(n+3), 所以T n=n·2n+2-n(n+3).。
利用二级结论 优解椭圆小题——2023年高考数学甲卷理科第12题解法探究ʏ甘肃省张掖市实验中学 王新宏圆锥曲线试题是高考数学的必考试题,是重点也是难点㊂大部分同学对其有畏惧心理,找不到解决的突破口㊂2023年高考数学甲卷理科第12题是一道椭圆压轴小题,它以椭圆焦点三角形为背景,考查椭圆的定义㊁余弦定理㊁焦点三角形等知识,题干简洁,设问直接,内涵丰富㊂本题入手比较容易,方法比较多,考查同学们理性思维与数学探究能力,体现了逻辑推理㊁直观想象㊁数学运算等核心素养㊂解决本题的关键在于数形结合,即可考虑用余弦定理,也可考虑焦半径公式㊁焦点三角形面积公式㊁中线的向量公式㊁中线定理㊁极化恒等式等相关二级结论迅速求解㊂试题凝聚了命题专家的心血与智慧,简约而不简单,为不同能力水平的同学提供了相应的思考空间,是一道独具匠心的好题㊂1.试题呈现2023年高考数学甲卷理科第12题:图1如图1所示,设O 为坐标原点,F 1,F 2为椭圆C :x 29+y26=1的两个焦点,点P 在椭圆C上,c o s øF 1P F 2=35,则|O P |=( )㊂A.135 B .302 C .145 D .3522.解法探究解法1:(挖出两角互补这个隐含条件)由椭圆方程知a 2=9,b 2=6㊂因为c 2=a 2-b 2,所以a =3,c =3,e =c a =33㊂在әP F 1F 2中,由余弦定理得:c o s øF 1P F 2=|P F 1|2+|P F 2|2-|F 1F 2|22|P F 1|㊃|P F 2|㊂则35=|P F 1|2+|P F 2|2-(23)22|P F 1|㊃|P F 2|=(|P F 1|+|P F 2|)2-122|P F 1|㊃|P F 2|-1㊂所以85=36-122|P F 1|㊃|P F 2|=12|P F 1|㊃|P F 2|,解得|P F 1|㊃|P F 2|=152㊂在әP O F 1和әP O F 2中,øP O F 1+øP O F 2=π,由余弦定理得:|P O |2+|O F 1|2-|P F 1|22|P O |㊃|O F 1|=-|P O |2+|O F 2|2-|P F 2|22|P O |㊃|O F 2|㊂解得|P O |2=152,所以|O P |=302㊂点评:解题的关键是发现øP O F 1+øP O F 2=π,c o s øP O F 1=-c o s øP O F 2这样的隐含条件,它往往能帮助整个题目的顺利求解㊂解法2:(借焦半径之力)同解法1,可得|P F 1|㊃|P F 2|=152㊂设P (x P ,y P ),则由焦半径公式得|P F 1|=a +e x P =3+33x P ,|P F 2|=a -e x P =3-33x P ,所以9-13x 2P =152,得x 2P =92㊂将P (x P ,y P )的坐标代入椭圆方程得y 2P =3,所以|O P |=x 2P +y 2P =92+3=302,选B ㊂点评:二级结论之焦半径公式:椭圆x2a2+63 解题篇 创新题追根溯源 高二数学 2024年3月y 2b2=1(a >b >0)的两个焦点为F 1(-c ,0),F 2(c ,0),其上一点P (x 0,y 0),则|P F 1|=a +e x 0,|P F 2|=a -e x 0㊂证明过程:|P F 1|=(x 0+c )2+y 20=(x 0+c )2+b 2-b 2x 2a 2=c 2x 20a2+2c x 0+a2=c x 0a+a2=c x 0a+a =e x 0+a ㊂同理可证|P F 2|=a -e x 0㊂焦点在y 轴上的椭圆的焦半径公式为|P F 1|=a +e y 0,|P F 2|=a -e y 0㊂解法3:(与焦点三角形面积公式结合)设øF 1P F 2=2θ,0<θ<π2,所以S әP F 1F 2=b 2t a nøF 1P F 22=b 2t a n θ㊂由c o s øF 1P F 2=c o s 2θ=c o s 2θ-s i n 2θc o s 2θ+s i n 2θ=1-t a n 2θ1+t a n 2θ=35,解得t a n θ=12或-12(舍去)㊂由椭圆方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3㊂所以,S әP F1F2=12ˑ|F 1F 2|ˑ|y P |=12ˑ23ˑ|y P |=6ˑ12,解得y 2P =3㊂则x 2P =9ˑ1-36=92㊂因此,|O P |=x 2P +y 2P =3+92=302,故选B ㊂点评:二级结论之椭圆焦点三角形面积公式:椭圆x 2a 2+y2b 2=1(a >b >0)的两个焦点为F 1(-c ,0),F 2(c ,0),其上异于左右顶点的一点P (x 0,y 0)(x 0ʂʃa ),则әP F 1F 2的面积S =b 2t a n α2(α=øF 1P F 2)㊂证明过程:如图2所示,设P (x ,y ),由余弦定理得|F 1F 2|2=|P F 1|2+|P F 2|2-2|P F 1|㊃|P F 2|c o s α㊂①由椭圆的定义得:图2|P F 1|+|P F 2|=2a ㊂②则②2-①得:|P F 1|㊃|P F 2|=2b21+c o s α㊂故S әP F 1F 2=12|P F 1|㊃|P F 2|s i n α=12㊃2b 21+c o s αs i n α=b 2t a n α2㊂解法4:(与中线的向量公式结合)由题意知|P F 1|2+|P F 2|2-2|P F 1|㊃|P F 2|c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂①并且|P F 1|+|P F 2|=6㊂②解得|P F 1||P F 2|=152,|P F 1|2+|P F 2|2=21㊂而P O ң=12P F 1ң+P F 2ң ,所以|O P |=|P O ң|=12|P F 1ң+P F 2ң|㊂则|P O ң|=12|P F 1ң+P F 2ң|=12|P F 1ң|2+2P F 1ң㊃P F 2ң+|P F 2ң|2=1221+2ˑ35ˑ152=302,故选B ㊂图3点评:如图3所示,若A D 为әA B C 边B C 的中线,则A D ң=12(A B ң+A C ң),中线的向量公式在高考中也备受青睐㊂解法5:(与中线定理结合)由题意知|P F 1|+|P F 2|=2a =6㊂①|P F 1|2+|P F 2|2-2|P F 1||P F 2|㊃c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂②联立①②,解得|P F 1|2+|P F 2|2=21㊂73解题篇 创新题追根溯源 高二数学 2024年3月由中线定理可知,|O P |2=2(|P F 1|2+|P F 2|2)-|F 1F 2|24㊂易知|F 1F 2|=23,解得|O P |=302㊂故选B ㊂点评:(1)二级结论之中线定理:如图4所示,若平行四边形A B C D 的对角线交于点O ,则|A O ң|2=2(|A B ң|2+|A C ң|2)-|C