简单图形的坐标表示教案
- 格式:doc
- 大小:131.00 KB
- 文档页数:3
平面向量的坐标表示教案内容:一、教学目标1. 让学生理解平面向量的概念,掌握平面向量的坐标表示方法。
2. 能够运用坐标表示法解决一些简单的向量问题。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学重点与难点1. 重点:平面向量的概念,坐标表示方法的推导及应用。
2. 难点:平面向量坐标的运算规律,空间想象能力的培养。
三、教学方法1. 采用讲授法,讲解平面向量的概念及坐标表示方法。
2. 利用图形演示,帮助学生直观理解向量的坐标表示。
3. 运用例题解析,引导学生掌握向量坐标的运算规律。
4. 开展小组讨论,培养学生合作解决问题的能力。
四、教学准备1. 教学课件:平面向量坐标表示的相关图片和动画。
2. 教学素材:多媒体设备,黑板,粉笔。
3. 练习题:针对本节课内容的练习题。
五、教学过程1. 导入:回顾标量与向量的概念,引出平面向量的定义。
2. 讲解:向量的概念,向量的坐标表示方法,向量坐标的运算规律。
3. 演示:利用图形演示向量的坐标表示,让学生直观理解。
4. 例题:解析平面向量坐标的运算规律,引导学生运用坐标表示法解决问题。
5. 练习:学生独立完成练习题,巩固所学知识。
6. 总结:本节课的主要内容,强调平面向量坐标表示的重要性。
7. 作业:布置相关作业,巩固所学知识。
教学反思:在教学过程中,要注意引导学生理解平面向量的概念,并通过图形演示,让学生直观地理解向量的坐标表示。
在讲解向量坐标的运算规律时,要结合实例进行分析,让学生更好地掌握。
要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够扎实掌握所学知识。
六、教学拓展1. 引导学生思考:坐标表示法在实际问题中的应用,如物理学中的力的分解、几何中的位移等。
2. 讲解向量坐标的转换:如何将空间直角坐标系中的向量转换为平面坐标系中的向量。
七、课堂互动1. 提问:请同学们举例说明平面向量的坐标表示在实际问题中的应用。
2. 小组讨论:如何利用向量坐标表示法解决几何问题。
第13课坐标方法的简单应用目标导航课程标准1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.知识精讲知识点01 用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.注意:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.知识点02 用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).注意:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.注意:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.能力拓展考法01 用坐标表示地理位置【典例1】小明写信给他的朋友介绍学校的有关情况:校门正北方100米处是教学楼,从校门向东50米,再向北50米是科教楼,从校门向西100米,再向北150米是宿舍楼……请画出适当的平面直角坐标系表示校门、教学楼、科技楼、宿舍楼的位置,并写出这四个点的坐标.【分析】选取校门所在的位置为原点,并以正东,正北方向为x轴、y轴的正方向,可以容易地写出三个建筑物的坐标.否则就较复杂.【答案与解析】解:(1)平面直角坐标系及学校的建筑物位置如图所示,比例尺为1:10000.(2)校门的坐标为(0,0);教学楼的坐标为(0,100);科技楼的坐标是(50,50);宿舍楼的坐标为(-100,150).【点睛】选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.【即学即练】一个探险家在日记上记录了宝藏的位置,从海岛的一块大圆石O出发,向东1000m,向北1000m,向西500m,再向南750m,到达点P,即为宝藏的位置.(1)画出坐标系确定宝藏的位置;(2)确定点P的坐标.【答案】解:根据数据的特点,选择250作为单位长度,以大圆石O为原点,建立平面直角坐标系.(1)如图,中心带有箭头的线是行动路线,点P的位置如图所示.(2)点P的坐标是(500,250)【典例2】如图是一所学校的平面示意图,已知国旗杆的坐标为(-1,1),写出其他几个建筑物位置的坐标.若国旗杆的坐标为(3,1),则其他几个建筑物位置的坐标是否发生改变?若改变,请写出坐标,若不改变,请说明理由.【答案与解析】解:当国旗杆的坐标是(-1,1)时,校门的坐标是(-4,1),实验楼的坐标是(2,-2),教学楼的坐标是(2,1),图书馆的坐标是(1,4);若国旗杆的坐标是(3,1),则校门的坐标是(0,1),实验楼的坐标是(6,-2),教学楼的坐标是(6,1),图书馆的坐标是(5,4).【点睛】根据已知点确定平面直角坐标系,进一步求得要求点的坐标.【即学即练】如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上.【答案】(﹣2,1).解:∵位于点(1,﹣2)上,位于点(3,﹣2)上,∴位于点(﹣2,1)上.考法02用坐标表示平移【典例3】如如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.【分析】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.【答案与解析】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.【点睛】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.【即学即练】已知三角形ABC三个顶点的坐标为A(-2,3),B(-4,-1),C(2,0).三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0+3).将三角形ABC作同样的平移得到三角形A1B1C1:(1)求A1B1C1的坐标.(2)求三角形ABC和△A1B1C1的面积大小.【答案】解:(1)A 1(3,6),B 1(1,2),C 1(7,3).(2)ABC A B C S S '''=△△11124246143222=-⨯⨯-⨯⨯-⨯⨯=24-4-3-6=11. 