第七章 网络的灵敏度分析
- 格式:pdf
- 大小:421.22 KB
- 文档页数:68
分析步骤(1) 用某种分析方法求解原网络,得到原网络的支路电压和支路电流的解答;(2)构造相应伴随网络,根据网络函数定义,构造相应伴随网络的端口,再构造伴随网络的内部元件模型;(3) 求解伴随网络,得到伴随网络支路电压和支路电流的解答;(4) 由灵敏度相应公式计算网络函数对所有微变参数的绝对灵敏度。
例1 网络如图 所示,定义网络函数。
用伴随网络法求 H 对的绝对灵敏度。
o i /H U U =m g C L R 、、、i 1V U =解:1) 令 求解原网络 L R I I ωj 121+== LR R g I I m ωj 54+=-= L R L U ωωj j 1+= L R R U U ωj 32+== 45o j (j )m g R U U U C R L ωω===-+03=I 1I i U R L2I 3U +-4I 3m g U C IU +-3I1I 1A R L 2I 4I 4m g U CI 4U +-3I 2) 构造伴随网络如下图3) 求解伴随网络得 )j (j ~1L R C R g I m ωω+-= )j (j j ~2L R C Lg I m ωωω+= C g I m ωj ~3-= 123j j (j )m Lg R U U U C R L ωωω=-=-=-+C U U ωj 1~~54-== 4) 计算各灵敏度 C L R Lg I I R Hm 222)j (~ω+-=-=∂∂ C L R R g I I L H m 211)j (~j ωω+=-=∂∂ )j (j ~j 255L R C Rg U U C Hm ωωω+==∂∂ )j (j ~43L R C RU U g H m ωω+-==∂∂。
灵敏度分析1. 简介灵敏度分析(Sensitivity Analysis),又称为参数分析,是指在数学模型或系统模型中,通过改变各种输入参数,分析其对模型输出结果的影响程度的一种方法。
灵敏度分析可以帮助我们了解模型的稳定性、可靠性以及输入因素对输出的影响程度,从而帮助我们做出科学合理的决策。
在实际应用中,很多决策问题都涉及到多个不确定的参数,这些参数对于决策结果的影响程度可能不同。
灵敏度分析能够帮助我们确定哪些参数对决策结果更为敏感,哪些参数对决策结果影响较小,从而帮助我们确定关键参数,并为决策提供支持。
2. 灵敏度分析方法2.1 单参数灵敏度分析单参数灵敏度分析是指在数学模型中,依次改变一个输入参数,而其他参数保持恒定,观察模型输出结果的变化情况。
通过改变一个参数的值,我们可以分析该参数对模型输出结果的影响程度。
常用的单参数灵敏度分析方法有:•参数敏感度指标(Parameter Sensitivity Index,PSI):PSI用于衡量输入参数的变化对输出结果的影响程度。
常见的PSI指标有:绝对敏感度、相对敏感度、弹性系数等。
•参数敏感度图(Parameter Sensitivity Plot):通过绘制参数敏感度图,可以直观地看出输入参数对输出结果的影响程度。
常见的参数敏感度图有:Tornado图、散点图等。
•分析输出结果的极值情况:通过改变参数的值,观察模型输出结果的极值情况,可以分析参数对极值情况的敏感程度。
2.2 多参数灵敏度分析多参数灵敏度分析是指同时改变多个输入参数,观察模型输出结果的变化情况。
多参数灵敏度分析可以帮助我们分析多个参数之间的相互作用,以及各个参数对输出结果的综合影响。
常用的多参数灵敏度分析方法有:•流量排序法(Flow Sort):通过将参数的取值按照大小进行排序,逐步改变参数取值的范围,观察输出结果的变化情况。
