数字信号处理第2章Z变换
- 格式:pptx
- 大小:4.65 MB
- 文档页数:36
数字信号处理教程课后习题答案目录第一章离散时间信号与系统第二章Z变换第三章离散傅立叶变换第四章快速傅立叶变换第五章数字滤波器的基本结构第六章无限长单位冲激响应(IIR)数字滤波器的设计方法第七章有限长单位冲激响应(FIR)数字滤波器的设计方法第八章数字信号处理中有限字长效应第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。
分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y ②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个(③ 围的不同的不同时间段上求和范一定要注意某些题中在 n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。
)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。
分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ;③卷积和求解时,n 的分段处理。
数字信号处理z变换公式表序号变换名称公式。
1双边Z变换定义X(z)=∑_n = -∞^∞x(n)z^-n,收敛域为R_x -<| z|2单边Z变换定义(因果序列)X(z)=∑_n = 0^∞x(n)z^-n,收敛域为| z| > R_x -3Z变换的线性性质若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则ax_1(n)+bx_2(n)↔ aX_1(z)+bX_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)4序列的移位(双边Z变换)若x(n)↔ X(z),R_x -<| z|,则x(n - m)↔ z^-mX(z),收敛域为R_x -<| z|(m为整数)5序列的移位(单边Z变换)若x(n)↔ X(z),则x(n - m)u(n)↔ z^-mX(z)+∑_k =0^m - 1x(k - m)z^-k(m>0),收敛域为| z| > R_x -6Z域尺度变换(乘以指数序列)若x(n)↔ X(z),R_x -<| z|,则a^nx(n)↔X((z)/(a)),收敛域为| a| R_x -<| z|<| a| R_x +(a≠0)7序列的线性加权(Z域求导)若x(n)↔ X(z),R_x -<| z|,则nx(n)↔ -z(dX(z))/(dz),收敛域为R_x -<| z|8序列的反褶若x(n)↔ X(z),R_x -<| z|,则x(-n)↔ X((1)/(z)),收敛域为(1)/(R_x +)<| z|<(1)/(R_x -)9卷积定理(双边Z变换)若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)10卷积定理(单边Z变换)设x_1(n)和x_2(n)为因果序列,x_1(n)↔ X_1(z),x_2(n)↔ X_2(z),则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为| z| >max(R_1 -,R_2 -)11初值定理(因果序列)若x(n)是因果序列,x(n)↔ X(z),则x(0)=lim_z→∞X(z)12终值定理(因果序列,X(z)的极点在单位圆内,最多在z = 1处有一阶极点)若x(n)是因果序列,x(n)↔ X(z),则lim_n→∞x(n)=lim_z→1(z - 1)X(z)。
z变换知识点总结一、引言在信号处理领域中,z变换(Z-transform)是一种重要的数学工具,用于分析和处理离散时间信号。
与连续时间信号相对应的拉普拉斯变换用于处理连续时间信号,而z变换则用于处理离散时间信号。
z变换可以将离散时间信号转换为复变量域中的复数函数,从而更容易地进行信号分析和处理。
本文将对z变换的基本概念、性质、逆z变换、收敛域、z变换与拉普拉斯变换的关系以及在数字滤波器设计中的应用等知识点进行总结和讨论。
二、z变换的基本概念1. 离散时间信号的z变换对于一个离散时间信号x[n],其z变换定义如下:X(z) = Z{x[n]} = ∑(n=-∞ to ∞) x[n] z^(-n)其中,z是一个复数变量,n为离散时间序列,x[n]是每个时间点上的信号值。
2. z变换的双边z变换和单边z变换双边z变换定义在整个序列上,包括负无穷到正无穷的所有时间点。
而单边z变换定义在0和正无穷之间的时间点上,通常用于信号的因果系统的分析。
3. z域表示z变换把离散时间信号的时域表示转换为z域表示。
z域是复平面上的一种表示,其中z = a + jb,其中a为实部,b为虚部。
z域表示包含了离散时间信号的频率、相位和幅值信息。
三、z变换的性质1. 线性性质类似于连续时间信号的拉普拉斯变换,z变换也具有线性性质,即对于任意常数a和b,有Z{a x1[n] + b x2[n]} = a X1(z) + b X2(z)。
这意味着z变换对于信号的线性组合保持封闭性。
2. 移位性质类似于连续时间信号的移位特性,z变换也具有移位性质,即Z{x[n-k]} = z^(-k) X(z),其中k是任意常数。
这意味着z变换对于离散时间信号的时移操作具有相应的变换规律。
3. 初值定理和终值定理z变换有类似于连续时间信号的初值定理和终值定理。
初值定理表示当n趋向负无穷时,z变换为Z{x[0]}。
终值定理表示当n趋向正无穷时,z变换为Z{x[∞]}。
z 变换与离散时间Fourier 1、z 变换2、离散时间3、序列的z Fourier 变换的关系4、离散系统的系统函数,系统的频率响应信号与系统的分析方法:时域分析方法 变换域分析方法连续时间信号与系统: Fourier Laplace离散时间信号与系统: z 变换离散时间信号与系统的分析方法2.1.1 z 变换的定义2.1 z 变换:z X )(其中成一个复平面,称为ωj e r z ⋅=(x z 反变换:其中,积分路径是在逆时针旋转的闭合围线。
在数字信号处理中,不需要用围线积分来求2.1.2 z 变换的收敛域对任意给定序列的所有z 值的集合称为z 变换公式的级数收敛的充要条件是满足绝对可和,对某一具体的使该不等式成立,这个域,收敛域内不能有极点。
n ∞=−∞∑2.1.3 4 种典型序列的除0 和∞两点是否收敛与n 1和n 2取值情况有关外,整个z 平面均收敛。
1. 有限长序列x (n ) 只在n 1≤n ()()z X z x n 其变换:即要求: ROC 至少为:1()()X z x n z −=0(0)x z +如果n 2 ≤0 n 1<0,n 2≤如果n 1≥0 n 1≥0,n 2> 0如果n 1< 0 <n 1<0,n 2 > 0 1100n n Roc ∴≥<当时, 当时, 因果序列的处收敛在∞处收敛的变换,其序列必为因果序列在工程中,人们感兴趣的主要是因果序列。
1()()n n X z x n ∞==∑2. 右边序列x (n ) 在n ≥n 1时有值,在2200n n Roc ∴≤>当时, 当时,2()()()n n n X z x n x n =−∞=−∞==∑∑3. 左边序列x (n ) 在n ≤n 2 时有值,在x x x x x R R R R z R −+−++∴≥<<<当时, 当时,0()()()nn n X z x n x n z ∞−=−∞==∑ Roc: 0≤前式 Roc: x R −后式4. 双边序列n 为任意值时x 例1:x (n )=δ(变换及收敛域。