材料成型原理第八章答案第十一章答案
- 格式:doc
- 大小:164.00 KB
- 文档页数:14
第二章 凝固温度场P498. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。
采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。
9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。
解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。
(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。
生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。
第四章 单相及多相合金的结晶 P909.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为:R G L <NLD RLL L e K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L<000)1(K K D C m L L -( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。
第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度.②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏.由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 。
如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序).答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
1.2答:液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。
(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
1.4 解:浇注模型如下:则产生机械粘砂的临界压力ρ=2σ/r显然 r =21×0.1cm =0.05cm 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m 1.5 解: 由Stokes 公式 上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s 3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成材料成型原理第 3 页 共 16 页3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。
《材料成形原理》复习题(铸)第二章液态金属的结构和性质1.粘度。
影响粘度大小的因素?粘度对材料成形过程的影响?1)粘度:是液体在层流情况下,各液层间的摩擦阻力。
其实质是原子间的结合力。
2)粘度大小由液态金属结构决定与温度、压力、杂质有关:(1)粘度与原子离位激活能U成正比,与相邻原子平衡位置的平均距离的三次方成反比。
(2)温度:温度不高时,粘度与温度成反比;当温度很高时,粘度与温度成正比。
(3)化学成分:杂质的数量、形状和分布影响粘度;合金元素不同,粘度也不同,接近共晶成分,粘度降低。
(4)材料成形过程中的液态金属一般要进行各种冶金处理,如孕育、变质、净化处理等对粘度有显著影响。
3)粘度对材料成形过程的影响(1)对液态金属净化(气体、杂质排出)的影响。
(2)对液态合金流动阻力与充型的影响,粘度大,流动阻力也大。
(3)对凝固过程中液态合金对流的影响,粘度越大,对流强度G越小。
2.表面张力。
影响表面张力的因素?表面张力对材料成形过程及部件质量的影响?1)表面张力:是金属液表面质点因受周围质点对其作用力不平衡,在表面液膜单位长度上所受的紧绷力或单位表面积上的能量。
其实质是质点间的作用力。
2)影响表面张力的因素(1)熔点:熔沸点高,表面张力往往越大。
