(完整版)第三章Z变换(数字信号处理)
- 格式:ppt
- 大小:704.75 KB
- 文档页数:73
课程编号15102308《数字信号处理》教学大纲Digital Signal Processing一、课程基本信息二、本课程的性质、目的和任务《数字信号处理》课程是信息工程本科专业必修课,它是在学生学完了高等数学、概率论、线性代数、复变函数、信号与系统等课程后,进一步为学习专业知识打基础的课程。
本课程将通过讲课、练习使学生建立“数字信号处理”的基本概念,掌握数字信号处理基本分析方法和分析工具,为从事通信、信息或信号处理等方面的研究工作打下基础。
三、教学基本要求1、通过对本课程的教学,使学生系统地掌握数字信号处理的基本原理和基本分析方法,能建立基本的数字信号处理模型。
2、要求学生学会运用数字信号处理的两个主要工具:快速傅立叶变换(FFT)与数字滤波器,为后续数字技术方面课程的学习打下理论基础。
3、学生应具有初步的算法分析和运用MA TLAB编程的能力。
四、本课程与其他课程的联系与分工本课程的基础课程为《高等数学》、《概率论》、《线性代数》、《复变函数》、《信号与系统》等课程,同时又为《图像处理与模式识别》等课程的学习打下基础。
五、教学方法与手段教师讲授和学生自学相结合,讲练结合,采用多媒体教学手段为主,重点难点辅以板书。
六、考核方式与成绩评定办法本课程采用平时作业、期末考试综合评定的方法。
其中平时作业成绩占40%,期末考试成绩占60%。
七、使用教材及参考书目【使用教材】吴镇扬编,《数字信号处理》,高等教育出版社,2004年9月第一版。
【参考书目】1、姚天任,江太辉编,《数字信号处理》(第二版),华中科技大学出版社,2000年版。
2、程佩青著,《数字信号处理教程》(第二版),清华大学出版社出版,2001年版。
3、丁玉美,高西全编著,《数字信号处理》,西安电子科技大学出版社,2001年版。
4、胡广书编,《数字信号处理——理论、算法与实现》,清华大学出版社,2004年版。
5、Alan V. Oppenheim, Ronald W. Schafer,《Digital Signal Processing》,Prentice-Hall Inc, 1975.八、课程结构和学时分配九、教学内容绪论(1学时)【教学目标】1. 了解:什么是数字信号处理,与传统的模拟技术相比存在哪些特点。
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理z变换公式表序号变换名称公式。
1双边Z变换定义X(z)=∑_n = -∞^∞x(n)z^-n,收敛域为R_x -<| z|2单边Z变换定义(因果序列)X(z)=∑_n = 0^∞x(n)z^-n,收敛域为| z| > R_x -3Z变换的线性性质若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则ax_1(n)+bx_2(n)↔ aX_1(z)+bX_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)4序列的移位(双边Z变换)若x(n)↔ X(z),R_x -<| z|,则x(n - m)↔ z^-mX(z),收敛域为R_x -<| z|(m为整数)5序列的移位(单边Z变换)若x(n)↔ X(z),则x(n - m)u(n)↔ z^-mX(z)+∑_k =0^m - 1x(k - m)z^-k(m>0),收敛域为| z| > R_x -6Z域尺度变换(乘以指数序列)若x(n)↔ X(z),R_x -<| z|,则a^nx(n)↔X((z)/(a)),收敛域为| a| R_x -<| z|<| a| R_x +(a≠0)7序列的线性加权(Z域求导)若x(n)↔ X(z),R_x -<| z|,则nx(n)↔ -z(dX(z))/(dz),收敛域为R_x -<| z|8序列的反褶若x(n)↔ X(z),R_x -<| z|,则x(-n)↔ X((1)/(z)),收敛域为(1)/(R_x +)<| z|<(1)/(R_x -)9卷积定理(双边Z变换)若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)10卷积定理(单边Z变换)设x_1(n)和x_2(n)为因果序列,x_1(n)↔ X_1(z),x_2(n)↔ X_2(z),则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为| z| >max(R_1 -,R_2 -)11初值定理(因果序列)若x(n)是因果序列,x(n)↔ X(z),则x(0)=lim_z→∞X(z)12终值定理(因果序列,X(z)的极点在单位圆内,最多在z = 1处有一阶极点)若x(n)是因果序列,x(n)↔ X(z),则lim_n→∞x(n)=lim_z→1(z - 1)X(z)。