B ң|24㊂图4证明过程:A B ң+A C ң=2A O ң,①A B ң-A Cң=C B ң㊂②①2+②2得2(|A B ң|2+|A C ң|2)=(2|A O ң|)2+|C B ң|2,则|A Oң|2=2(|A B ң|2+|A C ң|2)-|C B ң|24,得证㊂中线定理在计算有关中线长度与相邻两边长度关系时,化繁为简,从而事半功倍㊂(2)中线定理的一个有用推论:平行四边形对角线的平方和等于其相邻两边平方和的两倍,即在图4中,|B D ң|2+|A C ң|2=2(|A B ң|2+|A D ң|2)㊂解法6:(与极化恒等式结合)由题意知|P F 1|+|P F 2|=2a =6㊂①|P F 1|2+|P F 2|2-2|P F 1||P F 2|㊃c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂②联立①②,解得|P F 1||P F 2|=152,|P F 1|2+|P F 2|2=21㊂由极化恒等式得P F 1ң㊃P F 2ң=|P F 1ң|㊃|P F 2ң|c o s øF 1P F 2=|O P ң|2-|O F 1ң|2=92,解得|O P |=302㊂故选B ㊂点评:二级结论之极化恒等式:如图4所示,若平行四边形A B C D 的对角线交于点O ,则A B ң㊃A D ң=|A O ң|2-|B O ң|2㊂证明过程:A B ң+A C ң=2A O ң,①A B ң-A D ң=D B ң㊂②①2-②2,得A B ң㊃A C ң=14[(2|A O ң|)2-(2|B O ң|)2]=|A O ң|2-|B O ң|2,得证㊂极化恒等式在处理与中线有关的数量积时,往往会出奇制胜,事半功倍㊂3.巩固练习(1)(2019年高考浙江卷理科第15题)已知椭圆x 29+y25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段P F 的中点在以原点O 为圆心,|O F |为半径的圆上,则直线P F 的斜率是㊂(2)(2019年全国Ⅰ卷文科第12题)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与椭圆C 交于A ,B 两点,如果|A F 2|=2|F 2B |,|A B |=|B F 1|,则椭圆C 的方程为( )㊂A.x 22+y 2=1 B .x 23+y 22=1C .x 24+y 23=1 D .x 25+y24=1答案:(1)15 (2)B 4.小结与启示从以上内容可以看出,对于解析几何小题,一般不直接考虑设点的坐标运算,而是先画草图,接着充分考虑图形的几何性质特征与圆锥曲线定义,以及相关的二级结论,这样往往更能帮助同学们看清图形元素间内在的联系,挖掘问题本质,简化解题过程,减少运算量,提高解题的效率,快速准确解题㊂对高考真题进行适当的研究,不但可以明确高考重难点,把握高考方向,避免学习的随意性㊁盲目性,而且可以有效训练同学们的思维能力,培养创新意识,提高学习数学的兴趣㊂(责任编辑 徐利杰)83 解题篇 创新题追根溯源 高二数学 2024年3月。
高考数学复习考点知识归纳专题解析 专题18等比数列及其前n 项和考点知识归纳常考点01 等比数列中的基本运算 (1)【典例1】 ................................................................................................................................................ 1 【考点总结与提高】 ............................................................................................................................... 2 【变式演练1】 ........................................................................................................................................ 3 常考点02等比数列基本性质的应用 . (3)【典例2】 ................................................................................................................................................ 3 【考点总结与提高】 ............................................................................................................................... 4 【变式演练2】 ........................................................................................................................................ 4 常考点03 等比数列的通项公式及前n 项和 (5)【典例3】 ................................................................................................................................................ 5 【考点总结与提高】 ............................................................................................................................... 6 【变式演练3】 ........................................................................................................................................ 6 常考点04 等差等比混合应用 (7)【典例4】 ................................................................................................................................................ 7 【考点总结与提高】 ............................................................................................................................... 