(2)温度:温度上升,表面张力下降,如Al、Mg、Zn等,但Cu、Fe相反。
(3)溶质元素(杂质):正吸附的表面活性物质表面张力下降(金属液表面);负吸附的表面非活性物质表面张力上升(金属液内部)。
(4)流体性质:不同的流体,表面张力不同。
3)表面张力影响液态成形整个过程,晶体成核及长大、机械粘砂、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力关系密切。
3.液态金属的流动性。
影响液态金属的流动性的因素?液态金属的流动性对铸件质量的影响?1)液态金属的流动性是指液态金属本身的流动能力。
2)影响液态金属的流动性的因素有:液态金属的成分、温度、杂质含量及物理性质有关,与外界因素无关。
第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
第三章:8:实际金属液态合金结构与理想纯金属液态结构有何不同?答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。
液态中存在着很大的能量起伏.而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。
12:简述液态金属的表面张力的实质及其影响因数。
答:①实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。
②影响因数:熔点、温度和溶质元素.13:简述界面现象对液态成形过程的影响。
答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填.液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁.凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。
15:简述过冷度与液态金属凝固的关系。
答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。
液态金属不会在没有过冷度的情况下凝固.16:用动力学理论阐述液态金属完成凝固的过程.答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。
生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程.只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程.17:简述异质形核与均质形核的区别.答:①均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核.②异质形核与固体杂质接触,减少了表面自由能的增加.③异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。
18:什么条件下晶体以平面的方式生长?什么条件下晶体以树枝晶方式生长?答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。
绪论单元测试1【判断题】(2分)材料成形主要包括液态成形、连接成形、塑性成形及粉末冶金成形。
A.错B.对2【判断题】(2分)液态成形俗称铸造。
A.对B.错3【判断题】(2分)液态成形是将液态金属浇注、压射或吸入到具有一定形状的铸型中冷却凝固,获得具有型腔形状铸件的成形方法。
A.对B.错4【判断题】(2分)铸件形成的方法很多,但基本特点不同。
A.对B.错5【判断题】(2分)液态成形在材料成形过程中,具有不可取代的首要地位。
A.对B.错6【判断题】(2分)液态成形的零件尺寸范围大。
A.错B.对7【判断题】(2分)铸造能采用的材料范围广。
A.错B.对8【判断题】(2分)液态成形的零件壁厚范围大。
A.错B.对9【判断题】(2分)连接成形是通过加热或加压,或两者并用,并且使用或不用填充材料,使焊件达到原子结合的一种加工方法。
A.对B.错10【判断题】(2分)连接成形俗称锻压。
A.错B.对11【判断题】(2分)焊接应用范围广,适用性强,但成本不低。
A.错B.对12【判断题】(2分)塑性成形是利用金属能够产生塑性变形的能力,使金属在外力作用下,加工成一定形状的成形方法。