[数字信号处理]序列的z 变换序列的z 变换z 变换的定义z 变换的定义如下X (z )=∞∑n =−∞x (n )z −n其中z =e j ω,是⼀个复数.在复平⾯上,z 相当于单位圆上的⼀点.典型序列的z 变换单位脉冲序列的z 变换求序列δ(n )的z 变换X (z )=∞∑n =−∞δ(n )z −n =δ(0)z 0=1,0<|z |<∞最后的⼀句话是收敛域阶越序列的z 变换求序列u (n )的z 变换X (z )=∞∑n =−∞u (n )z −n =n =∞∑n =0z −n =11−z −1,|z |>1矩形序列的z 变换求序列R 4(n )的z 变换X (n )=∞∑n =∞R 4(n )z −n =3∑n =0z −n =1+z −1+z −2+z −3=1−z −41−z −1,0<|z |<∞收敛域z 变换的性质线性设x 1(n )的z 变换是X 1(z )x 2(n )的z 变换是X 2(z )如果x 3(n )=ax 1(n )+bx 2(n )那么X 3(z )=aX 1(z )+bX 2(z )X 3(z )的收敛域为X 1(z )的收敛域和X 2(z )的收敛域的交集移位性质双边序列x (n )为双边序列时设x (n )的z 变换是X (z )则x (n +n 0)的z 变换是z n 0X (z )序列移位不会改变z 变换的收敛域右边序列右移公式x (n )为右边序列设x (n )的z 变换是X (z )x (n −1)的z 变换是z −1X (z )+x (−1)x (n −2)的z 变换是z −2X (z )+z −1x (−1)+x (−2)如此类推右边序列左移公式x (n )为右边序列设x (n )的z 变换是X (z )x (n +1)的z 变换是z 1X (z )−x (1)x (n +2)的z 变换是z 2X (z )−z 1x (1)−x (2)如此类推序列乘实指数序列设x (n )的z 变换是X (z )y (n )=a n x (n )的z 变换Y (z )=X (a −1z )复共轭序列的z 变换设x (n )的z 变换是X (z )则x ∗(n )的z 变换是X ∗(z ∗)初值定理设x (n )的z 变换是X (z )则x (0)=lim终值定理设x(n)的z 变换是X(z) \\则x(\infty)=\lim_{z->1}(z-1)X(z)序列类型收敛域有限长序列$0<右边序列$左边序列$双边序列$R_{x-}<Loading [MathJax]/jax/element/mml/optable/BasicLatin.js帕斯维尔定理(能量定理)时域总能量等于z域总能量(能量守恒)E=\sum_{n=-\infty}^{\infty}|x(n)|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}|X(e^{j\omega})|^2d\omega。
z变换知识点总结一、引言在信号处理领域中,z变换(Z-transform)是一种重要的数学工具,用于分析和处理离散时间信号。
与连续时间信号相对应的拉普拉斯变换用于处理连续时间信号,而z变换则用于处理离散时间信号。
z变换可以将离散时间信号转换为复变量域中的复数函数,从而更容易地进行信号分析和处理。
本文将对z变换的基本概念、性质、逆z变换、收敛域、z变换与拉普拉斯变换的关系以及在数字滤波器设计中的应用等知识点进行总结和讨论。
二、z变换的基本概念1. 离散时间信号的z变换对于一个离散时间信号x[n],其z变换定义如下:X(z) = Z{x[n]} = ∑(n=-∞ to ∞) x[n] z^(-n)其中,z是一个复数变量,n为离散时间序列,x[n]是每个时间点上的信号值。
2. z变换的双边z变换和单边z变换双边z变换定义在整个序列上,包括负无穷到正无穷的所有时间点。
而单边z变换定义在0和正无穷之间的时间点上,通常用于信号的因果系统的分析。
3. z域表示z变换把离散时间信号的时域表示转换为z域表示。
z域是复平面上的一种表示,其中z = a + jb,其中a为实部,b为虚部。
z域表示包含了离散时间信号的频率、相位和幅值信息。
三、z变换的性质1. 线性性质类似于连续时间信号的拉普拉斯变换,z变换也具有线性性质,即对于任意常数a和b,有Z{a x1[n] + b x2[n]} = a X1(z) + b X2(z)。
这意味着z变换对于信号的线性组合保持封闭性。
2. 移位性质类似于连续时间信号的移位特性,z变换也具有移位性质,即Z{x[n-k]} = z^(-k) X(z),其中k是任意常数。
这意味着z变换对于离散时间信号的时移操作具有相应的变换规律。
3. 初值定理和终值定理z变换有类似于连续时间信号的初值定理和终值定理。
初值定理表示当n趋向负无穷时,z变换为Z{x[0]}。
终值定理表示当n趋向正无穷时,z变换为Z{x[∞]}。