TOC测定仪的原理及使用(PPT31页)
- 格式:ppt
- 大小:475.00 KB
- 文档页数:32
下面针对TOC仪器的测定原理、TOC分析方法及分析的步骤进行介绍。
一、TOC仪器的测定原理总有机碳(TOC),由专门的仪器一一总有机碳分析仪(以下简称TOC 分析仪)来测定。
TOC分析仪,是将水溶液中的总有机碳氧化为二氧化碳,并且测定其含量。
利用二氧化碳与总有机碳之间碳含量的对应关系,从而对水溶液中总有机碳进行定量测定。
仪器按工作原理不同,可分为燃烧氧化一非分散红外吸收法、电导法、气相色谱法等。
其中燃烧氧化一非分散红外吸收法只需一次性转化,流程简单、重现性好、灵敬度高,因此这种TOC分析仪广为国内外所釆用。
TOC分析仪主要由以下儿个部分构成:进样口、无机碳反应器、有机碳氧化反应(或是总碳氧化反应器)、气液分离器、非分光红外C02分析器、数据处理部分。
二、燃烧氧化一一非分散红外吸收法燃烧氧化一非分散红外吸收法,按测定TOC值的不同原理乂可分为差减法和直接法两种。
1. 差减法测定TOC值的方法原理水样分别被注入高温燃烧管(900°C )和低温反应管(150°C)中。
经高温燃烧管的水样受高温催化氧化,使有机化合物和无机碳酸盐均转化成为二氧化碳。
经反应管的水样受酸化而使无机碳酸盐分解成为二氧化碳, 其所生成的二氧化碳依次导入非分散红外检测器,从而分别测得水中的总碳(TC)和无机碳(IC)。
总碳与无机碳之差值,即为总有机碳(TOC) o2. 直接法测定TOC值的方法原理将水样酸化后曝气,使各种碳酸盐分解生成二氧化碳而驱除后,再注入高温燃烧管中,可直接测定总有机碳。
但由于在曝气过程中会造成水样中挥发性有机物的损失而产生测定误差,因此其测定结果只是不可吹出的有机碳值。
三、水样中TOC的分析步骤1•试剂准备(1)邻苯二甲酸氢钾(KHC8H4O4):基准试剂(2)无水碳酸钠:基准试剂(3)碳酸氢钠:基准试剂(4)无二氧化碳蒸憾水2. 标准贮备液的制备(1)有机碳标准贮备液:称取干燥后的适量KHC8H4O4,用水稀释,一般贮备液的浓度为4OOmg/L碳。
下面针对TOC仪器的测定原理、TOC分析方法及分析的一、TOC仪器的测定原理总有机碳(TOC),由专门的仪器——总有机碳分析仪(以下简称TOC分析仪)来测定。
TOC分析仪,是将水溶液中的总有机碳氧化为二氧化碳,并且测定其含量。
利用二氧化碳与总有机碳之间碳含量的对应关系,从而对水溶液中总有机碳进行定量测定。
仪器按工作原理不同,可分为燃烧氧化—非分散红外吸收法、电导法、气相色谱法等。
其中燃烧氧化—非分散红外吸收法只需一次性转化,流程简单、重现性好、灵敏度高,因此这种TOC 分析仪广为国内外所采用。
TOC分析仪主要由以下几个部分构成:进样口、无机碳反应器、有机碳氧化反应(或是总碳氧化反应器)、气液分离器、非分光红外CO2分析器、数据处理部分。
二、燃烧氧化——非分散红外吸收法燃烧氧化—非分散红外吸收法,按测定TOC 值的不同原理又可分为差减法和直接法两种。
1.差减法测定TOC值的方法原理水样分别被注入高温燃烧管(900℃)和低温反应管(150℃)中。
经高温燃烧管的水样受高温催化氧化,使有机化合物和无机碳酸盐均转化成为二氧化碳。
经反应管的水样受酸化而使无机碳酸盐分解成为二氧化碳,其所生成的二氧化碳依次导入非分散红外检测器,从而分别测得水中的总碳(TC)和无机碳(IC)。
总碳与无机碳之差值,即为总有机碳(TOC)。
2.直接法测定TOC值的方法原理将水样酸化后曝气,使各种碳酸盐分解生成二氧化碳而驱除后,再注入高温燃烧管中,可直接测定总有机碳。
但由于在曝气过程中会造成水样中挥发性有机物的损失而产生测定误差,因此其测定结果只是不可吹出的有机碳值。
三、水样中TOC的分析步骤1.试剂准备(1)邻苯二甲酸氢钾(KHC8H4O4):基准试剂(2)无水碳酸钠:基准试剂(3)碳酸氢钠:基准试剂(4)无二氧化碳蒸馏水2.标准贮备液的制备(1)有机碳标准贮备液:称取干燥后的适量KHC8H4O4,用水稀释,一般贮备液的浓度为400mg/L碳。
