铸造凝固中的气体与气孔分解
- 格式:ppt
- 大小:395.50 KB
- 文档页数:20
常见铸件缺陷铸件缺陷分析、铸件质量检测数据处理一、铸件缺陷分析的分类(在GB/T5611-1998《铸造名词术语》中归结为8类102种)。
二、铸件缺陷的分析。
1.气孔是气体聚集在铸件表面,皮下和内部而形成的空洞。
气孔的孔壁光滑,稍带氧化彩色,无一定形状,尺寸和位置。
⑴.侵入性,由于浇注过程中液态金属对铸型激烈的热作用,使型砂和芯砂中的发气物(水分、粘接剂和附加物)汽化、分解和燃烧,生存大量气体,以及型腔中原有的气体。
侵入液态金属内部不能逸出所产生的空洞。
(尺寸大)。
⑵.析出性,溶解在液态金属气体中,在冷却凝固过程中,由于溶解度降低而产生的。
(数量多、尺寸小)。
⑶.反应性:液态金属与铸型界面之间、液态金属与渣之间发生化学反应形成的孔洞。
2.夹砂结疤,沟槽、鼠尾(由于型砂腔表面受热膨胀引起的)。
3.粘砂(一般是厚壁部分)类别序号名称特征一、多肉类缺陷1-5冲砂砂型或砂芯表面局部型砂被金属液冲刷掉,在铸件表面的相应部位上形成粗糙、不规则的金属瘤状物。
其常位于浇口附近,被冲刷了的型砂往往在铸件的其它部位形成砂眼1-6 掉砂砂型或砂芯的局部砂块在机械力的作用下掉落,使铸件表面相应部位形成的块状金属突起物。
其外形与掉落的砂块很相识。
在铸件其它部位二、孔洞类缺陷2-1 气孔铸件内由气体形成的孔洞类缺陷。
其表面一般比较光滑,主要呈梨形、圆形和椭圆形。
一般不在铸件表面露出,大孔常孤立存在,小孔则成群出现2-2气缩孔指分散性气孔与缩孔和缩松合并而成的孔洞类铸造缺陷2-5皮下气孔位于铸件表皮下的分散性气孔。
为金属液与砂型之间发生化学反应产生的反应性气孔,形状有针状、蝌蚪状、球状、梨状等,大小不一,深度不等。
通常在机械加工或热处理后才发现2-7 缩孔铸件在凝固过程中,由于补缩不良二产生的孔洞。
形状极不规则,孔壁粗糙并带有枝状晶。
常出现在铸件最后凝固的部位2-8 缩松铸件断面上出现的分散而细小的缩孔。
借助高倍放大镜才能发现的缩松称为显微缩松。
铝合金铸锭气孔及疏松缺陷的剖析(一)铝合金铸锭无论是扁锭还是园锭在生产中经常会出现气孔和疏松缺陷问题,气孔和疏松如同孪生姐妹,常常相伴为生,给铝加工带来许多麻烦。
铝合金铸锭组织中存在圆形孔洞称为气孔。
它是金属液体在冷却期间和凝固过程中,析出的气体存留在铸锭中形成的气泡缺陷。
疏松是在铝合金铸锭组织在凝固的过程中,由于铝合金在液态和凝固态的过程中,体积在收缩得不到很好的补充而产生出分散孔洞。
(待续)气孔形成的主要因素:在溶解中的熔体的气体处于饱和状态,溶体中存在大量非金属夹渣物,气体在铸造的过程中上浮速度慢,则气泡就会停留在铸锭中产生气孔。
气孔的产生原因:1.原材料潮湿.有油污.水份。
2.熔炉大修或者中修.长期停炉后干燥不彻底。
3.熔体在炉中过热。
4.熔炼的时间过长。
5.工具末彻底干燥。
6.润滑油质量不好.7.燃气水分过大。
疏松一般分为两种:一种是收缩间产生的疏松,一种是末去除溶体气体形成的疏松。
疏松的形成主要因素与熔体的气体含量与铸锭成形时过度带的尺寸.形状以及结构有关。
在分析疏松的原因有几种情况:1.熔体中气体含量过高;2.熔体过热;3.烘炉不彻底.停炉时间过长;4.泠却强度小.铸造速度过快;5铸造温度过低;6.工具及精炼气体.溶剂等潮湿或不彻底;7.漏斗供流不均匀;8.高镁合金覆盖不好。
