2016年秋季新版湘教版八年级数学上学期3.3、实数教案3
- 格式:doc
- 大小:119.00 KB
- 文档页数:3
新版湘教版秋八年级数学上册第三章实数课题实数的概念说课稿一. 教材分析湘教版秋八年级数学上册第三章实数,主要介绍了实数的概念、分类和运算。
这一章是初中数学的基础知识,对于学生来说非常重要。
教材从学生的实际出发,通过生活中的实例引入实数的概念,使学生能够更好地理解和掌握。
教材还通过丰富的例题和习题,帮助学生巩固实数的概念和运算方法。
二. 学情分析八年级的学生已经掌握了有理数的概念和运算,对数学有一定的认识和理解。
但是,实数的概念对于学生来说是一个新的概念,需要通过学习来理解和掌握。
在实数的学习过程中,学生可能会对实数的分类和运算方法产生困惑,需要教师进行引导和解答。
三. 说教学目标1.知识与技能:学生能够理解实数的概念,掌握实数的分类和运算方法。
2.过程与方法:学生能够通过实例和练习,培养观察、分析和解决问题的能力。
3.情感态度与价值观:学生能够培养对数学的兴趣和热情,形成积极的数学学习态度。
四. 说教学重难点1.教学重点:实数的概念、分类和运算方法。
2.教学难点:实数的分类和运算方法的理解和应用。
五. 说教学方法与手段在教学过程中,我将采用问题驱动法和案例教学法,引导学生通过实例和练习,理解和掌握实数的概念和运算方法。
同时,利用多媒体教学手段,展示实数的图形和运算过程,帮助学生更好地理解和掌握。
六. 说教学过程1.导入:通过生活中的实例,引入实数的概念,激发学生的兴趣和好奇心。
2.新课导入:讲解实数的概念和分类,引导学生通过实例理解实数的概念。
3.例题讲解:通过例题,讲解实数的运算方法,引导学生理解和掌握。
4.练习巩固:学生进行练习,巩固实数的概念和运算方法。
5.课堂小结:总结本节课的重点和难点,帮助学生巩固记忆。
七. 说板书设计板书设计要简洁明了,能够突出实数的概念和运算方法。
可以设计一个,列出实数的分类和运算方法,方便学生理解和记忆。
八. 说教学评价教学评价可以通过课堂练习、课后作业和单元测试来进行。
新版湘教版秋八年级数学上册第三章实数课题实数的概念教学设计一. 教材分析湘教版秋八年级数学上册第三章实数课题实数的概念,是学生在学习了有理数和无理数的基础上,进一步深化对实数概念的理解。
本节课的主要内容有实数的定义、实数与数轴的关系、实数的分类等。
通过本节课的学习,使学生掌握实数的概念,了解实数与数轴的关系,培养学生数形结合的数学思想。
二. 学情分析八年级的学生已经学习了有理数和无理数,对数的运算和性质有一定的了解。
但是,对于实数的定义和实数与数轴的关系,还需要进一步的引导和讲解。
因此,在教学过程中,教师需要结合学生的实际情况,采用生动形象的教学方法,帮助学生理解和掌握实数的概念。
三. 教学目标1.知识与技能:使学生理解实数的概念,了解实数与数轴的关系,会正确运用实数进行运算。
2.过程与方法:通过探究实数的定义和性质,培养学生自主学习的能力和数形结合的数学思想。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.教学重点:实数的定义、实数与数轴的关系。
2.教学难点:实数的分类、实数的性质。
五. 教学方法1.情境教学法:通过设置生动的情景,引导学生主动参与学习,提高学生的学习兴趣。
2.启发式教学法:教师提出问题,引导学生思考,激发学生的求知欲。
3.小组合作学习法:学生分组讨论,共同解决问题,培养学生的合作能力。
六. 教学准备1.准备课件:制作实数概念的课件,包括实数的定义、实数与数轴的关系等内容。
2.准备练习题:针对本节课的内容,准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用数轴,引导学生回顾有理数和无理数的概念,从而引出实数的概念。
2.呈现(10分钟)教师通过课件,呈现实数的定义和性质,引导学生了解实数与数轴的关系。
3.操练(10分钟)学生分组讨论,共同解决教师提出的问题,如实数的分类、实数的性质等。
4.巩固(10分钟)教师针对学生的讨论结果,进行讲解和总结,帮助学生巩固实数的概念。