考法03 综合应用【典例4】在A 市北300km 处有B 市,以A 市为原点,东西方向的直线为x 轴,南北方向的直线为y 轴,并以50km 为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C (10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km ,问经几小时后,B 市将受到台风影响?并画出示意图.【分析】当台风中心移动到据B 点200千米时,B 市将受到台风影响,从而求出台风中心的移动距离,除以速度,即可求出所需时间.【答案与解析】解:∵台风影响范围半径为200km ,∴当台风中心移动到点(4,6)时,B 市将受到台风的影响.所用的时间为:50×(10-4)÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)【点睛】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.【即学即练】一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.【答案】在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C.题组A 基础过关练1.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】【详解】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.分层提分考点:坐标与图形变化-平移.的值为()2.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a bA.2B.3C.4D.5【答案】B【解析】【分析】先根据点A、B及其对应点的坐标得出平移方向和距离,据此求出a、b的值,继而可得答案.【详解】解:由点A(2,0)的对应点A1(4,b)知向右平移2个单位,由点B(0,1)的对应点B1(a,2)知向上平移1个单位,△a=0+2=2,b=0+1=1,△a+b=2+1=3,故答案为:B.【点睛】本题主要考查坐标与图形的变化-平移,解题的关键是掌握横坐标的平移规律为:右移加,左移减;纵坐标的平移规律为:上移加,下移减.3.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)【答案】A【解析】【详解】△线段CD是由线段AB平移得到的,而点A(−1,4)的对应点为C(4,7),△由A平移到C点的横坐标增加5,纵坐标增加3,则点B(−4,−1)的对应点D的坐标为(1,2).4.如图, ,A B 的坐标为()()1,0,0,2,若将线段AB 平移至11A B ,则-a b 的值为( )A .1-B .0C .1D .2【答案】B【解析】【分析】 直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为2、4,可得B 点向上平移了2个单位,由A 点平移前后的横坐标分别是为1、3,可得A 点向右平移了2个单位,由此得线段AB 的平移的过程是:向上平移2个单位,再向右平移2个单位,所以点A 、B 均按此规律平移,由此可得a=0+2=2,b=0+2=2,△a -b=2-2=0,故选:B .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .2【答案】C【解析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】△A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),△平移方法为向右平移2个单位,△x=﹣2,y=3,△x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.6.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位【答案】D【解析】【分析】根据向下平移,纵坐标相减,横坐标不变解答.【详解】△将三角形各点的纵坐标都减去3,横坐标保持不变,△所得图形与原图形相比向下平移了3个单位.故选D.【点睛】本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】已知线段AB ,BC ,AC ,分别以三条线段为平行四边形的对角线,进行分类讨论,结合图形进行判断.【详解】如果以线段AB 为对角线,AC ,BC 为边,作平行四边形,则第四个顶点在第四象限;如果以线段AC 为对角线,AB ,BC 为边,作平行四边形,则第四个顶点在第二象限;如果以线段CB 为对角线,AC ,BA 为边,作平行四边形,则第四个顶点在第三象限.故不可能在第一象限.故选A.【点睛】考查了平行四边形的性质,建立平面直角坐标系,数形结合,分类讨论是解题的关键.8.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(00),运动到(0)1,,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .(8,0)【答案】C【解析】【详解】 【分析】由题目可以知道,质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n),用n 2+n 秒,这样可以先确定,第80秒钟时所在的点所在正方形,然后就可以进一步推得点的坐标.【详解】质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n),用n 2+n 秒, △当n=8时,n 2+n=82+8=72,△当质点运动到第72秒时到达(8,8),△质点接下来向左运动,运动时间为80-72=8秒,△此时质点的横坐标为8-8=0,△此时质点的坐标为(0,8),△第80秒后质点所在位置的坐标是(0,8),故选C.【点睛】本题考查了规律题——点的坐标,解决本题的关键是读懂题意,并总结出一定的规律,难度较大.题组B 能力提升练9.将点()1,24P m m -+向上平移2个单位后落在x 轴上,则m =___.【答案】-3【解析】【分析】点坐标向上平移2个单位,就是纵坐标加上2,落在x 轴上,就是纵坐标为0,求出m 的值.