(待续)铝合金铸锭气孔及疏松是最为常见的缺陷之一,铝合金熔炼与铸造技术(工艺规程)产生;都是围绕气孔和疏松缺陷所制定出来的。
如何解决气孔和疏松缺陷问题?下面就几个案例或许会给你一些启示。
案例1.北方有一铝加工企业,在炉子中修烘炉时由于热电偶失灵,误认为已经达到烘炉时间,提前投入生产,结果造成4炉产品全部报废,原因很简单(气孔.疏松),为了减少损失熔铸技术员们集思广益采取几项措施:1是固体料投放改为液体料投放(缩短熔炼时间)2.是控制化学成分杂质含量(减少非金属夹杂物)3.是加强精炼除气4.是将原来小园锭规格改为大园锭(以降低铸造速度,改变过度带尺寸)结果避免损失。
铸造缺陷-----气孔的概述以及分析一、术语含义:金属液在凝固过程中陷入金属中的气泡,在铸件中形成的孔洞,称为气孔。
还有气眼、气泡、呛火、呛等非正规名称,是孔壁光滑的孔洞类铸造缺陷。
二、目视特征:是指肉眼看到的铸件缺陷的形态特征,是区分气孔、缩孔、砂眼、加渣及确定气孔种类性质的依据。
1、形状:一般为球形或近似于球形、泪滴形、梨形、蠕虫状、长针形等气孔孔洞。
2、表面面貌:在肉眼观察下,气孔孔壁是平滑的,表面颜色有的发亮,有的金属本色,有的发蓝,灰铸铁孔洞表面有的附着一层碳膜。
3、尺寸:由于形成气孔原因复杂,尺寸变动是无规律的,有的大到10至20几毫米,有的小到不到1毫米。
4、部位:是指孔洞在铸件截面中的位置,一般可分为表面气孔,一落砂就可发现,内部气孔只有在机加工后才能显示出来,有的皮下气孔在喷砂后或机加工去除表面硬皮后才能发现。
多出现在浇注位置的上面。
5、危害性:气孔是铸件常见和多发性缺陷,一般情况下,气孔使铸件报废数量约占铸件废品率的25%-80%。
6、气孔种类:从气孔形成原因、形成过程、形成机理来分类,气孔可分为5种,及侵入气孔、裹挟气孔、析出气孔和内外反应气孔。
下面先说一说最常见、发生最多的侵入型气孔。
一、从浇注到铸件凝固成壳期间,砂型、砂芯发生的气体侵入金属液时产生的气孔称为侵入性气孔。
1、它的形状特征:团球形、梨形、泪滴形,小头所指是气体来源的方向。
2、表面面貌:孔壁平滑,铸件侵入气体主要成分是CO时,孔壁呈蓝色;是氢气时,孔壁是金属色,发亮;是水蒸气时,孔壁是氧化色,孔壁发暗,灰色。
3、一般尺寸较大,在几毫米以上。
4、部位:按浇注位置来说,常处于铸件上表面,去掉浇冒口或气针后可看到,有的粗加工后表现出来。
5、分布:大多情况下是单个或几个聚集的尺寸较大的气孔,很少成为弥散性气孔或针孔。
二、形成机理:1、砂型:砂型中的气体侵入金属液,分为两种:①不润湿型:组成砂型型砂粒度细、强度高、紧实度大(硬),如静压线造型。
铸件气孔的种类与防止方法【摘要】气孔,也称气眼,是铸造生产中最常见的缺陷之一。
产生于铸件内部、表面或近表面,呈大小不等的圆形、长形及不规则形,有单个的,也有聚集成片的,孔壁光滑,颜色为白色,有时覆一层氧化皮。
在长期实践中我们根据形状与生成原因不同一般称之为气孔、气泡、针孔、气疏松和气缩孔。
【关键词】铸件,气孔,浇注,凝固,铸造工艺引言在铸件的废品中,气孔占有很大的比例。
据统计由于气孔导致的铸件废品占铸件废品总数的1/3左右,减少和消除气孔缺陷对提高铸件质量是十分迫切的问题。
1 气孔生成的原因气孔由气体而生成,生成气孔的气体主要是CO、CO2及H2、O2、N2等。
气体主要来自三个方面,即来自金属、造型材料和大气。
气体在金属中熔解度随温度下降而急剧减少。