8 【变式演练4】 ........................................................................................................................................ 9 【冲关突破训练】 .. (10)常考点01 等比数列中的基本运算【典例1】1.(2021年全国高考甲卷数学(文)试题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =() A .7B .8C .9D .102.(2021年全国统一高考数学试卷(文科)(新课标Ⅲ))已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .2【答案】1.A 2.C【解析】1.∵n S 为等比数列{}n a 的前n 项和, ∴2S ,42S S -,64S S -成等比数列 ∴24S =,42642S S -=-= ∴641S S -=,∴641167S S =+=+=. 故选:A.2.设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【考点总结与提高】(1)等比数列的基本运算方法:①等比数列由首项1a 与公比q 确定,所有关于等比数列的计算和证明,都可围绕1a 与q 进行. ②对于等比数列问题,一般给出两个条件,就可以通过解方程(组)求出1a 与q ,对于1,,,,n n a a q n S 五个基本量,如果再给出第三个条件就可以“知三求二”. (2)基本量计算过程中涉及的数学思想方法:①方程思想.等比数列的通项公式和前n 项和公式联系着五个基本量,“知三求二”是一类最基本的运算,通过列方程(组)求出关键量1a 和q ,问题可迎刃而解.②分类讨论思想.等比数列的前n 项和公式为111,1(1),111n nn na q S a a qa q q q q≠,所以当公比未知或是代数式时,要对公比分1q 和1q ≠进行讨论.此处是常考易错点,一定要引起重视.③整体思想.应用等比数列前n 项和公式时,常把nq ,11a q-当成整体求解. 【变式演练1】1.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =()A .2B .1C .12D .182.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++= A .21B .42C .63D .84【答案】1.C 2.B【解析】1.由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.2.24242135121(1)21172a a a a q q q q q ++=++=∴++=∴=得2357135+()22142a a a q a a a +=++=⨯=,选B.常考点02等比数列基本性质的应用【典例2】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=() A .12B .24C .30D .322.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=() A .7B .5C .5-D .7-【答案】1.D 2.D【解析】1.设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.2.56474747822,4a a a a a a a a ==-+=∴=-=或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====- 1107a a ∴+=-故选D.【考点总结与提高】等比数列的性质是高考考查的热点之一,利用等比数列的性质求解可使题目减少运算量,题型以选择题或填空题为主,难度不大,属中低档题,主要考查通项公式的变形、等比中项的应用及前n 项和公式的变形应用等.注意:(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度. (2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【变式演练2】1.已知数列{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=() A .5B .10C .15D .202.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为___________. 【答案】1.A 2.64【解析】1.数列{a n }是等比数列,所以22243465,a a a a a a ==,所以()2222435463355352225a a a a a a a a a a a a ++=++=+=, 又因为0n a >,所以350a a +>,所以355a a +=,故选:A.2.设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=,于是当3n =或4时,12n a a a 取得最大值6264=.常考点03 等比数列的通项公式及前n 项和【典例3】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =()A .2n –1B .2–21–nC .2–2n –1D .21–n –1【答案】B【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-. 故选:B.2.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 A .21n n S a =- B .32n n S a =-C .43n n S a =-D .32n n S a =-【答案】D 【解析】S n =()111na q q--=11n a q a q -⋅-=21313na -=3-2a n .【考点总结与提高】1.求等比数列的通项公式,一般先求出首项与公比,再利用11n n a a q -=求解.但在某些情况下,利用等比数列通项公式的变形n mn m a a q -=可以简化解题过程.求解时通常会涉及等比数列的设项问题,常用的设项方法为:(1)通项法.设数列的通项公式11n n a a q -=来求解;(2)对称设元法:若所给等比数列的项数为2()n n N 且各项符号相同,则这个数列可设为21na q ,…,3a q ,,aaq q,3aq ,…,21n aq ; 若所给等比数列的项数为21()n nN ,则这个数列可设为1n a q,…,,,aa aq q ,…,1n aq . 2.当1q ≠时,若已知1,,a q n ,则用1(1)1n n a q S q求解较方便;若已知1,,n a q a ,则用11n na a qS q求解较方便.3.