下面针对TO C仪器的测定原理、TOC分析方法及分析的步骤进行介绍。
一、TOC仪器的测定原理总有机碳(TOC),由专门的仪器——总有机碳分析仪(以下简称TO C 分析仪)来测定。
TOC分析仪,是将水溶液中的总有机碳氧化为二氧化碳,并且测定其含量。
利用二氧化碳与总有机碳之间碳含量的对应关系,从而对水溶液中总有机碳进行定量测定。
仪器按工作原理不同,可分为燃烧氧化—非分散红外吸收法、电导法、气相色谱法等。
其中燃烧氧化—非分散红外吸收法只需一次性转化,流程简单、重现性好、灵敏度高,因此这种TO C分析仪广为国内外所采用。
TOC分析仪主要由以下几个部分构成:进样口、无机碳反应器、有机碳氧化反应(或是总碳氧化反应器)、气液分离器、非分光红外C O2分析器、数据处理部分。
二、燃烧氧化——非分散红外吸收法燃烧氧化—非分散红外吸收法,按测定TOC值的不同原理又可分为差减法和直接法两种。
1.差减法测定T OC值的方法原理水样分别被注入高温燃烧管(900℃)和低温反应管(150℃)中。
经高温燃烧管的水样受高温催化氧化,使有机化合物和无机碳酸盐均转化成为二氧化碳。
经反应管的水样受酸化而使无机碳酸盐分解成为二氧化碳,其所生成的二氧化碳依次导入非分散红外检测器,从而分别测得水中的总碳(TC)和无机碳(IC)。
总碳与无机碳之差值,即为总有机碳(TOC)。
2.直接法测定T OC值的方法原理将水样酸化后曝气,使各种碳酸盐分解生成二氧化碳而驱除后,再注入高温燃烧管中,可直接测定总有机碳。
但由于在曝气过程中会造成水样中挥发性有机物的损失而产生测定误差,因此其测定结果只是不可吹出的有机碳值。
三、水样中TOC的分析步骤1.试剂准备(1)邻苯二甲酸氢钾(KHC8H4O4):基准试剂(2)无水碳酸钠:基准试剂(3)碳酸氢钠:基准试剂(4)无二氧化碳蒸馏水2.标准贮备液的制备(1)有机碳标准贮备液:称取干燥后的适量KHC8H4O4,用水稀释,一般贮备液的浓度为400mg/L碳。
TOC测定原理方法
TOC(Total Organic Carbon)测定是一种常用的水质分析方法,用于确定水体中有机污染物的浓度。
TOC测定的原理基于有机物的燃烧,通过测量产生的二氧化碳来确定有机碳的浓度。
以下是TOC测定的原理及方法的详细介绍。
首先,将待测样品中的有机物转化为二氧化碳。
这通常通过两种方法实现:氧化和燃烧。
氧化方法是通过氧化剂将有机物氧化为二氧化碳。
常用的氧化剂包括高氧化铜(CuO),高氧化锰(MnO2)和高氯酸钠(NaClO3)。
在高温和酸性条件下,氧化剂与有机物反应生成二氧化碳。
燃烧方法则是通过将样品进行高温燃烧将有机物转化为二氧化碳。
这通常使用高温炉或催化燃烧器进行。
在高温下,有机物与氧气反应生成二氧化碳和水。
接下来,测量产生的二氧化碳。
有几种测量方法可用于测定CO2的浓度,包括红外辐射吸收法、导热法和气相色谱法。
红外辐射吸收法是最常用的测量CO2浓度的方法。
原理是利用二氧化碳对红外辐射的吸收特性来测量浓度。
这种方法的优点是具有高灵敏度和选择性。
导热法是一种基于传导热量的测量方法。
二氧化碳的导热性较差,因此测量样品中二氧化碳产生的热量损失来确定其浓度。
气相色谱法则是通过气相色谱仪分离和测量样品中的二氧化碳。
在气相色谱仪中,二氧化碳的浓度与其在色谱图中的峰面积成正比。
最后,计算出样品中的总有机碳浓度。
根据CO2浓度的测量结果,可以通过乘以一个转换因子将其转化为有机碳浓度。
不同的转换因子适用于不同类型的有机物,因此在具体测定中需要根据样品类型进行选择。
TOC(总有机碳)分析仪实验室测试方法及其原理TOC(总有机碳)分析仪实验室测试方法及其原理国家药典委员会发布的《中华人民共和国药典 2010 版》二部中推荐采用在线和离线两种测试方法,还提供了系统适应性试验的操作方法。
