数字信号处理双语-Z变换.
- 格式:ppt
- 大小:1.76 MB
- 文档页数:106
z变换信号流-回复什么是z变换信号流?在数字信号处理中,z变换(Z-transform)是一种将离散时间信号转换为连续频域表示的数学工具。
z变换可以看作是拉普拉斯变换在离散时间中的对应物。
与傅里叶变换不同,z变换允许对非周期序列进行分析。
信号流是一个由离散时间的信号序列组成的流,其中每个时间点都有一个对应的采样值。
z变换信号流是在离散时间下对信号流进行z变换的过程。
通过对信号流进行z变换,我们可以在频域中对信号进行分析和处理。
下面,我将一步一步回答关于z变换信号流的问题,以帮助您更好地理解这个概念。
第一步:理解z变换的定义和基本概念在进行z变换之前,我们需要了解一些关于z变换的基本概念。
z变换将离散时间序列映射到连续复平面上的函数。
它的定义如下:X(z) = Σ[x(n) * z^(-n)]其中,x(n)是离散时间信号的序列,X(z)是z变换后的函数,n是时间索引。
这个公式表示了在离散时间序列x(n)的所有时刻n上对z的幂乘法之和。
第二步:了解z域和频域之间的关系在进行z变换时,我们将信号从时间域转换为z域。
z域是一个复平面,其中z从原点出发沿着虚轴旋转。
z的位置和幅度表示了信号的频率和幅度。
根据z变换的定义,我们可以将z域中的运算转换为频域中的运算。
第三步:计算信号流的z变换对于一个信号流,我们可以通过将其每个时间点的采样值带入到z变换的定义中,来计算其z变换。
即对于信号流x(n),计算其z变换X(z)的过程如下:1. 对于每个时间点n,将该点的采样值x(n)与z的幂乘法相乘。
2. 对所有时间点n上的乘积求和,得到z变换X(z)。
例如,对于信号流x(n) = {1, 2, 3, 4, 5},它的z变换可以计算如下:X(z) = 1*z^(-0) + 2*z^(-1) + 3*z^(-2) + 4*z^(-3) + 5*z^(-4)第四步:应用z变换信号流z变换信号流具有广泛的应用,特别是在数字信号处理中。
[数字信号处理]序列的z 变换序列的z 变换z 变换的定义z 变换的定义如下X (z )=∞∑n =−∞x (n )z −n其中z =e j ω,是⼀个复数.在复平⾯上,z 相当于单位圆上的⼀点.典型序列的z 变换单位脉冲序列的z 变换求序列δ(n )的z 变换X (z )=∞∑n =−∞δ(n )z −n =δ(0)z 0=1,0<|z |<∞最后的⼀句话是收敛域阶越序列的z 变换求序列u (n )的z 变换X (z )=∞∑n =−∞u (n )z −n =n =∞∑n =0z −n =11−z −1,|z |>1矩形序列的z 变换求序列R 4(n )的z 变换X (n )=∞∑n =∞R 4(n )z −n =3∑n =0z −n =1+z −1+z −2+z −3=1−z −41−z −1,0<|z |<∞收敛域z 变换的性质线性设x 1(n )的z 变换是X 1(z )x 2(n )的z 变换是X 2(z )如果x 3(n )=ax 1(n )+bx 2(n )那么X 3(z )=aX 1(z )+bX 2(z )X 3(z )的收敛域为X 1(z )的收敛域和X 2(z )的收敛域的交集移位性质双边序列x (n )为双边序列时设x (n )的z 变换是X (z )则x (n +n 0)的z 变换是z n 0X (z )序列移位不会改变z 变换的收敛域右边序列右移公式x (n )为右边序列设x (n )的z 变换是X (z )x (n −1)的z 变换是z −1X (z )+x (−1)x (n −2)的z 变换是z −2X (z )+z −1x (−1)+x (−2)如此类推右边序列左移公式x (n )为右边序列设x (n )的z 变换是X (z )x (n +1)的z 变换是z 1X (z )−x (1)x (n +2)的z 变换是z 2X (z )−z 1x (1)−x (2)如此类推序列乘实指数序列设x (n )的z 变换是X (z )y (n )=a n x (n )的z 变换Y (z )=X (a −1z )复共轭序列的z 变换设x (n )的z 变换是X (z )则x ∗(n )的z 变换是X ∗(z ∗)初值定理设x (n )的z 变换是X (z )则x (0)=lim终值定理设x(n)的z 变换是X(z) \\则x(\infty)=\lim_{z->1}(z-1)X(z)序列类型收敛域有限长序列$0<右边序列$左边序列$双边序列$R_{x-}<Loading [MathJax]/jax/element/mml/optable/BasicLatin.js帕斯维尔定理(能量定理)时域总能量等于z域总能量(能量守恒)E=\sum_{n=-\infty}^{\infty}|x(n)|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}|X(e^{j\omega})|^2d\omega。