(1)形如1(1,0)n n a pa q p pq +=+≠≠的递推关系式,①利用待定系数法可化为1n a +-()11n q q p a p p =---,当101q a p -≠-时,数列{}1n qa p --是等比数列;②由1n n a pa q +=+,1(2)n n a pa q n -=+≥,两式相减,得11()n n n n a a p a a +--=-,当210a a -≠时,数列1{}n n a a +-是公比为p 的等比数列.(2)形如+1(,0)nn n a ca d c d cd =+≠≠的递推关系式,除利用待定系数法直接化归为等比数列外,也可以两边同时除以1n d +,进而化归为等比数列.【变式演练3】1.数列{A n }中,A 1=2,A m +n =A m A n .若A k +1+A k +2+…+A k +10=215-25,则k =()A .2B .3C .4D .52.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=() A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 【答案】1.C 2.D【解析】1.令m =1,则由A m +n =A m A n ,得A n +1=A 1A n ,即1n n A A +=A 1=2,所以数列{A n }是首项为2,公比为2的等比数列,所以A n =2n,所以A k +1+A k +2+…+A k +10=A k (A 1+A 2+…+A 10)=2k×102(12)12⨯--=12k +×(210-1)=215-25=25×(210-1),解得k =4.故选:C 2.由题得35211,82a q q a ==∴=.所以2232112()()22n n n n a a q ---==⨯=, 所以32251111()()()222n n n n n a a ---+=⋅=.所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D常考点04 等差等比混合应用【典例4】1.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为() A .24-B .3-C .3D .82.已知正项等差数列{}n a 和正项等比数列{}n b },111a b ==,3b 是2a ,6a 的等差中项,8a 是3b ,5b 的等比中项,则下列关系成立的是() A .100100a b >B .102411a b =C .105a b >D .999a b >【答案】1.A 2.B【解析】1.设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A2.设等差数列公差为d ,等比数列公比为q ,由题意可得:2326226835212262(1+7)b a a d q d a b b q d q =+=⎧⎧=+⎧⇒⇒⎨⎨⎨===⎩⎩⎩ 1,2-∴==n n n a n bA. 100100,2,==>99100100a 100b b a ,故A 不正确;B. ,2==10102411a 1024b =1024,故B 正确;C. ,2==4105a 10b =16,故C 不正确;D. ,2==8999a 99b =256,故D 不正确.故选:B【考点总结与提高】等差、等比数列混合题型属于常规题型,解题思路基本相同∶按照其中一种数列的通项公式展开已知中的各项,再根据另一种数列的性质列出等式即可;至于使用哪一种数列的通项公式展开已知中的各项,要根据实际题意以及计算方便与否来决定。
120难点34 导数的运算法则及基本公式应用导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导.●难点磁场(★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标.●案例探究[例1]求函数的导数:)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目.知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数.错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错.技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.xx x x x x x x x x x x x x x x x xx x x x x x x x xx x x x x x x y 222222222222222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(]))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+'+--+'-='解(2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -byv =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′=3μ2(av ′-by ′)=3μ2(av ′-by ′γ′)=3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法一:设y =f (μ),μ=v ,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x =f ′(12+x )·21112+x ·2x =),1(122+'+x f x x解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′121=f ′(12+x )·21(x 2+1)21-·(x 2+1)′ =f ′(12+x )·21(x 2+1) 21-·2x=12+x xf ′(12+x )[例2]利用导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *)(2)S n =C 1n +2C 2n +3C 3n +…+n C n n ,(n ∈N *)命题意图:培养考生的思维的灵活性以及在建立知识体系中知识点灵活融合的能力.属 ★★★★级题目.知识依托:通过对数列的通项进行联想,合理运用逆向思维.由求导公式(x n )′=nx n -1,可联想到它们是另外一个和式的导数.关键要抓住数列通项的形式结构.错解分析:本题难点是考生易犯思维定势的错误,受此影响而不善于联想.技巧与方法:第(1)题要分x =1和x ≠1讨论,等式两边都求导.