3.3实数第1课时实数的分类及性质1.进一步理解有理数和无理数的概念,会把实数进行分类;(重点,难点)2.了解实数范围内的数轴、相反数、绝对值的意义.(难点)一、情境导入前面我们学习了有理数和无理数,把数的范围又扩大了,那么这个大范围的数叫作什么数?怎样分类?二、合作探究探究点一:实数的概念和分类把下列各数分别填到相应的集合内:-3.6,27,4,5,3-7,0,π2,-3125,227,3.14,0.10100….(1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数.解:(1)有理数集合{-3.6,4,5,0,-3125,227,3.14,…}(2)无理数集合{27,3-7,π2,0.10100…,…}(3)整数集合{4,5,0,-3125,…}(4)负实数集合{-3.6,3-7,-3125,…}方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.探究点二:实数与数轴上的点一一对应【类型一】求数轴上的点对应的实数如图所示,数轴上A ,B 两点表示的数分别是-1和3,点B 关于点A 的对称点为C ,求点C 所表示的实数.解析:首先结合数轴和已知条件可以求出线段AB 的长度,然后利用对称的性质即可求出C 所表示的实数.解:∵数轴上A ,B 两点表示的数分别为-1和3,∴点B 到点A 的距离为1+ 3.则点C 到点A 的距离也为1+3,设点C 表示的实数为x .则点A 到点C 的距离为-1-x ,∴-1-x =1+3,∴x =-2- 3.∴点C 所表示的实数为-2- 3.方法总结:本题主要考察了实数与数轴之间的对应关系,两点之间的距离为两数差的绝对值.【类型二】利用数轴进行估算如图所示,数轴上A ,B 两点表示的数分别是2和5.1,则A ,B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个 解析:∵2≈1.414,∴2和5.1之间的整数有2,3,4,5,∴A ,B 两点之间表示整数的点共有4个,故选C.方法总结:要确定两点间的整数点的个数,也就是需要比较两个端点与邻近整点的大小,牢记数轴上右边的点表示的实数比左边的点表示的实数大.【类型三】结合数轴进行化简 实数在数轴上的对应点如图所示,化简:a 2-|b -a |-(b +c )2.解析:由于a 2=|a |,(b +c )2=|b +c |,所以解题时应先确定a ,b -a ,b +c 的符号,再根据绝对值的意义化简.解:由图可知,a <0,b -a >0,b +c <0.所以,原式=|a |-|b -a |-|b +c |=-a -(b -a )+(b +c )=-a -b +a +b +c =c . 方法总结:根据实数的绝对值的意义正确去绝对值符号是解题的关键:|a |=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).探究点三:相反数和绝对值求下列各数的相反数和绝对值.(1)5; (2)2-3; (3)-1+ 3.解析:根据相反数、绝对值的定义求解.解:(1)5的相反数是-5,绝对值是5;(2)2-3的相反数是-2+3,绝对值是-2+3;(3)-1+3的相反数是1-3,绝对值是-1+ 3.方法总结:只有符号不同的两个数互为相反数,求一个数的相反数时,只需在这个数的前面加上“-”号再去括号即可.求一个数的绝对值,需要分清这个数是正数、0还是负数.正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.三、板书设计实数⎩⎪⎨⎪⎧实数的分类⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数分数无理数实数与数轴——实数和数轴上的点一一对应实数的性质⎩⎪⎨⎪⎧相反数绝对值本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,是无理数.。
湘教版数学八年级上册《3.3 实数》教学设计3一. 教材分析湘教版数学八年级上册《3.3 实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统性的学习。
本节课主要让学生了解实数的定义,掌握实数与数轴的关系,以及实数的分类。
教材通过丰富的实例,引导学生探究实数的性质,进而培养学生的逻辑思维能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。
但是,学生对实数的认识还比较模糊,对实数与数轴的关系尚不明确。
因此,在教学过程中,教师需要以学生已有的知识为基础,通过生动的实例和丰富的活动,让学生深入理解实数的内涵,明确实数与数轴的密切关系。