可以帮助我们确定哪些参数对输出结果的影响更大。
•剥离法(Perturbation):通过逐个改变参数的取值,观察输出结果的变化情况。
信息网络中流问题的灵敏度分析
随着科技的发展,一种新型的信息传输方式——信息网络流传输成为主流,信息网络理论的研究成为热点问题。
而信息网络的拓扑结构并不是固定不变的,所以研究拓扑结构的变化对网络流最优解的影响对于信息网络的稳定性有非常重要的意义。
本文以信息网络为研究对象,着重研究了信息网络中流问题的灵敏度分析。
本文的主要内容包括:1、针对静态网络最大流的弧容忍度问题,分析了最大流和最小截的性质,由此给出了求解每条弧的最大流弧容忍度上下界的算法,并且证明了在算法中采用不同的最大流和最小截得到的弧容忍度上下界是相同的。
2、在动态网络最大流问题中,细化了原有的最大动态流算法,由此提出了最大动态流的关键弧算法,并将算法与原有算法和按定义求解的算法进行分析,最后通过构造辅助网络来求解关键顶点问题。
3、在动态网络中,分析了最短时间流的性质,说明了最短时间流与最大动态流的关系,由此给出了一个求解最短时间流问题的算法,在此基础上提出了最短时间流的关键弧算法,并将算法与按定义求解的算法进行了数值比较。
电网络第七章网络的灵敏度分析第七章网络的灵敏度分析网络的灵敏度分析是指对网络中各个节点或边的变化进行分析,以评估网络对这些变化的敏感程度。
通过灵敏度分析,我们能够更好地了解网络中的关键节点和关键边,从而为网络的优化设计和保护提供有力的支持。
本章将介绍网络的灵敏度分析方法和应用,并对其在实际网络中的价值进行探讨。
一、网络的灵敏度分析方法1.1 传统方法传统的网络灵敏度分析方法主要基于线性系统理论,通过计算网络在节点变化或边删除时的响应情况来评估网络的灵敏度。
其中,常用的方法包括雅可比矩阵法、拉普拉斯矩阵法等。
这些方法在对简单网络进行分析时较为有效,但在面对复杂网络时往往会遇到计算复杂性高、求解难度大等问题。
1.2 基于复杂网络理论的方法随着复杂网络理论的发展,越来越多的灵敏度分析方法基于复杂网络理论而提出。
这些方法可以更好地应对复杂网络的特点,包括节点之间的异质性、非线性关系等。
其中,常用的方法包括基于节点介数的方法、基于度中心性的方法、基于小世界网络理论的方法等。
二、网络的灵敏度分析应用2.1 网络优化设计灵敏度分析可以帮助我们识别网络中的关键节点和关键边,从而为网络的优化设计提供指导。
通过对网络的灵敏度进行分析,我们可以发现网络中的薄弱环节,针对这些薄弱环节进行改进,提高网络的鲁棒性和可靠性。
2.2 网络安全防护网络的灵敏度分析在网络安全防护中有着广泛的应用。
通过对网络的灵敏度进行分析,我们可以了解网络中的关键节点和关键边,当这些节点或边受到攻击或破坏时,网络的整体性能会受到较大的影响。
基于这些分析结果,我们可以采取相应的安全策略,加强对网络中的关键节点和关键边的保护,提高网络的抗攻击能力。
2.3 社交网络分析灵敏度分析在社交网络分析中也有着重要的应用。
社交网络中的节点代表人员,边代表人员之间的关系。
通过对社交网络的灵敏度进行分析,我们可以了解社交网络中的核心人物和关键关系,从而更好地理解社交网络的结构和特性,为社交网络的管理和决策提供参考。
灵敏度分析灵敏度分析是一项重要的决策工具,用于评估一个系统对其输入参数变化的敏感程度。
它在不同领域和行业中都有广泛的应用,包括金融、工程、环境等。
本文将详细介绍灵敏度分析的概念、方法和应用,并探讨其在决策过程中的重要性。
灵敏度分析是指通过改变一个或多个输入变量,观察系统输出变量的变化情况,从而确定输入变量对输出变量的影响程度。
它能够帮助我们了解系统的稳定性和可靠性,并得出相应的决策。
