3.4.3直线与圆锥曲线的交点
- 格式:ppt
- 大小:722.50 KB
- 文档页数:18
4.3直线与圆锥曲线的交点学习目标:1.会求直线与圆锥曲线的交点坐标,会求与弦有关的简单问题(相交弦长、中点弦所在直线方程).2.若已知直线与圆锥曲线的交点个数会求参数的取值范围学习重点:掌握利用对应方程解决直线与圆锥曲线交点的问题的方法.学习难点:理解解析几何中利用代数的方法解决几何问题的方法.自主学习1.两曲线的交点两条曲线C1 :f(x,y)=0, C2:g(x,y)=0.条件:若点M(x0,y0)是曲线C1与C2的一个交点.结论:点M(x0 ,y0)满足方程f(x,y)=0,也满足方程g(x,y)=0,从而,曲线C1与C2的任意一个交点的坐标都满足方程组反过来,该方程组的任意一组实数解都对应着这两条曲线的坐标.2.如何判断直线与圆锥曲线的交点个数?合作探究探究一直线与圆锥曲线的公共点的坐标问题例1:给定椭圆方程22154x y+=,斜率为1的直线过其焦点F2(1,0),直线与椭圆相交于A,B两点,求A与B的坐标. 延伸探究:(1)求AB的长度,AB的中点坐标(2)已知椭圆方程22154x y+=,求以点P(1,1) 为中点的弦所在的直线方程.探究二直线与圆锥曲线的公共点的个数问题例2 若直线l:y=(a+1)x-1与曲线C:y2=ax恰好有一个公共点,试求实数a的取值集合.变式训练:(1)若题目改为没有公共点,求a的取值范围(2)若题目改为有两个公共点,求a的取值范围探究三直线与圆锥曲线恒有公共点问题例3不论k为何值,直线y=kx+b 与椭圆22194y x+=总有公共点,求b的取值范围?课堂小结本节课你收获了什么?知识方面:思想方面:课后自测1.过点(0,1)的直线m与抛物线y2=4x仅有一个公共点,则满足条件的直线m共有( )A.1条B.2条C.3条D.4条2.直线l:y=kx+1与椭圆C:2215x ym+=恒有公共点,则实数m的取值范围是( )A.(0,1)B.[1,+∞)C.(5,+∞)D.[1,5)(5,)+∞3.已知双曲线221x y-=及直线y=kx-1,若双曲线与直线有交点,求k的取值范围.。
圆锥曲线解题技巧之直线与圆锥曲线的交点如何通过直线与圆锥曲线的交点解决问题在解决与圆锥曲线相关的问题时,直线与圆锥曲线的交点是一个关键因素。
本文将介绍一些圆锥曲线解题的技巧,重点探讨如何通过直线与圆锥曲线的交点来解决问题。
一、直线与圆锥曲线的交点在解决圆锥曲线问题时,我们经常需要求解直线与圆锥曲线的交点。
求解这些交点能够帮助我们确定曲线的形状、性质以及其他重要参数。
接下来,我们将介绍两种常见的直线与圆锥曲线交点求解方法。
1. 利用代数方法求解交点一种常见的方法是通过代数方程求解直线与圆锥曲线的交点。
假设我们有一个圆锥曲线方程和一个直线方程,求解这两个方程的交点即可得到交点的坐标。
具体步骤如下:(1)将直线方程代入圆锥曲线方程,列出方程组。
(2)解方程组,求解交点坐标。
这种方法适用于各种类型的圆锥曲线,例如椭圆、双曲线和抛物线等。
2. 利用几何方法求解交点除了代数方法,我们还可以利用几何方法快速求解直线与圆锥曲线的交点。
以下是一些常见的几何方法:(1)切线法:对于一条切线,它与圆锥曲线相切于一个交点。
通过构造一条切线,我们可以找到直线与圆锥曲线的一个交点。
这种方法适用于某些特定的圆锥曲线,例如抛物线。
(2)平行线法:对于一条平行于坐标轴的直线,它与圆锥曲线相交于两个交点。
通过确定直线与圆锥曲线的一个交点,并利用平行线性质,我们可以求解另外一个交点。
这些几何方法能够有效地求解直线与圆锥曲线的交点,帮助我们更好地理解曲线的特点和性质。
二、应用案例分析接下来,我们将通过一些应用案例来展示如何利用直线与圆锥曲线的交点解决问题。
案例一:求解椭圆的焦点坐标已知椭圆的方程为x^2/16+y^2/9=1,要求椭圆的焦点坐标。
解析:椭圆的焦点是直线与椭圆的交点。
我们可以选择一条经过椭圆顶点的切线,找到切点作为一个焦点。
具体步骤如下:(1)求解椭圆的顶点坐标:将x=0代入椭圆方程,得到y=±3。
所以椭圆的顶点坐标为(0,3)和(0,-3)。
4.3 直线与圆锥曲线的位置关系(两课时)教学目标:1.掌握直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题;2.会运用“设而不求”解决相交弦长问题及中点弦问题;3.会利用圆锥曲线的焦半径公式解决焦点弦的问题 掌握求焦半径以及利用焦半径解题的方法;4.会用弦长公式|AB |=21k +|x 2-x 1|求弦的长.题型1:交点个数问题例1. 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上? 解: 联立⎪⎩⎪⎨⎧=-+=13122y x ax y ⇒ (3-a 2)x 2-2ax -2=0 ① 显然a 2≠3,否则方程①只有一解,于是直线与双曲线至多一个交点.若交点A 、B 在双曲线同支上,则方程①满足:⎪⎩⎪⎨⎧>->-+=∆0320)3(84222a a a ⇒⎪⎩⎪⎨⎧>-<<<-3366a a a 或⇒a ∈(-6,-3)∪(3,6) 若A 、B 分别在双曲线的两支上,则有:⎪⎩⎪⎨⎧<->-+0320)3(84222a a a ⇒a ∈(-3,3) 【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法。