三. 教学目标1.了解实数的定义,掌握实数与数轴的关系。
2.理解实数的分类,能正确辨别各种实数。
3.培养学生的逻辑思维能力和抽象思维能力。
4.提高学生运用实数解决问题的能力。
四. 教学重难点1.实数的定义及其与数轴的关系。
2.实数的分类。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解实数的含义。
2.数形结合法:利用数轴帮助学生直观地理解实数与数轴的关系。
3.讨论法:分组讨论,让学生在交流中掌握实数的分类。
4.练习法:设计具有针对性的练习题,巩固所学知识。
六. 教学准备1.教学课件:制作涵盖实数定义、实数与数轴关系、实数分类等方面的课件。
2.数轴教具:准备数轴模型,便于学生直观地理解实数与数轴的关系。
3.练习题:准备适量的一课时练习题,包括选择题、填空题、解答题等。
七. 教学过程1.导入(5分钟)利用生活实例引入实数的概念,如身高、体重等。
引导学生思考:这些实数能否用数轴上的点来表示?从而激发学生的学习兴趣。
2.呈现(10分钟)介绍实数的定义,让学生明确实数包括有理数和无理数。
通过数轴教具,展示实数与数轴的关系,引导学生理解数轴上的点与实数的对应关系。
3.操练(10分钟)学生分组讨论实数的分类,教师巡回指导。
湘教版数学八年级上册3.3《实数的分类及性质》说课稿一. 教材分析湘教版数学八年级上册3.3《实数的分类及性质》这一节主要介绍了实数的概念、分类及性质。
在教材中,学生已经学习了有理数和无理数的概念,但对实数的分类及性质的理解还不够深入。
因此,本节课旨在帮助学生建立实数的分类体系,理解实数的性质,并能够运用实数的性质解决实际问题。
教材通过举例、探究、归纳的方式,引导学生了解实数的分类,包括正实数、负实数和零。
同时,教材还介绍了实数的性质,如加法、减法、乘法、除法的运算规则,以及实数的绝对值、相反数等概念。
这些内容为学生提供了丰富的学习资源,有助于提高学生的理解能力和思维能力。
二. 学情分析学生在学习这一节之前,已经掌握了有理数和无理数的概念,对数学运算有一定的基础。
但是,对于实数的分类及性质,学生可能还存在以下问题:1.对实数概念的理解不够深入,容易将实数与有理数、无理数混淆。
2.对实数分类的体系不清晰,难以区分正实数、负实数和零。
3.对实数性质的掌握不够熟练,不能灵活运用实数的性质解决实际问题。
因此,在教学过程中,我们需要针对这些问题进行引导和讲解,帮助学生建立实数的分类体系,理解实数的性质,并能够运用实数的性质解决实际问题。
三. 说教学目标1.知识与技能目标:学生能够理解实数的概念,掌握实数的分类及性质,能够运用实数的性质解决实际问题。
2.过程与方法目标:通过举例、探究、归纳的方式,培养学生对实数的分类及性质的理解,提高学生的思维能力和分析能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的自主学习能力,使学生感受到数学在生活中的应用价值。
四. 说教学重难点1.教学重点:实数的概念、分类及性质。
2.教学难点:实数的分类体系的理解,实数性质的运用。
五. 说教学方法与手段1.教学方法:采用举例、探究、归纳的教学方法,引导学生主动参与课堂,提高学生的思维能力和分析能力。
2.教学手段:使用多媒体课件,结合板书,进行直观、生动的讲解,帮助学生理解实数的分类及性质。
3.3 实数-湘教版八年级数学上册教案一、教学目标1.了解有理数和无理数的概念。
2.掌握实数的基本性质。
3.能够正确比较实数大小。
4.能够解决实数的加减乘除问题。
二、教学重点和难点1.教学重点:实数的概念和基本性质。
2.教学难点:实数的分类和比较大小。
三、教学内容和方法1. 实数的概念和分类•教学内容:介绍实数的定义和有理数、无理数的概念。
•教学方法:通过课堂讲解和实际例子分析,使学生理解实数的概念和分类。
2. 实数的基本性质•教学内容:介绍实数的加减乘除运算,以及实数的比较大小的方法,说明实数是一个有序数域。
•教学方法:通过计算实数的加减乘除以及实例解题,使学生掌握实数的基本性质。
3. 实数的比较大小•教学内容:介绍实数的大小比较,包括数轴和大小关系符号的使用。
•教学方法:通过举例说明实数的大小比较方法,让学生熟练掌握。
4. 实数的加减乘除•教学内容:介绍实数的加减乘除方法,以及应用场景。
•教学方法:通过实例讲解和练习,让学生掌握实数的加减乘除方法。