同时对测试总有机碳的仪器也提出了要求,即首先要能区分无机碳和有机碳;并能排除无机碳对总有机碳的影响;其次应满足系统适应性试验的要求;仪器应具有足够的检测灵敏度。
要检测样品中的有机物浓度,必须将有机物分子分解并且转化成能够测量的单分子形式,这样就必须把有机物氧化成二氧化碳,并对生成的二氧化碳进行测量。
目前氧化的方法有四种:一、燃烧法;二、光氧化法;三、湿法氧化;四、光化学法。
氧化后有机碳测试的方法有差减法和直接法两种。
主要技术参数电源:220V±22V电源频率:50Hz±1Hz基本尺寸:44cm×18cm×26cm检测极限:0.001mg/L检测精度:±5%检测范围:0.001mg/L~1.000mg/L额定功率:100W分析时间:4min响应时间:15 min以内环境温度:10-40℃温度变化在±5℃/d以内内部样品流速:0.5ml/min样品温度:1-95℃相对湿度:≤85%重复性误差:≤3%量程漂移:±5%零点漂移:±5%样通过进样口进入仪器后由分流器分成相等的两份,其中一份通过延迟线圈4,进入二氧化碳传感器3检测TIC,另一份通过镀有二氧化钛的螺旋石英玻璃管1,并在紫外灯2的照射下将水中有机物催化分解为二氧化碳,进入电导率传感器3检测TC。
总有机碳可通过这个差值计算得到:TOC = TC–TIC,后废液通过蠕动泵5,从排液管流出。
工作原理本仪器采用紫外氧化的原理,将样品中的有机物氧化为二氧化碳,二氧化碳的测试采用的是直接电导率法,通过测试经过氧化反应的样品的总碳含量和未经过氧化反应的样品总无机碳的含量差值来测定总有机碳含量,即:总有机碳(TOC)=总碳(TC)-总无机碳(TIC)。
toc分析仪工作原理
toc分析仪工作原理是基于表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)技术的。
SERS技术是一
种基于共振纳米结构表面增强的拉曼散射信号的技术,能够提高散射信号的强度,从而增加检测的灵敏度。
toc分析仪主要由激光器、近场光学探针、样品架和光谱仪等
组成。
首先,通过激光器产生一束单色激光,然后通过近场光学探针聚焦光束,将光聚焦到纳米结构表面。
这些纳米结构在光的作用下产生了局域表面等离子体共振(local surface plasmon resonance,LSPR)效应,使得光的强度在纳米结构
周围增强。
接下来,样品被放置在纳米结构周围,样品中的分子与纳米结构表面进行相互作用,从而产生了SERS信号。
最后,通过光谱仪记录并解析这些信号,得到样品中的分子信息。
通过上述工作原理,toc分析仪能够实现对样品中微量有机物
的检测和分析。
由于SERS技术具有高灵敏度、高选择性和非
破坏性等特点,toc分析仪在环境监测、食品安全和生物医学
等领域有着广泛的应用前景。
纯水TOC检测仪的测定原理
纯水TOC检测仪【霍尔德HD-TOC10】TOC以碳的含量表示水体中有机物质总量的综合指标。
TOC可以很直接地用来表示有机物的总量。
因而它被作为评价水体中有机物污染程度的一项重要参考指标。
TOC检测方法介绍
1.高温催化燃烧氧化-非色散红外探测(NDIR)
高温催化燃烧氧化的应用时间远比湿法氧化迟,但是因为高温燃烧相对彻底,可以适用于污染较重的江河、海水以及工业废水等水体。
2.紫外氧化-非色散红外探测 (NDIR)
其方式与湿法氧化相同,不过是采用紫外光(185nm)进行照射的原理,在样品进入紫外反应器之前去除无机碳,得到更精确的结果。
紫外氧化法,对于颗粒状有机物、药物、蛋白质等高含量 TOC是不适用的,但可以用于原水、工业用水等水体。
3.电阻法
该法是近年来开始应用的技术,其原理是在温度补偿前提下,测量样品在紫外线氧化前后电阻率的差值来实现的。
但该方法对被测量的水体来源要求
比较苛刻,只能用相对洁净的工业用水和纯水,应用方向单一。
精品资料欢迎下载。