A.对B.错13【判断题】(2分)塑性成形俗称锻压。
A.错B.对14【判断题】(2分)塑性成形应用范围很广。
A.对B.错15【判断题】(2分)材料成形在装备制造中,具有不可替代的重要作用。
A.错B.对第一章测试1【判断题】(2分)晶界产生粘性流动,固体熔化成液体。
A.错B.对2【判断题】(2分)偶分布函数是距离某一粒子r处,找到另一粒子的几率。
A.对B.错3【判断题】(2分)液体与非晶固体衍射特征不同。
A.对B.错4【判断题】(2分)能量起伏表现为原子团簇在游动过程中,能量也发生变化。
A.对B.错5【判断题】(2分)动力粘度η在凝固过程中补缩起主要作用。
A.对B.错6【判断题】(2分)表面非活性物质越多,粘度越低。
A.错B.对7【判断题】(2分)A.对B.错8【判断题】(2分)表面非活性元素,引起表面张力增加。
第一章流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg/m3,试求教重度γ和质量体积v。
解:由液体密度、重度和质量体积的关系知:∴质量体积为1.4某种可压缩液体在圆柱形容器中,当压强为2MN/m2时体积为995cm3,当压为多少?强为1MN/m2时体积为1000 cm3,问它的等温压缩率kT公式(2-1):解:等温压缩率KTΔV=995-1000=-5*10-6m3注意:ΔP=2-1=1MN/m2=1*106Pa将V=1000cm3代入即可得到K=5*10-9Pa-1。
T注意:式中V是指液体变化前的体积1.6 如图1.5所示,在相距h=0.06m的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v=0.3m/s被拖动时,每平方米受合力F=29N,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为平板受到上下油面的阻力之和与施加的力平衡,即代入数据得η=0.967Pa.s第二章流体静力学2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何?解:流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:同一静止液体中单位重量液体的比位能可以不等,比压强也可以不等,但比位能和比压强可以互换,比势能总是相等的。
第11章凝固缺陷及控制1.何谓枝晶偏析、晶界偏析、正偏析、负偏析、正常偏析、逆偏析和重力偏析? (2)2.偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成? (2)3.焊缝的偏析有哪些类型?为什么说熔合区是焊接的薄弱部位? (3)4.分析偏析对金属质量的影响? (3)5简述析出性气体的特征、形成机理及主要防止措施。
(4)6、焊缝中的气孔有哪几种类型?有何特征? (5)7、试述夹杂物的形成原理、影响因素及主要防止措施。
(5)8、何谓体收缩、线收缩、液态收缩、凝固收缩、固态收缩和收缩率? (6)9、分析缩孔的形成过程,说明缩孔与缩松的形成条件及形成原因的异同点。
(7)10、分析灰铸铁和球墨铸铁产生缩孔、缩松的倾向性及影响因素。
(8)11、简述顺序凝固原则和同时凝固原则各自的优缺点和适用范围。
(9)12、焊件和铸件的热应力是如何形成的?应采取哪些措施予以控制? (10)13、简述凝固裂纹的形成机理及防止措施。
(11)14、何谓液化裂纹?出现在焊接接头的哪个区域?为什么? (12)15. 试叙冷裂纹的种类及特征 (12)16、分析氢在形成冷裂纹中的作用,简述氢致裂纹的特征和机理。
(12)17、为什么低合金钢冷裂纹容易出现在焊接热影响区及焊根、焊趾部位? (13)18、何谓拘束度和拘束应力?两者的影响因素有哪些?他们对冷裂纹的形成有何影响?. 1319、如何防止焊件和铸件产生冷纹? (14)第11章凝固缺陷及控制习题解答1.何谓枝晶偏析、晶界偏析、正偏析、负偏析、正常偏析、逆偏析和重力偏析?答:枝晶偏析,又称晶内偏析,是在一个晶粒内出现的成分不均匀现象,常产生于具有结晶温度范围、能够形成固溶体的合金中。
对于溶质分配系数k0<1的固溶体合金,晶粒内先结晶部分含溶质较少,后结晶部分含溶质较多。
这种成分不均匀性就是晶内偏析。
固溶体合金按树枝晶方式生长时,先结晶的枝干与后结晶的分枝也存在着成分差异,因此又称为枝晶偏析。