四、教学设计1. 导入环节请学生用数轴表示数-2和数3,让学生感受有理数和无理数的概念。
2. 展开教学•第一步,介绍实数的概念和分类。
通过实际例子,让学生清楚地认识到有理数和无理数的含义,理解实数的概念和分类。
•第二步,介绍实数的基本性质。
通过计算实数的加减乘除,让学生掌握实数的基本性质。
同时,说明实数是一个有序数域。
•第三步,介绍实数的大小比较。
通过举例说明实数的大小比较方法,让学生熟练掌握。
•第四步,介绍实数的加减乘除。
通过实例讲解和练习,让学生掌握实数的加减乘除方法。
说明实数加减乘除的应用场景。
3. 总结与作业通过小组讨论,总结本节课的知识点,以及加深对实数的理解。
布置作业:完成教材中的练习。
五、教学反思本节课通过课堂讲解和实例分析,使学生掌握实数的概念和基本性质,以及实数的大小比较和加减乘除方法。
通过让学生进行动手实践,实践出真知,提高了学生的综合能力。
3.3实数第1课时 实数的概念1.从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系.2.让学生经历数系扩展的过程,体会数系的扩展源于社会实际,又为社会实际服务的辩证关系 .3.培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点.【教学重点】无理数、实数的概念和实数的分类.【教学难点】无理数与有理数的本质区别,实数与数轴上的点的一一对应关系.一、情景导入,初步认知我们在前面学过无理数,什么样的数是无理数呢?举例说明?【教学说明】复习相关内容,为本节课的教学作准备.二、思考探究,获取新知1.下列各数中,哪些是有理数?哪些是无理数?2、0、1、414、9、π、-32、32、0.1010010001… (相邻两个1之间逐次增加一个0)【教学说明】学生自己回忆有理数、无理数的分类,为引入实数的概念及分类作好铺垫.【归纳结论】有理数和无理数统称为实数.2.根据实数的概念,你能对实数分类吗?【归纳结论】实数以概念可分为:【教学说明】通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.3.任何有理数都可以用数轴上唯一的一个点来表示,那么无理数是否可以用数轴上的点来表示呢?思考:如何用数轴上的点表示无理数8和-8?我们已经知道,一个面积为8的正方形的边长是8,因此我们以原点为圆心,以正方形的边长为半径画弧,与正半轴的交点M就表示8,与负半轴的交点N就表示-8,如图所示:这样,我们就分别用数轴上唯一的一个点表示出了无理数8和-8.事实上,每一个无理数都可以用数轴上唯一的一个点来表示.【归纳结论】每一个实数都可以用数轴上唯一的一个点来表示.反过来,数轴上每一个点都表示唯一的一个实数.即:实数和数轴上的点一一对应.4.实数从正负性又如何分类呢?【归纳结论】实数分为正实数、零、负实数.5.有理数中有互为相反数的两个有理数,那么实数中有没有互为相反数的两个实数呢?举例说明.6.对于实数a的绝对值,又是什么样的呢?【归纳结论】设a表示一个实数,则:【教学说明】使学生通过类比的方式得到实数的相关知识,加深对实数的理解.三、运用新知,深化理解1.教材P118例1.2.判断下列说法是否正确(1)无限小数都是无理数(2)有理数都是有限小数(3)无理数都是无限小数(4)带根号的数都是无理数答案:四个全是错的.3.实数x 满足x+x 2=0,则x 是( C )A.非零实数B.非负数C.零和负数D.负数4.当x 时,式子102+x 有意义.答案:≥-55.如图,在数轴上表示实数14的点可能是( C )A.点MB.点NC.点PD.点Q6.下列各数中,哪些是有理数,哪些是无理数?π、-3.1415926、113355、39、321、38、0、27、3π、0.5、3.14159、-0.020*******、13、22、3625、0.10010001… 答案:略.7.求-364 、3-π的相反数和绝对值解:-364的相反数是364,绝对值是364;3-π的相反数是π-3,绝对值是π-3.【教学说明】巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第1、2 题.本次教学,我坚持从兴趣入手,从差异入手,做到了在细致处求真、求创意,真正地使学生表明自己的看法,阐述自己的观点,大胆表现自我,张扬个性,体现出他们这个年龄应有的特点,因此,我认为这节课不仅很好地实现了知识与技能目标,对于过程与方法和情感态度与价值观两个目标的实现也非常到位,是比较成功的.