例如纯铁中氮的溶解度,每一百克金属中1100℃时为20.5cm3,750℃时只有0.3cm3。
氢气的溶解度,每一百克金属中,1000℃时为5.5cm3,而在300℃时只有0.16cm3。
当钢从液态变为固态时,由于溶解度的原因,气体向铸件较高温度方面扩散,扩散至壁较厚、凝固较迟的部位,来不及排放,随着铸件凝固的进行被包容于塑性状态的金属中而生成气体。
所生产的气体是封闭圆形或椭圆形,不于外界相通,孔壁有金属光泽。
型砂中的水分,粘结剂中所含的挥发物,都会因受热而变为气体。
以水为例,当其受到高温金属加热时,首先变为水蒸气,其次,当温度继续升高时水蒸气还要分解。
水变为水蒸气时体积要膨胀,水蒸气分解为氢和氧时还要膨胀。
如这种膨胀受到阻碍则产生压力,此压力在砂型透气不良的情况下,能冲破金属表面凝固膜而穿入铸件内部生成气孔。
在穿入过程中,气体一面运动,一面膨胀,所以形成一个细颈而后扩大的形状,使整个气孔像一个梨形,细颈方面指向气体来源方向。
在铸件表面或皮下往往只有一个微孔不容易看出来,只有热处理后或切削加工过程中才能完全发现。
因为气体与高温金属发生氧化作用,所以孔壁常呈暗蓝色或黑褐色。
铸造气孔解决方法铸造气孔是铸造中常见的缺陷之一,其产生对铸件的性能和质量都会产生不良影响。
因此,解决铸造气孔问题是铸造行业中的一个重要课题。
一、铸造气孔的原因铸造气孔产生的原因很多,主要有以下几个方面:1.金属液中气体的存在,如金属液在铸造过程中吸收了大量的气体,当金属凝固后,这些气体就会形成气孔。
2.铸型中气体的存在,如铸型中含有水分、挥发性有机物等,当金属液注入铸型内部时,这些气体就会被排出来,形成气孔。
3.铸造工艺的问题,如浇注温度、浇注速度、压力等的不合理设定,都可能导致铸造气孔的产生。
4.金属材料的问题,如金属材料成分不均匀,含有氧化物、夹杂物等,都可能导致气孔的产生。
二、解决铸造气孔的方法1.改进铸造工艺铸造气孔的产生与铸造工艺密切相关,因此改进铸造工艺是解决铸造气孔问题的首要措施。
具体来说,可以采取以下措施:(1)提高浇注温度,减少金属液中气体的溶解度,从而减少气孔的产生。
(2)控制浇注速度和压力,使金属液充分填充铸型,减少气孔的产生。
(3)改进浇注系统,减少金属液的冲击和喷溅,从而减少气孔的产生。
2.改进金属材料金属材料的成分和质量对铸造气孔的产生也有很大的影响。
因此,改进金属材料也是解决铸造气孔问题的重要措施。
具体来说,可以采取以下措施:(1)改进金属材料的制备工艺,减少夹杂物、氧化物等的产生。
(2)优化金属材料的成分和配比,使其成分均匀,减少气孔的产生。
3.改进铸型和模具铸型和模具的质量对铸造气孔的产生也有很大的影响。
因此,改进铸型和模具也是解决铸造气孔问题的重要措施。
具体来说,可以采取以下措施:(1)优化铸型设计,使其能够充分填充金属液,减少气孔的产生。
(2)加强铸型的密封性,减少铸型中气体的存在,从而减少气孔的产生。
(3)采用高质量的模具材料,减少模具中气体的存在,从而减少气孔的产生。
4.采用热处理技术热处理技术可以改变铸件中的组织结构,从而减少气孔的产生。
具体来说,可以采用以下热处理技术:(1)固溶处理:将铸件加热到一定温度,使其中的溶质均匀分布,从而减少气孔的产生。
铸件气孔
铸件气孔是指铸造过程中在铸件内部或表面形成的气孔。
铸件气孔是铸造缺陷之一,会影响铸件的力学性能和外观质量。
铸件气孔的形成原因主要有以下几个方面:
