3.3逸度与逸度系数
- 格式:ppt
- 大小:873.00 KB
- 文档页数:35
《化工热力学》课程教学大纲课程代码:040310课程名称:化工热力学/Chemical Engineering Thermodynamics学时/学分:48/3先修课程:物理化学适用专业:化学工程与工艺本科开课院系:化学化工学院化学工程与工艺系教材:陈钟秀,顾飞燕,胡望明编. 化工热力学. 北京:化学工业出版社.2004主要参考书:1.金克新,赵传钧,马沛生.化工热力学. 天津:天津大学出版社.20032.陈新志,蔡振云,胡望明.化工热力学. 北京:化学工业出版社.20013 .Smith J M and Van Ness H C. Introduction to ChemicalEngineering .Thermodynamics. 4th ed. McGraw-Hill. New York.1996一、课程的性质和任务化工热力学是化学工程学科的一个重要分支,也是化学工程与工艺专业必修的专业基础课程。
化工热力学是将热力学原理应用于化学工程技术领域,其主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。
本课程将热力学的理论应用于化工生产中的真实流体和混合体系,解决化工过程中的热力学问题,培养学生从热力学的基本定律和定义出发,利用有限的资料解决工程问题的能力。
它是化工过程研究、开发与设计的理论基础。
要求通过本课程的学习,要求掌握常用的几种气体状态方程,掌握流体热力学性质的计算方法,熟悉化工过程的热力学分析方法及其在化工节能领域的应用,掌握汽液平衡的计算方法,熟悉化学反应平衡的计算,了解物性数据估算等关键内容。
二、课程的内容和基本要求绪言要求:了解课程性质、任务、要求、学习注意点。
第一章真实流体的PVT关系流体的PVT关系是化工工艺设计计算和研究热力学问题的基础,重点讲解加压下真实气体及其混合物的PVT关系的计算方法。
逸度系数的取值范围逸度系数这玩意儿,您知道不?它可不是个能随便糊弄的概念。
咱先来说说啥是逸度系数。
简单来讲,逸度系数就是用来衡量实际气体和理想气体偏差程度的一个参数。
您想想啊,理想气体多完美,各种规律都整得明明白白。
可实际气体呢,就没那么听话啦,逸度系数就是来给实际气体“打标签”的。
那逸度系数的取值范围到底是啥呢?这可得好好说道说道。
逸度系数的取值范围通常在 0 到无穷大之间。
您可能会奇怪,怎么会这么大的范围?其实啊,这就好比人的身高,有矮有高,千差万别。
当逸度系数等于 1 的时候,这气体就跟理想气体差不多啦,规规矩矩的。
可要是小于 1 呢,那就说明这实际气体比理想气体更“温顺”,更容易被压缩。
反过来,要是大于 1 ,那这实际气体可就“调皮”啦,没那么容易被压缩。
比如说,在低温高压的情况下,气体分子之间挤得紧紧的,相互作用就很强,逸度系数往往就小于 1 。
这就像在拥挤的公交车里,大家都动弹不得,只能乖乖地被挤在一起。
而在高温低压的时候,气体分子就像一群自由自在的小鸟,相互之间影响小,逸度系数就可能大于 1 。
这不就像在广阔的天空中,鸟儿想怎么飞就怎么飞,无拘无束。
再举个例子,您看氮气,在常温常压下,逸度系数就接近 1 。
可要是把它放到极端条件下,比如极低的温度和极高的压力,那逸度系数可就有大变化了。
所以说,逸度系数的取值范围可不是随便定的,它得看气体所处的条件,温度、压力、分子间的作用力等等,这些因素都能影响它。
总之,搞清楚逸度系数的取值范围对于研究气体的性质和行为那可是相当重要的。
您要是不了解这个,就好比在黑暗中摸索,找不到方向。
所以啊,可得把这逸度系数的取值范围弄明白,才能在气体的世界里游刃有余!。
逸度系数这两个量的定义就是相对于理想气体的比值,也就是说将理想气体的活度系数和逸度系数定义为1了.能出化学意义或者物理意义的角度出来来解释吗?在真实混合体系(溶液)中,“组分i-组分i间”的作用力和“组分i-其他组分间”的作用力并不相等,导致了组分i并不满足拉乌尔定律,即偏离了理想溶液的行为,为此吉尔伯特·牛顿·路易斯引入了活度和活度系数的概念。
这就是活度得物理意义。
理想气体假定了气体分子间无作用力,也就没有作用力不相等的问题。
逸度类似。
逸度(Fugacity)在化学热力学中表示实际气体的有效压强,用 f 表示。
逸度定义的出发点是化学势与理想气体的压强的关系。
它等于相同条件下具有相同化学势的理想气体的压强。
中文名逸度外文名Fugacity定义化学势与理想气体的压强的关系物理学(dG)=R*T*d(ln f)目录1. 1 逸度2. 2 用化学势定义逸度3. 3 物理学的逸度4. ▪相平衡与逸度逸度逸度逸度(Fugacity)在化学热力学中表示实际气体的有效压强,用表示。
它等于相同条件下具有相同化学势的理想气体的压强。