解:(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时, ∵x +x 2+x 3+…+x n =xx x n --+11, 两边都是关于x 的函数,求导得 (x +x 2+x 3+…+x n )′=(x x x n --+11)′ 即S n =1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n ,两边都是关于x 的可导函数,求导得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n x n -1, 令x =1得,n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n , 即S n =C 1n +2C 2n +…+n C n n =n ·2n -1●锦囊妙计1.深刻理解导数的概念,了解用定义求简单的导数.xy ∆∆表示函数的平均改变量,它是Δx 的函数,而f ′(x 0)表示一个数值,即f ′122 (x )=x y x ∆∆→∆lim 0,知道导数的等价形式:)()()(lim )()(lim 0000000x f x x x f x f x x f x x f x x x '=--=∆-∆+→∆→∆. 2.求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键.3.对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.4.复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.●歼灭难点训练一、选择题1.(★★★★)y =e sin x cos(sin x ),则y ′(0)等于( )A.0B.1C.-1D.22.(★★★★)经过原点且与曲线y =59++x x 相切的方程是( ) A.x +y =0或25x +y =0 B.x -y =0或25x +y =0 C.x +y =0或25x -y =0 D.x -y =0或25x -y =0 二、填空题 3.(★★★★)若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________.4.(★★★★)设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________.三、解答题5.(★★★★)已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程.6.(★★★★)求函数的导数(1)y =(x 2-2x +3)e 2x ;(2)y =31xx -. 7.(★★★★)有一个长度为5 m 的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚1.4 m 时,梯子上端下滑的速度.8.(★★★★)求和S n =12+22x +32x 2+…+n 2x n -1,(x ≠0,n ∈N *).参考答案难点磁场解:由l 过原点,知k =00x y (x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0, ∴00x y =x 02-3x 0+2123y ′=3x 2-6x +2,k =3x 02-6x 0+2又k =00x y ,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23 由x ≠0,知x 0=23 ∴y 0=(23)3-3(23)2+2·23=-83 ∴k =00x y =-41 ∴l 方程y =-41x 切点(23,-83) 歼灭难点训练一、1.解析:y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1答案:B 2.解析:设切点为(x 0,y 0),则切线的斜率为k =00x y ,另一方面,y ′=(59++x x )′=2)5(4+-x ,故 y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0得x 0(1)=-3,y 0(2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53),从而得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- ,由于切线过原点,故得切线:l A :y =-x 或l B :y =-25x . 答案:A二、3.解析:根据导数的定义:f ′(x 0)=kx f k x f k ---+→)()]([(lim000(这时k x -=∆)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---⋅-=--∴→→→x f k x f k x f k x f k x f k x f k x f k k k 答案:-14.解析:设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n !答案:n !三、5.解:设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2)对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 12=2x 1(x -x 1),即y =2x 1x -x 12 ①124对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0∴直线l 方程为y =0或y =4x -46.解:(1)注意到y >0,两端取对数,得ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2xxx e x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1⋅+-=⋅+-⋅+-+-=⋅+-+-='∴+-+-=++--=++-'+-='⋅∴(2)两端取对数,得 ln|y |=31(ln|x |-ln|1-x |), 两边解x 求导,得 31)1(31)1(131)1(131)111(311x x x x y x x y x x x x y y --=⋅-⋅='∴-=---='⋅7.解:设经时间t 秒梯子上端下滑s 米,则s =5-2925t -,当下端移开1.4 m 时,t 0=157341=⋅,又s ′=-21 (25-9t 2)21-·(-9·2t )=9t 29251t -,所以s ′(t 0)=9×2)157(9251157⨯-⋅=0.875(m/s)8.解:(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1),当x ≠1时,1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+,两边同乘以x ,得 x +2x 2+3x 2+…+nx n =221)1()1(x nx x n x n n -++-++两边对x 求导,得 S n =12+22x 2+32x 2+…+n 2x n -1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。