1.熔体中的气体:熔体中的气体在凝固时会向铸件内部或表面聚集形成气孔。
2.模具中的气体:模具中的气体在铸造过程中可能会被挤压到铸件中形成气孔。
3.浇注系统中的气体:浇注系统中的气体在铸造过程中可能会被带进铸件中形成气孔。
4.金属氧化物:金属熔体在铸造过程中可能会与空气中的氧气反应生成氧化物,这些氧化物在凝固时可能会形成气孔。
铸件气孔的大小和数量会影响铸件的性能和质量。
一般情况下,铸件气孔越小越少,铸件的力学性能和外观质量就越好。
为了减少铸件气孔的产生,可以采取以下措施:
1.优化浇注系统设计,减少气体的进入。
2.选用合适的金属材料,避免氧化物的产生。
3.控制熔体的温度和浇注速度,减少气体的聚集。
4.采用真空铸造或压力铸造等先进工艺,减少气体的产生。
铸件气孔的检测方法包括目视检查、X射线检测、超声波检测等。
一旦发现铸件气孔,需要进行修补或重新铸造。
低压铸造常见缺陷及预防一、气孔:1、特征〔1〕气孔:铸件内部由气体形成的孔洞类缺陷。
其外表一般比较光滑,主要呈梨形、圆形或椭圆形。
一般不在铸件外表露出,大孔常孤立存在,小孔那么成群出现。
〔2〕皮下气孔:位于铸件表皮下的分散性气孔。
为金属液与砂型〔铸型、湿芯、涂料、外表不干净的冷铁〕之间发生化学反响产生的反响性气孔。
形状有针状、蝌蚪状、球状、梨状等。
大小不一,深度不等。
通常在机械加工或热处理后才能发现。
〔3〕气窝〔气坑式外表气孔〕:铸件外表凹进去一块较平滑的气孔。
〔4〕气缩孔:分散性气孔与缩孔和缩松合并而成的孔洞类铸造缺陷。
〔5〕针孔:一般为针头大小分布在铸件截面上的析出性气孔。
铝合金铸件中常出现这类气孔,对铸件性能危害很大。
①点状针孔:此类针孔在低倍显微组织中呈圆点状,轮廓明晰且互不相连,能清点出每平方厘米面积上的针孔数目并测得针孔的直径。
这类针孔容易和缩孔、缩松相区别。
点状针孔由铸件凝固时析出的气泡所形成,多发生于结晶温度范围小,补缩才能良好的铸件中,如ZL102合金铸件中。
当凝固速度较快时,离共晶成分较远的ZL105合金铸件中也会出现点状针孔。
②网状针孔:此类针孔在低倍显微组织中呈密集相联成网状,伴有少量较大的孔洞,不易清点针孔数目,难以测量针孔的直径,往往带有末梢,俗称“苍蝇脚〞。
结晶温度宽的合金,铸件缓慢凝固时析出的气体分布在晶界上及兴隆的枝晶间隙中,此时结晶股价已形成,补缩通道被堵塞,便在晶界上及枝晶间隙中形成网状针孔。
③混合型针孔:此类针孔点状针孔和网状针孔混杂一起,常见于构造复杂、壁厚不均匀的铸件中。
针孔可按国家标准分等级,等级越差,那么铸件的力学性能越低,其抗蚀性能和外表质量越差。
当达不到铸件技术条件所允许的针孔等级时,铸件将被报废,其中网状针孔割裂合金基体,危害性比点状针孔大。
〔6〕外表针孔:成群分布在铸件表层的分散性气孔。
其特征和形成原因与皮下气孔一样,通常暴露在铸件外表,机械加工1~2mm后即可去掉。
铸件氮气孔和气孔的区别摘要:一、引言二、铸件氮气孔的定义与特点1.氮气孔的形成原因2.氮气孔对铸件质量的影响三、气孔的定义与特点1.气孔的形成原因2.气孔对铸件质量的影响四、氮气孔与气孔的区别1.成因上的区别2.形态上的区别3.对铸件质量影响上的区别五、如何预防和控制氮气孔和气孔的出现1.优化铸造工艺2.选用合适的熔炼设备和方法3.控制氮气和气体含量4.提高铸件表面质量六、结论正文:一、引言在铸造行业中,氮气孔和气孔是常见的缺陷,它们对铸件质量产生严重影响。