第2课时实数的运算1.了解有理数的运算在实数范围内仍然适用,能用有理数估计一个无理数的大致范围.2.理解有效数字的概念,会根据要求进行近似值的运算.3.能利用计算器比较实数的大小,进行实数的四则运算.4.通过用不同的方法比较两个无理数的大小,理解估算的意义、培养数感和估算能力.5.养成学生的合作互助意识,提高学生的交流和表达能力.【教学重点】在实数范围内会运用有理数运算.【教学难点】用有理数估算一个无理数的大致范围.一、情景导入,初步认知1.在有理数范围内绝对值、相反数、倒数的意义是什么?2.比较两个有理数的大小有哪些方法?3.你能借用有理数范围内的规定举例说明无理数的绝对值、无理数的倒数、两个无理数互为相反数吗?【教学说明】复习相关内容,为本节课的教学作准备.二、思考探究,获取新知1.做一做:填空设a,b,c是任意实数,则(1)a+b= (加法交换律);(2)(a+b)+c= (加法结合律);(3)a+0=0+a= ;(4)a+(-a)=(-a)+a= ;(5)ab= (乘法交换律);(6)(ab)c= (乘法结合律);(7)1·a=a·1= ;(8)a(b+c)= (乘法对于加法的分配律);(9)实数的减法运算规定a-b=a+ ;(10)对于每一个非零实数a,存在一个实数b,满足a ·b=b·a=1,我们把b叫作a的;(11)实数的除法运算(除数b≠0),规定a÷b=a·;(12)实数有一条重要性质,如果a≠0,b≠0,那么ab 0.【教学说明】学生合作交流、探讨,并求出答案. 让一名同学上黑板展示,并讲解该题的解题过程.2.两个实数是如何比较大小的呢?【教学说明】结合有理数的比较,采用类比的方式得到比较实数大小的方法.3.有理数的相关运算在实数范围内是否适用?为什么?【归纳结论】对比有理数,对于实数,我们可以得出:每个正实数有且只有两个平方根,它们互为相反数;0的平方根是0;在实数范围内,负实数没有平方根;在实数范围内,每个实数a有且只有一个立方根.4.动脑筋:不用计算器,比较5与2哪个大?与3比较呢?【分析】因为(5)2=5,22=4,且5>4,所以5>2; 因为32=9,且5<9,所以5<3.【教学说明】教师适当引导,学生相互交流,找到解题办法.三、运用新知,深化理解1.教材P120例2、例3.2.要使二次根式1 x 有意义,字母x 的取值必须满足的条件是( A )A.x ≥1B.x ≤1C.x>1D.x<13.不用计算器,计算:(1)26+36-46解:原式=6(2)27+37-7解:原式=(2+3-1)7=47(3)32+52-72-22解:原式=-2(4)323-345+341+325 解:原式=336.已知实数x ,y 满足|x-5|+y+4=0,求代数式(x+y )2016的值.解:依题意当x=5,y=-4时,解得(x+y )2016=(5-4)2016=17.你还会比较2+3与π的大小吗? 解:用计算器求得2+3≈3.14626437,而 π≈3.141592654,因此2+3>π.8.已知5的整数部分是a ,小数部分是b ,求a-b1的值. 【分析】由于22=4<5<32=9,估计5的大小,可得a 、b 的值,将ab 的值代入代数式可得答案.解:∵22=4<5<32=9,∴2<5<3,∴a=2,b=5-2,∴原式=-5.【教学说明】结合有理数的运算,采用类比的方式得到实数的运算与有理数的运算是一样的.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第4、5、6、10 题.本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系.根据新课标精神,对学生的评价不能过分要求技巧,应关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等.对于较复杂的实数运算,应关注学生是否会使用计算器进行运算.因此,注意对运算技能要求作恰当的定位,特别是在开始运算的第一课时,不要提高要求.。
湘教版数学八年级上册《3.3 实数》教学设计一. 教材分析湘教版数学八年级上册《3.3 实数》是学生在学习了有理数和无理数的基础上,对实数进行进一步的系统认识和理解。
本节内容主要包括实数的定义、性质以及实数与数轴的关系。
通过本节课的学习,使学生能更好地理解实数的内涵,掌握实数的性质,并能够运用实数的概念解决一些实际问题。