突破4.3 空间直角坐标系【基础巩固】1..在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0) 2.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①OP 的中点坐标为;(12,1,32)②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( )A .2B .3C .4D .13.设点P (a ,b ,c )关于原点对称的点为P ′,则|PP ′|=( )A. B .2 C .|a +b +c | D .2|a +b +c |a 2+b 2+c 2a 2+b 2+c 24.已知点A (1,a ,-5),B (2a ,-7,-2)(a ∈R )则|AB |的最小值是( )A .3B .3C .2D .2 36365.点(2,0,3)在空间直角坐标系中的( )A .y 轴上B .xOy 面上C .xOz 面上D .第一象限内6.空间两点A (2,5,4),B (-2,3,5)之间的距离等于________.7.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标__________.1DB 1AC8.如图,在空间直角坐标系中,PA⊥平面OAB,PA=OA=2,∠AOB=30°.(1)求点P的坐标;5(2)若|PB|=,求点B的坐标.【能力提升】9.如图,在长方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.10.如图,在正方体中,分别是的中点,棱长为1. 试1111ABCD A B C D ,E F 111,BB D B 建立适当的空间直角坐标系,写出点的坐标.,E F11.如图,已知正方体ABCDA′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.12.如图所示,VABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.13.如图,在棱长为1的正方体ABCDA1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz.(1)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标,并写出P关于y轴的对称点P′的坐标;(2)在线段C1D上找一点M,使点M到点P的距离最小,求出点M的坐标.解析附后突破4.3 空间直角坐标系【基础巩固】1..在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0) 【答案】:C【解析】:点M 关于y 轴的对称点是M ′(-4,7,-6),点M ′在坐标平面xOz 上的射影是(-4,0,-6),故选C.2.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①OP 的中点坐标为;(12,1,32)②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( )A .2B .3C .4D .1【答案】:A【解析】:①显然正确;点P 关于x 轴对称的点的坐标为(1,-2,-3),故②错;点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故③错;④显然正确. 3.设点P (a ,b ,c )关于原点对称的点为P ′,则|PP ′|=( )A. B .2 C .|a +b +c | D .2|a +b +c | a 2+b 2+c 2a 2+b 2+c 2【答案】:B【解析】:P (a ,b ,c )关于原点对称的点为P ′(-a ,-b ,-c ),则|PP ′|==2.[a -(-a )]2+[b -(-b )]2+[c -(-c )]2a 2+b 2+c 24.已知点A (1,a ,-5),B (2a ,-7,-2)(a ∈R )则|AB |的最小值是( )A .3B .3C .2D .23636【答案】B【解析】|AB |2=(2a -1)2+(-7-a )2+(-2+5)2=5a 2+10a +59=5(a +1)2+54.∴a =-1时,|AB |2的最小值为54.∴|AB |min ==3.故选B . 5465.点(2,0,3)在空间直角坐标系中的( )A .y 轴上B .xOy 面上C .xOz 面上D .第一象限内【答案】C【解析】因为该点的y 坐标为0,根据坐标平面上点的特点可知该点在xOz 面上.故选C .6.空间两点A (2,5,4),B (-2,3,5)之间的距离等于________. 【答案】21【解析】|AB |==.(2+2)2+(5-3)2+(4-5)2217.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标__________.1DB 1AC【答案】(﹣4,3,2)【解析】如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A (4,0,0),C 1(0,1DB3,2),∴(﹣4,3,2).故答案为:(﹣4,3,2).1AC =8.如图,在空间直角坐标系中,PA ⊥平面OAB ,PA =OA =2,∠AOB =30°. (1)求点P 的坐标;(2)若|PB |=,求点B 的坐标.5【解析】(1)过A 作AE ⊥OB 于E ,则AE =1,OE =, 3所以点A 的坐标为(1,,0),所以点P 的坐标为(1,,2).33(2)因为点B 在y 轴上,因此可设点B 的坐标为B (0,b,0),则|PB |==,解得b =, 1+(b -3)2+453所以点B 的坐标为(0,,0). 3【能力提升】9.如图,在长方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.【解析】以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.10.如图,在正方体中,分别是的中点,棱长为1. 试1111ABCD A B C D ,E F 111,BB D B 建立适当的空间直角坐标系,写出点的坐标.,E F【解析】建立如图所示坐标系.方法一:点在面上的射影为,竖坐标为.所以. E xDy ,1,()1,0B B 121(1,1,)2E 在面上的射影为的中点,竖坐标为1.所以. F xDy BD G 11(,,1)22F 方法二:,,,为的中点,为的中点.11,()1,1B 10,()0,1D ()1,1,0B E 1B B F 11B D 故点的坐标为即,点的坐标为,即E 111110(,,)222+++1(1,1,2F 101011(,,)222+++. 11(,,1)2211.如图,已知正方体ABCD A ′B ′C ′D ′的棱长为a ,M 为BD ′的中点,点N 在A ′C ′上,且|A ′N |=3|NC ′|,试求|MN |的长.