晶界偏析:在合金凝固过程中,溶质元素和非金属夹杂物常富集于晶界,使晶界与晶内的化学成分出现差异,这种成分不均匀现象称为晶界偏析。
正偏析与负偏析:根据合金各部位的溶质浓度Cs与合金原始平均浓度C0的偏离情况分,凡Cs>C0者,称为正偏析;Cs<C0者,称为负偏析。
正常偏析:当合金的溶质分配系数k0<1时,凝固界面的液相中将有一部分溶质被排出,随着温度的降低,溶质的浓度将逐渐增加,越是后来结晶的固相,溶质浓度越高。
当k0>1时则与此相反,越是后来结晶的固相,溶质浓度越低。
按照溶质再分配规律,这些都是正常现象,故称之为正常偏析。
逆偏析:铸件凝固后常出现与正常偏析相反的情况,即k0<1时,铸件表面或底部含溶质元素较多,而中心部位或上部含溶质较少,这种现象称为逆偏析。
重力偏析:重力偏析是由于重力作用而出现的化学不均匀现象,通常产生于金属凝固前和刚刚开始凝固之际。
当共存的液体和固体或互不相溶的液相之间存在密度差时,将会产生重力偏析。
2.偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成?答:偏析主要是由于合金在凝固过程中扩散不充分、溶质再分配而引起的。
影响偏析的因素有:1)合金液、固相线间隔;2)偏析元素的扩散能力;3)冷却条件。
针对不同种类的偏析可采取不同的防止方法,具体有:(1)生产中可通过扩散退火或均匀化退火来消除晶内偏析,即将合金加热到低于固相线100~200℃的温度,进行长时间保温,使偏析元素进行充分扩散,以达到均匀化;(2)预防和消除晶界偏析的方法与晶内偏析所采用的措施相同,即细化晶粒、均匀化退火。
但对于氧化物和硫化物引起的晶界偏析,即使均匀化退火也无法消除,必须从减少合金中氧和硫的含量入手。
(3)向合金中添加细化晶粒的元素,减少合金的含气量,有助于减少或防止逆偏析的形成。
(4)降低铸锭的冷却速度,枝晶粗大,液体沿枝晶间的流动阻力减小,促进富集液的流动,均会增加形成V形和逆V形偏析的倾向。
(5)减少溶质的含量,采取孕育措施细化晶粒,加强固-液界面前的对流和搅拌,均有利于防止或减少带状偏析的形成。
(6)防止或减轻重力偏析的方法有以下几种:1)加快铸件的冷却速度,缩短合金处于液相的时间,使初生相来不及上浮或下沉;2)加入能阻碍初晶沉浮的合金元素。
例如,在Cu-Pb合金中加少量Ni,能使Cu固溶体枝晶首先在液体中形成枝晶骨架,从而阻止Pb下沉。
再如向Pb-17%Sn合金中加入质量分数为1.5%的Cu,首先形成Cu-Pb骨架,也可以减轻或消除重力偏析;3)浇注前对液态合金充分搅拌,并尽量降低合金的浇注温度和浇注速度。
3.焊缝的偏析有哪些类型?为什么说熔合区是焊接的薄弱部位?答:焊缝的偏析主要有区域偏析和层状偏析。
熔合区是焊接的薄弱部位这是因为熔合区位于焊缝和母材的交界处,是焊缝和母材的过渡区,熔合区存在着严重的化学成分不均匀性,同时还存在着物理不均匀性。
因此熔合区在组织和性能上也是不均匀的,因此成为焊接接头的薄弱部位。
4.分析偏析对金属质量的影响?答:偏析对合金的力学性能、抗裂性能及耐腐蚀性能等有程度不同的损害。
1)晶内偏析的存在,使晶粒内部成分不均匀,导致合金的力学性能降低,特别是塑性和韧性降低。
此外,晶内偏析还会引起合金化学性能不均匀,使合金的抗蚀性能下降。
2)晶界偏析比晶内偏析的危害性更大,它既能降低合金的塑性和高温性能,又能增加热裂倾向,因此必须加以防止。
3)正常偏析的存在使铸件性能不均匀,随后的加工和处理也难以根本消除,故应采取适当措施加以控制。
4)逆偏析会降低铸件的力学性能、气密性和切削加工性能。
5)层状偏析是不连续的具有一定宽度的链状偏析带,带中常集中一些有害元素(碳、硫、磷等),并常常出现气孔等缺陷。
层状偏析也会使焊缝的力学性能不均匀,抗腐蚀性能下降以及断裂韧性降低等。
偏析也有有益的一面,如利用偏析现象可以净化或提纯金属等。
5简述析出性气体的特征、形成机理及主要防止措施。
答:液态金属在冷却凝固过程中,因气体溶解度下降,析出的气体来不及逸出而产生的气孔称为析出性气孔。
这类气孔主要是氢气孔和氮气孔。
析出性气孔通常分布在铸件的整个断面或冒口、热节等温度较高的区域。
当金属含气量较少时,呈裂纹多角形状;而含气量较多时,气孔较大,呈团球形。
焊缝金属产生的析出性气孔多数出现在焊缝表面。