反思1:直线与圆锥曲线有无公共点或有几个公共点的问题:讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线的方程联立成方程组,消去y 得关于x 的方程02=++c bx ax ,讨论∆及判别式a 得关于x 的方程02=++c bx ax 解析的情况对应得到直线与圆锥曲线的位置关系.一般注意以下三点:(1)注意0=a 与0≠a 两种情况,只有0≠a 时,才可用判别式确定解的个数; (2)直线与圆锥曲线相切时,一定有 .(3)直线与圆锥曲线有且只有一个交点时,不一定相切. 题型2:与弦中点有关的问题例2已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜消去y 00a ≠⎧⎨∆=⎩0,0.a b =⎧⎨≠⎩率之积为-2.(Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程.【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BM k k ⋅=-,:()22221x y x +=≠± (Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,直线l 的方程为12x =,则11((,22C D ,其中点不是N ,不合题意,设直线l 的方程为11()2y k x -=-将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯ 直线l 的方程为111()22y x -=-- 即所求直线l 的方程为230x y +-=解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,),(,2222C D -, 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-,将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k kk x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-, 将1k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=反思2:通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁练习: 已知椭圆C :22221(0)x y a b a b+=>>的离心率为3,过右焦点F 且斜率为1的直线交椭圆C 于A 、B 两点,N 为弦AB 的中点.求直线ON (O 为坐标原点)的斜率ON K 。
§4.3直线与圆锥曲线的交点问题:1. 直线与圆有哪些位置关系?其判定方法是怎样的?2.如何求直线与圆的交点坐标?直线与圆锥曲线的交点一、求直线与圆锥曲线的公共点的坐标问题例1已知过点(0,1)且斜率为1的直线与椭圆2244x y += 相交于A 、B 两点,求A 、B 两点的坐标.问题1如何求弦长AB ?小结:(1)求直线与圆锥曲线的交点一般是把直线方程和圆锥曲线方程联立解方程组即可;(2)求直线被圆锥曲线所截得的弦长,方法一:求出交点,再利用两点间的距离公式求;方法二:利用弦长公式.练习:过双曲线22136x y-=的右焦点2F,倾斜角为30 的直线交双曲线于A、B两点,求弦长AB.二、直线与圆锥曲线的公共点的个数问题例2 已知直线l:2y x m=+,椭圆C:22142x y+=,试问当m取何值时,直线l与椭圆C:(1)有两个不同的公共点?(2)有且只有一个公共点?(3)没有公共点?小结:直线与圆锥曲线交点个数的判定问题:判断直线l与圆锥曲线C的交点个数时,通常将直线l的方程Ax+By+C=0(A、B不同时为0)代入圆锥曲线C的方程f(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元二次方程.即(,)0A xB y Cf x y++=⎧⎨=⎩,消去y后,得ax2+bx+c=0.(注意:若f(x,y)=0表示椭圆,则方程中a≠0),为此有:(1)若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是拋物线时,直线l与拋物线的对称轴平行(或重合).此时直线与圆锥曲线只有一个交点(注意:当直线l与双曲线的渐近线重合时,没有交点).(2)若a≠0,Δ=b2-4ac,①Δ>0时,直线与圆锥曲线有两个交点;②Δ=0时,直线与圆锥曲线只有一个交点;③Δ<0时,直线与圆锥曲线没有交点.练习:已知抛物线的方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,问当k 为何值时,直线l 与抛物线(1)只有一个公共点?(2)有两个公共点?(3)没有公共点?三、直线与圆锥曲线恒有公共点问题例3 若直线1y kx =+与交点在x 轴上的椭圆2215x y m +=总有公共点,求m 的取值范围.练习:直线3y x =+与曲线2||194y x x -=( )A.没有交点B.只有一个交点C.有两个交点D.有三个交点。