二. 学情分析八年级的学生已经学习了有理数和无理数,对数的有一定的理解,但是对实数的认识还比较模糊,对实数与数轴的关系还不够明确。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步深入理解实数的内涵,并能够运用实数的概念解决实际问题。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.理解实数与数轴的关系,能够运用实数的概念解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数与数轴的关系。
五. 教学方法采用问题驱动法、案例分析法、讨论法等教学方法,引导学生从实际问题出发,探索实数的定义和性质,并通过数轴来直观理解实数与数轴的关系。
六. 教学准备1.准备相关的实际问题,用于引导学生探索实数的定义和性质。
2.准备数轴的图片或板书,用于直观展示实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“某商店进行打折活动,原价为200元,打8折后的价格是多少?”引导学生思考如何用数学方法来解决这个问题。
2.呈现(10分钟)呈现实数的定义和性质,通过引导学生分析实际问题,让学生自己发现实数的定义和性质。
同时,给出实数与数轴的关系的定义。
3.操练(10分钟)让学生通过一些具体的例子,运用实数的定义和性质,解决实际问题。
如:计算打8折后的价格、判断两个实数的大小等。
4.巩固(10分钟)通过一些练习题,让学生巩固实数的定义和性质,实数与数轴的关系。
5.拓展(10分钟)让学生思考实数在实际生活中的应用,如:购物、测量等。
并引导学生思考实数与其他数学概念的联系,如:实数与函数、方程等。
最新教学资料·湘教版数学3.3 实数3.3.1 实数的概念(第5课时)教学目标(1) 了解无理数、实数的概念和实数的分类。
(2) 让学生经历数系扩展的过程,体会数系的扩展源于社会实际,又为社会实际服务的辩证关系。
重点:无理数、实数的概念和实数的分类。
难点:正确理解无理数的意义。
教学过程一、情景导入P116 说一说1、下列各数中,哪些是有理数?哪些是无理数?2、实数的概念我们把无限不循环小数叫做无理数,例如:2、3.38338333833338…、π等都是无理数。
有理数与无理数统称实数。
二、探究新知1、根据2的近似值,你能想象出它在数轴上的位置吗?试一试,在数轴上找到表示2的点。
说明每一个实数(有理数或无理数)都可以用数轴上唯一的一个点来表示;反过来,数轴上的每一点都表示唯一的一个实数。
换句话说,实数与数轴上的点一一对应。
相关的概念:正实数、零、负实数、相反数等。
2、例1 下列各数中,哪些是有理数,哪些是无理数?—π、—3.1415926、355113、39、213、38-、0、27、3∏、5.0、3.14159、-0.020*******、13、22、2536、0.10010001…例2 判断下列说法是否正确(1) 无限小数都是无理数 (2) 有理数都是有限小数(3) 无理数都是无限小数 (4) 带根号的数都无理数例3 (1)求—364、3—π的相反数和绝对值;(2)求满足x<412的整数。
练习: P118 练习 1、2、3小结本节课我们学习了无理数、实数的概念、实数与数轴上的点的一一对应关系等。
作业:(1)P121 习题 3.3 A组 1、2(2)实数x满足x+2x=0,则x是 ( )A. 非零实数B.非负数C. 零和负数D. 负数五、教后反思:3.3.2 实数的运算(第6课时)教学目的:1、了解有理数的运算在实数范围内仍然适用,能用有理数估计一个无理数的大致范围。
2、理解有效数字的概念,会根据要求进行近似值的运算。
新版湘教版秋八年级数学上册第三章实数课题立方根教学设计一. 教材分析湘教版秋八年级数学上册第三章实数课题立方根是本章的重点内容。
本节课主要让学生了解立方根的概念,掌握求立方根的方法,并能应用于实际问题中。
教材通过引入立方根的概念,让学生理解立方根的性质,并通过例题和练习题让学生掌握求立方根的方法。
二. 学情分析学生在学习本节课之前,已经掌握了实数的相关知识,具备了一定的逻辑思维能力和运算能力。
但部分学生对实数的性质和运算法则还不够熟悉,对立方根的概念和求法理解不够深入。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.知识与技能:让学生掌握立方根的概念,了解立方根的性质,学会求立方根的方法。