灵敏度分析通常与多元回归分析或其他统计模型一起使用,以揭示模型背后的关键因素。
灵敏度分析的方法有很多种,其中最常见的一种是参数灵敏度分析。
参数灵敏度分析通过改变系统输入参数的值,观察输出结果的变化情况,从而确定每个参数对输出结果的影响程度。
这种方法可以帮助我们识别问题中最重要的参数,并为决策提供基础数据。
除了参数灵敏度分析,还有一些其他的灵敏度分析方法,如局部敏感性分析、全局敏感性分析等。
局部敏感性分析通常用于评估系统在输入参数变化的某一特定范围内的敏感性。
全局敏感性分析则可以帮助我们了解整个系统在不同参数组合下的行为。
这些方法的选择取决于具体问题的需求。
灵敏度分析在不同领域和行业中都有广泛的应用。
在金融领域,灵敏度分析可以帮助投资者评估不同投资组合的风险和回报,从而做出更明智的决策。
在工程领域,它可以用于评估系统设计方案的可行性和稳定性。
在环境领域,灵敏度分析可以帮助我们了解环境参数对气候变化或生态系统健康的影响,从而制定相应的保护政策。
灵敏度分析在决策过程中的重要性不言而喻。
通过对系统的关键参数进行分析,我们可以更好地理解系统的行为和性能,从而制定更科学、更有效的决策。
它可以帮助我们识别风险和机遇,并为决策者提供决策依据。
然而,灵敏度分析也存在一些局限性。
首先,它假设系统的行为是线性的,这在实际情况下往往是不成立的。
其次,它无法考虑参数之间的交互作用,这可能导致结果的片面性。
因此,在进行灵敏度分析时,我们应该结合其他分析方法和经验判断,以获得更全面和可靠的结果。
第七章 网络的灵敏度分析第一节 灵敏度分析的意义p281第二节 灵敏度分析基本概念一.灵敏度 1.p281 定义 2.分类(1) 绝对灵敏度(微分灵敏度)(非归一化灵敏度)xTx T D x Tx ∆∆=∂∂=→∆0lim (式7-2-1) (2) 相对灵敏度(归一化灵敏度)xTx x TTx T T x S T x ln ln ∂∂=∂∂=∂∂=(式7-2-1) (3) 其他灵敏度表示法·xTx S Tx ∂∂=100 (参数变化百分之一时)·xTx S xT x S T x T x∂∠∂=∂∂=∠180100 ·半归一化灵敏度x Tx T xS T Tx ln 0∂∂=∂∂== xT x T T S x Tx ∂∂=∂∂==ln 10·多参数灵敏度(只能用于参数的微小变化) p282)(),(21x T x x x T T n ==)()(21)()()(0000x x H x x x x T x T x T T T --+-⋅∇=-=∆ 较高精度 其中:⎥⎦⎤⎢⎣⎡∂∂∂∂∂∂=∆n x T x T x T T 21, 3.解析灵敏度公式 p283 (1)2121Tx Tx TT x S S S +=(2))(121212121T x T x T T x S T S T T T S ++=+ 证明见“书”(3)Tx T xnS S n=(4)Tx T xS S -=1 (5)Tx Tx S S -=1(6)设)()()(ωθωωj e H j H = ,则)()()()(ωθωωωθxH x j H xS j S S += 证明:(补充)θθθθθθθθθθθθθθxH x H x j j H x j j j j j He xS j S xj x S x j He Hex S x e H x H e He x x He He x S j ⋅+=∂∂+=∂∂⋅⋅+=∂∂+∂∂=∂∂=)()( (7)T 是常量,0=Tx S 4.应用p284 例7-2-1(自己看)第三节 伴随网络法(Adjoint Network )一.概念引入伴随网络目的(1)原网络N :线性时不变网络,且内部不含独立源。