信号与系统课后答案
- 格式:docx
- 大小:1.25 MB
- 文档页数:14
1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。
1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。
题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图 1-10形图。
题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
《低频电子线路》一、单选题(每题2分,共28分:双号做双号题,单号做单号题)1.若给PN结两端加正向电压时,空间电荷区将()A变窄B基本不变C变宽D无法确定2.设二极管的端电压为 U,则二极管的电流与电压之间是()A正比例关系B对数关系C指数关系D无关系3.稳压管的稳压区是其工作()A正向导通B反向截止C反向击穿D反向导通4.当晶体管工作在饱和区时,发射结电压和集电结电压应为 ( ) A前者反偏,后者也反偏B前者反偏,后者正偏C前者正偏,后者反偏D前者正偏,后者也正偏5.在本征半导体中加入何种元素可形成N型半导体。
()A五价B四价C三价D六价6.加入何种元素可形成P 型半导体。
()A五价B四价C三价D六价7.当温度升高时,二极管的反向饱和电流将()。
A 增大B 不变C 减小D 不受温度影响8. 稳压二极管两端的电压必须( )它的稳压值Uz 才有导通电流,否则处于截止状态。
A 等于B 大于C 小于D 与Uz 无关9. 用直流电压表测得放大电路中某三极管各极电位分别是2V 、6V 、2.7V ,则三个电极分别是() A (B 、C 、E )B (C 、B 、E )C (E 、C 、B )D (B 、C 、E )10. 三极管的反向电流I CBO 是由( )形成的。
A 多数载流子的扩散运动B 少数载流子的漂移运动C 多数载流子的漂移运动D 少数载流子的扩散运动11. 晶体三极管工作在饱和状态时,集电极电流C i 将( )。
A 随B i 增加而增加B 随B i 增加而减少C 与B i 无关,只决定于e R 和CE uD 不变12. 理想二极管的正向电阻为( )A A.零 B.无穷大 C.约几千欧 D.约几十欧13. 放大器的输入电阻高,表明其放大微弱信号能力( )。
A 强B 弱C 一般D 不一定14. 某两级放大电路,第一级电压放大倍数为5,第二级电压放大倍数为20,该放大电路的放大倍数为( )。
A 100B25C 5D2015.如题47图所示电路中,静态时, T1、T2 晶体管发射极电位UEQ为( ) 。
1-1分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:图1-1所示信号分别为⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问)(1);)sin(t e at ω-(2);nT e -(3);)cos(πn (4);为任意值)(00)sin(ωωn (5)。
221⎪⎭⎫ ⎝⎛解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。
1-3 分别求下列各周期信号的周期T :(1);)30t (cos )10t (cos -(2);j10t e (3);2)]8t (5sin [(4)。
[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期;对于分量cos (30t ),其周期。
由于5T 1π=15T 2π=为的最小公倍数,所以此信号的周期。
5π21T T 、5T π=(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期。
5102T ππ==(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期。
1-1 (2)∞<<-∞=-t e t f t ,)(
(3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-3
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))6
3cos()443cos()(2
π
πππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=
:
1-9 已知信号的波形如图1-11所示,分别画出
)(t
f和
dt
t
df)(
的波形。
解:由图1-11知,)
3(t
f-的波形如图1-12(a)所示()
3(t
f-波形是由对)
2
3(t
f-
的波形展宽为原来的两倍而得)。
将)
3(t
f-的波形反转而得到)3
(+
t
f的波形,如图1-12(b)所示。
再将)3
(+
t
f的波形右移3个单位,就得到了)(t
f,如图1-12(c)所示。
dt
t
df)(的波形如图1-12(d)所示。
1-23 设系统的初始状态为)0(x,激励为)(⋅
f,各系统的全响应)(⋅y与激励和初始状态的关系如下,试分析各系统是否是线性的。
(1)⎰+
=-t
t dx
x
xf
x
e
t
y
)
(
sin
)0(
)((2)⎰+
=t dx
x
f
x
t
f
t
y
)
(
)0(
)(
)(
(3)⎰+
=t dx
x
f
t
x
t
y
)
(
])0(
sin[
)((4))2
(
)
(
)0(
)5.0(
)
(-
+
=k
f
k
f
x
k
y
k
(5)∑=+
=k
j j f kx k y 0
)()0()(
2-2 已知描述系统的微分方程和初始状态如下,试求其+0值)0(+y 和)0('+y 。
(2))()(,1)0(',1)0(),('')(8)('6)(''t t f y y t f t y t y t y δ====++-- (4))()(,2)0(',1)0(),(')(5)('4)(''2t e t f y y t f t y t y t y t ε====++--
2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试求下列卷积,并画出波形图。
(1))(*)(21t f t f (2)
)(*)(31t f t f (3))(*)(41t f t f
(4))(*)(*)(221t f t f t f (5))3()(2[*)(341--t f t f t f
波形图如图2-9(a)所示。
波形图如图2-9(b)所示。
波形图如图2-9(c)所示。
波形图如图2-9(d)所示。
波形图如图2-9(e)所示。
2-29 如图2-20所示的系统,它由几个子系统组合而成,各子系统的冲激响应分别为
)1()(-=t t h a δ )3()()(--=t t t h b εε
求复合系统的冲激响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *
4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。
图4-15
4-11 某1Ω电阻两端的电压)(t u如图4-19所示,
(1)求)(t u 的三角形式傅里叶系数。
(2)利用(1)的结果和1)2
1(=u ,求下列无穷级数之和......7151311+-+-=S (3)求1Ω电阻上的平均功率和电压有效值。
(4)利用(3)的结果求下列无穷级数之和......7151311222++++=S
图4-19
4.20 若已知)(j ])([ωF t f F =,试求下列函数的频谱:
(1))2(t tf (3)dt t df t )( (5))-1(t)-(1t f (8))2-3(t f e jt (9)t dt t df π1*)(。