(a4,34a,a)因为|A′N|=3|NC′|,所以N为A′C′的四等分点,从而N为O′C′的中点,故N.(a2-a4)2+(a2-3a4)2+(a2-a)264根据空间两点间的距离公式,可得|MN|==a.12.如图所示,VABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.【答案】V(0,0,3),A(-1,-1,0),B(1,-1,0),C(1,1,0),D(-1,1,0).【解析】∵底面是边长为2的正方形,∴|CE|=|CF|=1.∵O点是坐标原点,∴C(1,1,0),同样的方法可以确定B(1,-1,0),A(-1,-1,0),D(-1,1,0).∵V 在z 轴上,∴V (0,0,3).13.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz .(1)若点P 在线段BD 1上,且满足3|BP |=|BD 1|,试写出点P 的坐标,并写出P 关于y 轴的对称点P ′的坐标;(2)在线段C 1D 上找一点M ,使点M 到点P 的距离最小,求出点M 的坐标.【答案】(1)P ′;(2)当m =时,|MP |取得最小值,此时点M 为(-23,23,-13)1222. (0,12,12)【解析】(1)由题意知P 的坐标为, (23,23,13)P 关于y 轴的对称点P ′的坐标为. (-23,23,-13)(2)设线段C 1D 上一点M 的坐标为(0,m ,m ),则有|MP |===. (-23)2+(m -23)2+(m -13)22m 2-2m +12(m -12)2+12当m =时,|MP |取得最小值,所以点M 为. 1222(0,12,12)如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k 算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。
高考数学大题突破训练(九)1、已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n项和n T .2、在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;(Ⅱ)甲、乙两单位的演出序号不相邻的概率.3、在∆ABC 中,cos cos AC B AB C=。
(Ⅰ)证明B=C : (Ⅱ)若cos A =-13,求sin 4B 3π⎛⎫+ ⎪⎝⎭的值。
4、如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°,E 为线段AB 的中线,将△ADE 沿直线DE 翻折成△A ′DE ,使平面A ′DE ⊥平面BCD ,F 为线段A ′C 的中点.(Ⅰ)求证:BF ∥平面A ′DE ;(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面5、已知函数32()331f x x ax x =-++(Ⅰ)设2a =,求()f x 的单调区间;(Ⅱ)设()f x 在区间(2,3)中至少有一个极值点,求a 的取值范围.6、已知椭圆22221x y a b+=(a>b>0)的离心率e=2,连接椭圆的四个顶点得到的菱形的面积为4. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标为(-a ,0).(i )若AB 5||=,求直线l 的倾斜角; (ii )若点Q y 0(0,)在线段AB 的垂直平分线上,且QA QB=4.求y 0的值.高考数学大题突破训练(十)1、某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶:字样即为中奖,中奖概率为16,甲、乙、丙三位同学每人购买了一瓶该饮料, (Ⅰ)求三位同学都没的中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率。
2、已知函数2()sin()cos cos (0)f x x x x πωωωω=-+>的最小正周期为π.(Ⅰ)求ω的值. (Ⅱ)将函数()y f x =的图像上各点的横坐标缩短到原来的21,纵坐标不变,得到函数()y g x =()g x 在区间0,16π⎡⎤⎢⎥⎣⎦上的最小值。
3、已知等差数列{}n a 的前3项和为6,前8项和为-4.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1(4)((0,)n n n b a qq n N -*=-≠∈,求数列{}n b 的前n 项和n S 。
4、如图,直三棱柱ABC-A 1B 1C 1中,AC =BC ,AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3EB 1.(Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45o ,求二面角A 1-AC 1-B 1的大小.5、已知函数42()32(31)4f x ax a x x =-++(I )当16a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围6、已知斜率为1的直线l 与双曲线C :22221(0,0)x y a b a b-=>>相交于B 、D 两点,且BD 的中点为M(1,3).(Ⅰ)求C 的离心率;(Ⅱ)设C 的右顶点为A ,右焦点为F ,DF BF =17∙,证明:过A 、B 、D 三点的圆与x 轴相切.高考数学大题突破训练(十一)1、已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{}2n a 的前n 项和S n.2、投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.3、在ABC 中,a b c 、、分别为内角A B C 、、的对边,且2sin (2)sin (2)sin a A b c B c b C =+++(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,是判断ABC 的形状。
4、如图3所示,在长方体ABC D-1A 1B 1C 1D 中,AB=AD =1, AA 1=2, M 是棱C 1C 的中点.(Ⅰ)求异面直线1A M和1C 1D 所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M.5、设函数32()63(2)2f x x a x ax =+++.(1)若()f x 的两个极值点为12,x x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(,)-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由.6、设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60 ,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B = ,求椭圆C 的方程。