氢气孔的断面形状如同螺钉状,从焊缝表面上看呈喇叭口形,气孔四周有光滑的内壁。
氮气孔一般成堆出现,形似蜂窝。
析出性气体的形成机理是:结晶前沿,特别是枝晶间的气体溶质聚集区中,气体的含量将超过其饱和量,被枝晶封闭的液相内则具有更大的过饱和含量和析出压力,而液-固界面处气体的含量最高,并且存在其他溶质的偏析及非金属夹杂物,当枝晶间产生收缩时,该处极易析出气泡,且气泡很难排除,从而保留下来形成气孔。
防止析出性气体的措施主要有以下几个措施:(1)消除气体来源保持炉料清洁、干燥,焊件和焊丝表面无氧化物、水分和油污等;控制型砂、芯砂的水分,焊前对焊接材料(焊条、焊剂、保护气体等)进行烘干、去水或干燥处理;限制铸型中有机粘结剂的用量和树脂的含氮量;加强保护,防止空气侵入液态金属。
(2)采用合理的工艺焊接时采用短弧焊有利于防止氮气孔,气体保护焊时用活性气体保护有利于防止氢气孔,选用氧化铁型焊条可提高抗锈能力。
金属熔炼时,控制熔炼温度勿使其过高,或采用真空熔炼,可降低液态金属的含气量。
(3)对液态金属进行除气处理金属熔炼时常用的除气方法有浮游去气法和氧化去气法。
前者是向金属液中吹入不溶于金属的气体(如惰性气体、氮气等),使溶解的气体进入气泡而排除;后者是对能溶解氧的液态金属(如铜液)先吹氧去氢,再加入脱氧剂去氧。
焊接时可利用焊条药皮或焊剂中的CaF2和碳酸盐高温分解出的CO2气体进行除氢。
(4)阻止液态金属内气体的析出提高金属凝固时的冷却速度和外压,可有效阻止气体的析出。
如采用金属型铸造,密封加压等方法,均可防止析出性气孔的产生。
6、焊缝中的气孔有哪几种类型?有何特征?答:焊缝中的气孔有三种类型:析出性气孔、侵入性气孔、反应性气孔。
其特征分别为:(1)析出性气孔为液态金属冷却时因溶解度下降析出的气体,主要为氢气孔和氮气孔。
该气孔主要出现在焊缝表面,氢气孔断面形状如螺钉从焊缝表面看呈喇叭口型,气孔四周有光滑的内避;氮气孔一般成堆出现,形似蜂窝。
(2)侵入性气孔一般为水蒸气、一氧化碳、二氧化碳、氢、氮和碳氢化合物。
其数量较少、体积较大、孔壁光滑、表面有氧化色。
(3)反应性气孔主要为H2、CO和N2。
主要是由液态金属内部合金元素之间或与非金属夹杂物发生化学反应产生的蜂窝状气孔,呈梨状或团球状均匀分布。
碳刚焊缝因冶金反应生成的CO气孔则沿焊缝结晶方向呈条虫状分布。
7、试述夹杂物的形成原理、影响因素及主要防止措施。
答:夹杂物是指金属内部或表面存在的和基本金属成分不同的物质,它主要来源于原材料本身的杂质及金属在熔炼、浇注和凝固过程中与非金属元素或化合物发生反应而形成的产物。
夹杂物按照不同的标准可以分为很多种类,不同夹杂物的形成机理等也不尽相同:(1)一次夹杂物在金属熔炼过程中及炉前处理时,液态金属内会产生大量的一次非金属夹杂物。
这类夹杂物的形成大致经历了两个阶段,即夹杂物的偏晶析出和聚合长大。
排除液态金属中一次夹杂物的途径:1)加熔剂;2)过滤法;3)排除和减少液态金属中气体的措施,如合金液静置处理、浮游法净化、真空浇注等。
(2)二次氧化夹杂物液态金属与大气或氧化性气体接触时,其表面很快会形成一层氧化薄膜。
在浇注及充型过程中,由于金属流动时产生的紊流、涡流及飞溅等,表面氧化膜会被卷入液态金属内部。
此时因液体的温度下降较快,卷入的氧化物在凝固前来不及上浮到表面,从而在金属中形成二次氧化夹杂物。
二次氧化夹杂物的影响因素:1)化学成分;2)液流特性;3)熔炼温度。
防止和减少二次氧化夹杂物的途径1)正确选择合金成分,严格控制易氧化元素的含量。
2)采取合理的浇注系统及浇注工艺,保持液态金属充型过程平稳流动。
3)严格控制铸型水分,防止铸型内产生氧化性气氛。
还可加入煤粉等碳质材料,或采用涂料,以形成还原性气氛。
4)对要求高的重要零件或易氧化的合金,可以在真空或保护性气氛下浇注。
(3)偏析夹杂物 合金结晶时,由于溶质再分配,在凝固区域内合金及杂质元素将高度富集于枝晶间尚未凝固的液相内。
在一定条件(温度、压力等)下,靠近液固界面的“液滴”有可能具备产生某种夹杂物的条件,这时处于过饱和状态的液相L 1将发生L 1→β+L 2偏晶反应,析出非金属夹杂物β。
偏析夹杂物的大小主要由合金的结晶条件和成分来决定。
凡是能细化晶粒的条件都能减小偏析夹杂物的尺寸;形成夹杂物的元素原始含量越高,枝晶间偏析液相中富集该元素的数量越多,同样结晶条件下,产生的偏析夹杂物越大,数量也越多。