2.过程与方法:通过引入实例,引导学生探究立方根的性质,培养学生独立思考和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队合作精神。
四. 教学重难点1.重难点:立方根的概念和求法。
2.难点:立方根的性质和应用。
五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中感受立方根的重要性,提高学生的学习兴趣。
2.启发式教学法:引导学生通过自主探究、合作交流,发现立方根的性质,培养学生独立思考和解决问题的能力。
3.归纳总结法:在教学过程中,引导学生总结立方根的性质和求法,加深学生对知识的理解。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示立方根的相关知识。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具,方便板书和讲解。
七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、盐水浓度等,引出立方根的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解立方根的定义,让学生理解立方根的概念。
通过示例,展示立方根的性质,如正数的立方根是正数,负数的立方根是负数等。
3.操练(10分钟)让学生独立完成一些求立方根的题目,巩固所学知识。
3.3.2 实数的运算
教学目的:
1、了解有理数的运算在实数范围内仍然适用,能用有理数估计一个无理数的大致范
围。
2、理解有效数字的概念,会根据要求进行近似值的运算。
3、能利用计算器比较实数的大小,进行实数的四则运算。
4、通过用不同的方法比较两个无理数的大小,理解估算的意义、发展数感和估算能
力,在运用实数运算解决实际问题的过程中,增强应用意识,提高解决问题的能
力,体会数学的应用价值。
教学过程:
(一)回顾旧知
⑴在有理数范围内绝对值、相反数、倒数的意义是什么?
⑵比较两个有理数的大小有哪些方法?
⑶你能借用有理数范围内的规定举例说明无理数的绝对值、无理数的倒数、两个无理数互为相反数吗?
(二)探求新知
1、P119 做一做
对比有理数,对于实数,我们可以得出:
每个正实数有且只有两个平方根,它们互为相反数;
0的平方根是0 在实数范围内,负实数没有平方根;
在实数范围内,每个实数a 有且只有一个立方根。
2、P120 例2 计算下列各式的值
(1) ( 53+)-5 (2)
33-32
3、比较3与7的大小,说说你的方法。
[设计说明:问题1起着承上启下的作用,在比较的过程中,学生可能有各种不同的方法,教师要鼓励学生进行充分的交流。
] 实数的大小比较和运算,通常可取它们的近似值来进行.
4、π的大小吗?
解 用计算器求得 3+2≈3.14626437,
而 π≈3.141592654,
因此 3+2>π.
5、你认为21
5- 与0.5哪个大?你是怎么想的?与同学交流。
通过估算,你能比较215-与43
的大小吗?
[设计说明:教师应先让学生独立思考,然后进行充分的交流,在交流中应更多的关注学生能否运用有理数估算一个无理数的大致范围,把握数的相对大小,同时理解一些比较两个数大小的方法:a 、通过估算 b 、作差 c 、作商 d 、利用已有的结论 e 、利用计算器。
]
6、计算 ⑴π+5 (保留2位小数) ⑵322⨯(保留2位有效数字)
[设计说明:例1主要让学生会用计算器求一个无理数,例2是在例1的基础上增加了难度,对学生也提出了更高的要求,让学生学会用计算器求多个无理数的混合运算及实数运算,在实数运算中涉及无理数的计算,可根据问题的要要取其近似值转化成有理数进行计算,
向学生说明:在计算过程中,取近似值时,可以按照计算结果要求的精确度,多保留一位。
有效数字是指从一个数的第一个非零数字开始,一直到数的结尾,所有的数字称之为这个数的有效数字。
有效数字有包括数字左端的0。
]
练习: P121 练习1、2、3
[设计说明:此练习主要是对刚学过知识的强化,教师应针对不同层次的学生提出不同的要求。
]
(三) 课堂小结 ⑴说说你是如何估算一个无理数的大小,你在生活中见过估算的方法吗?或举例说明 ⑵请你尝试用估算的方法比较21
5 与8
5的大小 ⑶我们经历了多次数的扩充,每一次扩充都保持了原有的运算法则和运算性质,从中我们可以体会到数学的和谐
(四)布置作业,巩固新知。