高考数学大题突破训练(十二)1、某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。
首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过...的通道,直至走出迷宫为止. (1)求走出迷宫时恰好用了1小时的概率;(2)求走出迷宫的时间超过3小时的概率.2、已知函数x x x f 222sin sin )(-=.(Ⅰ)求函数()f x 的最小正周期;(II )求函数()f x 的最大值及()f x 取最大值时x 的集合。
3、已知等差数列{}n a 满足:3577,26a a a =+=.{}n a 的前n 项和为n S 。
(Ⅰ)求n a 及n S ;(Ⅱ)令21()1n n b n N a +=∈-,求数列{}n a 的前n 项和T n .4、如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .5、设函数321a x x bx c 32f -++(x )=,其中a >0,曲线x y f =()在点P (0,0f ())处的切线方程为y=1(Ⅰ)确定b 、c 的值(Ⅱ)设曲线x y f =()在点(11x x f ,())及(22x x f ,())处的切线都过点(0,2)证明:当12x x ≠时,12'()'()f x f x ≠(Ⅲ)若过点(0,2)可作曲线x y f =()的三条不同切线,求a 的取值范围。
6、已知椭圆C 的左、右焦点坐标分别是(,,离心率是3,直线y=t 与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆P,圆心为P 。
(Ⅰ)求椭圆C 的方程;(Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标;(Ⅲ)设Q (x ,y )是圆P 上的动点,当t 化时,求y 的最大值。
高考数学大题突破训练(九)参考答案1、解:(I )因为}{n a 是首项为,191=a 公差2-=d 的等差数列,所以,212)1(219+-=--=n n a n2)1(19++=∆n n n S (II )由题意,31+=-n n n a b 所以,1+=n n b b.21320)331(21-++-=++++=-n n n n n n S T2、解:考虑甲、乙两个单位的排列,甲、乙两单位可能排列在6个位置中的任两个,有3026=A 种等可能的结果。
(I )设A 表示“甲、乙的演出序号均为偶数”则A 包含的结果有623=A 种, 故所求概率为.51306)(==A P (II )设B 表示“甲、乙两单位的演出序号不相邻” 则B 表示甲、乙两单位序号相邻,B 包含的结果有10!25=⨯种。
从而.3230101)(1)(=-=-=B P B P 3、(Ⅰ)证明:在△ABC 中,由正弦定理及已知得sin B sin C =cosB cosC .于是sinBcosC-cosBsinC=0,即sin (B-C )=0.因为B C ππ-<-<,从而B-C=0.所以B=C.(Ⅱ)解:由A+B+C=π和(Ⅰ)得A=π-2B,故cos2B=-cos (π-2B )=-cosA=13. 又0<2B<π,于是=3. 从而,cos4B=227cos 2sin 29B B -=-.所以sin(4)sin 4cos cos 4sin 333B B B πππ+=+=4、(Ⅰ)证明:取AD 的中点G ,连结GF ,CE ,由条件易知FG ∥CD ,FG =12CD . BE ∥CD ,BE =12CD . 所以FG ∥BE ,FG =BE . 故四边形BEGF 为平行四边形, 所以BF ∥平面A ′DE .(Ⅱ)解:在平行四边形ABCD 中,设BC =a,则AB -CD =2A ,AD =AE =EB =a ,连CE . 因为∠ABC =120°,在△BCE 中,可得CE 在△ADE 中,可得DE =a, 在△CDE 中,因为CD 2=CE 2+DE 2,所以CE ⊥DE , 在正三角形ADE 中,M 为DE 中点,所以A ′M ⊥DE .由平面ADE 平面BCD , 可知AM ⊥平面BCD ,A ′M ⊥CE .取A ′E 的中点N ,连线NM 、NF ,所以NF ⊥DE ,NF ⊥A ′M .因为DE 交A ′M 于M , 所以NF .平面A ′DE ,则∠FMN 为直线FM 与平面A ′DE 新成角.在Rt △FMN 中,NF a,M N =12a,FM =a,则cos/ =12. 所以直线F M 与平面A ′DE 所成角的余弦值为12.5、Ⅰ)当a=2时,32()631,()3(22f x x x x f x x x '=-++=--当(,2x ∈-∞时()0,()f x f x '>在(,2-∞单调增加;当(2x ∈+时()0,()f x f x '<在(22单调减少;当(2)x ∈+∞时()0,()f x f x '>在(2)+∞单调增加;综上所述,()f x 的单调递增区间是(,2-∞-和(2)+∞,()f x 的单调递减区间是(22(Ⅱ)22()3[()1]f x x a a '=-++,当210a -≥时,()0,()f x f x '≥为增函数,故()f x 无极值点;当210a -<时,()0f x '=有两个根12x a x a ==+由题意知,23,23a a <<<+<或 ①式无解,②式的解为5543a <<, 因此a 的取值范围是5543⎛⎫ ⎪⎝⎭,.6、(Ⅰ)解:由e=c a =2234a c =.再由222c a b =-,解得a=2b. 由题意可知12242a b ⨯⨯=,即ab=2. 解方程组2,2,a b ab =⎧⎨=⎩得a=2,b=1.所以椭圆的方程为2214x y +=.(Ⅱ)(i)解:由(Ⅰ)可知点A 的坐标是(-2,0).设点B 的坐标为11(,)x y ,直线l 的斜率为k.则直线l 的方程为y=k (x+2).于是A 、B 两点的坐标满足方程组22(2),1.4y k x x y =+⎧⎪⎨+=⎪⎩消去y 并整理,得 2222(14)16(164)0k x k x k +++-=.由212164214k x k --=+,得2122814k x k -=+.从而12414ky k=+.所以2||14AB k ==+.由||5AB ==.整理得42329230k k --=,即22(1)(3223)0k k -+=,解得k=1±. 所以直线l 的倾斜角为4π或34π.(ii )解:设线段AB 的中点为M ,由(i )得到M 的坐标为22282,1414k k k k ⎛⎫- ⎪++⎝⎭. 以下分两种情况:(1)当k=0时,点B 的坐标是(2,0),线段AB 的垂直平分线为y 轴,于是()()002,,2,.QA y QB y =--=- 由4QA QB ∙=,得y =±0(2)当0k ≠时,线段AB 的垂直平分线方程为2222181414k k y x k k k ⎛⎫-=-+ ⎪++⎝⎭。