在与化学势有关的描述理想气体性质的热力学式子中用逸度代替活度,即可得到相应的描述实际气体性质的关系式。
例如0°C 下100个大气压的氮气的逸度为97.03 个大气压,这意味着它与97.03 个大气压下的氮气理想气体有着相同的化学势。
逸度可以通过实验测定,也可以用范德华气体模型估算。
逸度与压强的比值称为逸度系数Φ,它是无量纲量。
如下式所示:Φ=f/P[1]。
逸度用化学势定义逸度逸度定义的出发点是化学势与理想气体的压强的关系。
根据热力学基本方程:dμ=dG=-SdT+VdP定温下对压强从参考态压强开始作定积分:对于理想气体整理后,得:上式给出了理想气体等温过程中化学势与压强的关系。
对于实际气体,因为状态方程未知,上述定积分无法计算,因此引入逸度的概念,从而将实际气体的化学势表达式与理想气体统一起来。
逸度系数的名词解释逸度系数是一种用于描述物体在流体中运动时的流体阻力的无量纲参数。
它是根据物体在流体中运动时所受到的阻力与惯性力之间的比值得出的。
逸度系数的概念最早由德国物理学家欧托·瑞纳德尔(Otto Renard)提出,后来被广泛应用于流体力学和水力学的研究中。
逸度系数是流体力学研究中的一个重要参数,用以描述物体在流体中的运动状态。
在流体中,物体受到的阻力与其速度、流体密度和物体形状等因素密切相关。
逸度系数可以用于研究物体在低速流动和高速流动中的运动状态及其稳定性。
逸度系数的计算公式为:Cd=Fd/(0.5*rho*A*V^2),其中Cd为逸度系数,Fd为物体所受阻力的大小,rho是流体的密度,A是物体的面积,V是物体的速度。
从公式中可以看出,逸度系数与流体的密度、物体的面积和速度有关,而与物体的质量无关,这意味着物体的质量对逸度系数没有影响。
逸度系数被广泛应用于不同领域的研究中。
在工程中,逸度系数可以用来设计各种流体系统,例如管道、输水管道等,有助于优化系统的性能和效率。
在航空航天工程中,逸度系数也是一个重要的参数,用于评估空气动力学特性和飞行风险。
此外,在汽车工程、水文学、建筑设计等领域也都需要使用逸度系数进行相关计算和设计。
逸度系数的大小决定了物体在流体中的受阻程度。
当逸度系数较小的时候,表示物体在流体中的运动相对容易,流体阻力较小;当逸度系数较大的时候,表示物体在流体中的运动相对困难,流体阻力较大。
逸度系数越大,物体在流体中的运动受到的阻力越大,运动速度越慢。
逸度系数的研究对于流体力学和水力学的发展起着重要作用。
通过研究逸度系数,人们可以更好地理解和掌握物体在流体中的运动规律,为工程设计和科学研究提供理论依据和实践指导。
通过优化物体的形状、减小逸度系数,可以提高物体在流体中的运动效率,降低能量损失。
总之,逸度系数是一种用于描述物体在流体中运动时的阻力特性的重要参数。
它利用物体受到的阻力与惯性力之比来确定物体受阻状况的程度。
Mar. 25, 2011主要内容3.1 热力学性质间的关系3.2 热力学性质的计算3.3 逸度与逸度系数3.4 两相系统的热力学性质及热力学图表关键:剩余焓H R和剩余熵S R的计算!计算方法:①根据p-V-T实验数据计算②状态方程法③普遍化关系法3.2.4 气体热力学性质的普遍化关系面临难题:实际工程计算中,如计算高压下热力学函数,通常缺乏所需的p-V-T实验数据及所需物质的热力学性质图表。
策略:借助近似的方法处理,即将压缩因子的普遍化方法扩展到对剩余性质的计算。
特点:¾对比态原理可以作为高压下的热力学函数的近似计算方法;¾根据具体条件,选择普遍化维里系数法或普遍化压缩因子法;¾普遍化方法适用性广,既可用公式计算,也可采用图表估算,但精度低。
(1)普压法1Z Z Zω=+要点:采用式(2-38)计算方法——普维法和普压法微分后代入普遍化式(3-57)、(3-58),整理后得到相关H R 、S R 计算式。
(3)注意点¾普遍化关系式(普维法,普压法)仅适用于极性较弱,非缔合物质,不适用于强极性和缔合性物质;¾选择算式之前,一定要进行判据,图2-9中曲线上方或Vr≧2用普维法,否则,需采用普压法。
()mol/J .HHHH H H R R v 3407685822056413402175421=−++=++−+==∗ΔΔΔ()()K mol /J .....SSSS S S R R v ⋅=−++=++−+==∗27883814142287210647921ΔΔΔ63340767100.28151032106/U H pV J mol−=−=−×××=例3-7 确定过热水蒸汽在473.15K 和9.807 ×105Pa时的逸度和逸度系数。
()1.9612879.0/9.652/ii p kPa H kJ kg S kJ kg K ∗∗∗===⋅解: 根据附表中473.15K时的最低压力,并假设蒸汽处于该状态时为理想气体,则从蒸汽表中查出如下的基准态值:例3-8 计算1-丁烯蒸气在473.15K,7MPa下的f 和φ。