为了提高铸件质量,减少缺陷,我们需要深入了解氮气孔和气孔的区别,以及如何预防和控制它们的出现。
二、铸件氮气孔的定义与特点1.氮气孔的形成原因氮气孔主要是由于熔融金属中氮含量过高,在凝固过程中氮气析出并在铸件中形成孔洞。
氮来源于金属原材料、熔炼设备、炉气及保护气体等。
2.氮气孔对铸件质量的影响氮气孔的存在会导致铸件内部产生缺陷,降低铸件的力学性能和耐磨性,严重时会影响铸件的使用寿命。
三、气孔的定义与特点1.气孔的形成原因气孔主要是由于熔融金属在凝固过程中,气体不能及时排出,从而在铸件中形成孔洞。
气孔的成因包括金属原材料中的气体、熔炼过程中的气体、浇注系统和铸型材料等。
2.气孔对铸件质量的影响气孔同样会导致铸件内部产生缺陷,降低铸件的力学性能和耐磨性。
此外,气孔还会影响铸件的加工性能,增加后续加工的难度。
四、氮气孔与气孔的区别1.成因上的区别氮气孔的形成主要与氮含量过高和熔炼过程中氮气的析出有关,而气孔的形成则与熔融金属中气体含量过高和凝固过程中气体的排出不畅有关。
2.形态上的区别氮气孔一般呈现圆孔状,孔洞较干净,多分布在铸件的内部;气孔则呈现不规则形状,孔洞内可能有夹杂物,分布较为分散。
3.对铸件质量影响上的区别氮气孔和气孔都对铸件质量产生负面影响,但氮气孔对铸件的力学性能和耐磨性的影响更为严重。
五、如何预防和控制氮气孔和气孔的出现1.优化铸造工艺,降低氮气和气体含量。
铸造过程中常见的几种缺陷铸造是一种常见的金属加工方法,通过将熔化的金属注入铸型中,经过凝固和冷却,形成所需的零件或产品。
然而,铸造过程中常常会出现一些缺陷,这些缺陷会影响到产品的质量和性能。
本文将介绍几种常见的铸造缺陷,并提供一些预防和解决这些问题的方法。
1. 气孔:气孔是铸造过程中最常见的缺陷之一。
它们通常是由于熔融金属中的气体未能完全排出而形成的。
气孔会降低产品的密度和强度,导致产品易于断裂。
为了避免气孔的产生,可以通过控制熔融金属的气体含量和改进铸造工艺来减少气孔的形成。
2. 疏松:疏松是指铸件中存在的孔洞和空隙。
疏松会降低铸件的强度和耐久性,使其易于变形和破裂。
疏松的形成通常是由于金属液体在凝固过程中不均匀收缩而引起的。
为了解决疏松问题,可以通过优化冷却过程和改进浇注系统设计来增加金属液体的充填和凝固均匀性。
3. 砂眼:砂眼是指铸件表面或内部的突起或凹陷。
砂眼的形成通常是由于铸型材料的不均匀收缩或砂芯的移位引起的。
砂眼会影响到产品的外观和尺寸精度。
为了避免砂眼的产生,可以通过优化铸型和砂芯的设计,控制铸型材料的收缩率,以及合理调整浇注温度和速度来解决这个问题。
4. 缩松:缩松是指铸件中存在的细小裂纹。
缩松会降低铸件的强度和韧性,使其易于断裂。
缩松的形成通常是由于金属液体在凝固过程中体积收缩而引起的。
为了避免缩松的产生,可以通过增加浇注温度和压力,以及优化铸型设计和浇注系统来减少金属液体的收缩。
5. 夹杂物:夹杂物是指铸件中存在的杂质和非金属物质。
夹杂物会降低铸件的强度和耐久性,导致其易于断裂。
夹杂物的形成通常是由于金属液体中的杂质和氧化物未能完全排除而引起的。
为了避免夹杂物的产生,可以通过改进金属液体的净化和过滤系统,以及优化浇注工艺和铸型设计来减少夹杂物的形成。
铸造过程中常见的缺陷包括气孔、疏松、砂眼、缩松和夹杂物。
这些缺陷会影响到铸件的质量和性能,因此在铸造过程中需要采取相应的措施来预防和解决这些问题。