【详解】解:点()1,24P m m -+向上平移2个单位得()1,26P m m '-+,△平移后落在x 轴上,△260m +=,解得3m =-.故答案是:-3.【点睛】本题考查点坐标的平移,解题的关键是掌握点坐标平移的方法.10.已知直线AB△x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________【答案】(4,2)或(﹣2,2).【解析】【详解】分析:AB△x 轴,说明A ,B 的纵坐标相等为2,再根据两点之间的距离公式求解即可.详解:△AB△x 轴,点A 坐标为(1,2),△A ,B 的纵坐标相等为2,设点B 的横坐标为x ,则有AB=|x -1|=3,解得:x=4或-2,△点B 的坐标为(4,2)或(-2,2).故本题答案为:(4,2)或(-2,2).点睛:本题主要考查了平行于x 轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.11.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.【答案】±4【解析】【详解】试题分析:根据坐标与图形得到三角形OAB 的两边分别为|a|与5,然后根据三角形面积公式有:15102a ⋅⋅=, 解得a=4或a=-4,即a 的值为±4.考点:1.三角形的面积;2.坐标与图形性质.12.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.【答案】-4或6【解析】【详解】分析:点M 、N 的纵坐标相等,则直线MN 在平行于x 轴的直线上,根据两点间的距离,可列出等式|x -1|=5,从而解得x 的值.解答:解:△点M(1,3)与点N(x ,3)之间的距离是5,△|x -1|=5,解得x=-4或6.故答案为-4或6.13.如图,点,A B 的坐标分别为(2,0),(0,1),若将线段AB 平移至11A B ,则a b +的值为_____.【答案】2【解析】【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【详解】由题意可知:a=0+(3-2)=1;b=0+(2-1)=1;△a+b=2.故答案为:2.【点睛】此题考查坐标与图形的变化-平移,解题的关键是得到各点的平移规律.14.把点A(a,-2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于____.【答案】1.5【解析】【详解】试题解析:由题意,得a+(a-3)=0,解得a=1.5.点睛:对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.(1)把点P(2,-3)向右平移2个单位长度到达点P',则点P'的坐标是_______.(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_______.(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点P',则点P'的坐标是_______.【答案】(4,-3) (-2,-6) (-2,7)【解析】【分析】(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可.【详解】解:(1)△把点P(2,-3)向右平移2个单位长度到达点P',△横坐标加2,纵坐标不变,△点P'的坐标是(4,-3);(2)△把点A(-2,-3)向下平移3个单位长度到达点B,△横坐标不变,纵坐标减3,△点B 的坐标是(-2,-6);(3)△把点P (2,3)向左平移4个单位长度,再向上平移4个单位长度到达点P ',△横坐标减4,纵坐标加4,△点P '的坐标是(-2,7).故答案为:(4,-3);(-2,-6);(-2,7).【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.16.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,则D 的坐标为_______,连接AC ,BD .在y 轴上存在一点P ,连接P A ,PB ,使PAB S =△S 四边形ABDC ,则点P 的坐标为_______.【答案】 (4,2) (0,4)或(0,-4)【解析】【分析】根据B 点的平移方式即可得到D 点的坐标;设点P 到AB 的距离为h ,则S △P AB =12×AB ×h ,根据S △P AB =S 四边形ABDC ,列方程求h 的值,确定P 点坐标;【详解】解:由题意得点D 是点B (3,0)先向上平移2个单位,再向右平移1个单位的对应点,△点D 的坐标为(4,2);同理可得点C 的坐标为(0,2),△OC =2,△A (-1,0),B (3,0),△AB =4,△=8ABDC S AB OC ⋅=四边形,设点P 到AB 的距离为h ,△S △P AB =12×AB ×h =2h ,△S △P AB =S 四边形ABDC ,得2h =8,解得h =4,△P 在y 轴上,△OP =4,△P (0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 题组C 培优拔尖练17.在平面直角坐标系中,P(1,4),点A 在坐标轴上,且S 三角形PAO =4,求点A 的坐标.【答案】A(2,0)或(-2,0)或(0,8)或(0,-8)【解析】【详解】试题分析:由于点A 的坐标不能确定,故应分点A 在x 轴上和点在y 轴上两种情况进行讨论.试题解析:当点A 在x 轴上时,设A(x ,0),△S △PAO =4,A(1,4) △12|x|×4=4,解得x=±2,△A(-2,0)或(2,0);当点A 在y 轴上时,设A(0,y),△S △PAO =4,A(1,4)△12|y|×1=4,解得x=±8,△A(-8,0)或(8,0).综上所述,A 点坐标为(-2,0)或(2,0)或(-8,0)或(8,0).点睛:本题考查的是平面直角坐标系中的三角形的面积,在解答此题时要注意进行分类讨论,不要漏解. 18.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△AOA 1的面积.【答案】(1)(4,-2);(2)作图见解析,(3)6.【解析】【分析】(1)根据点P 的对应点为P 1(6,2a b +-)确定出平移规律为向右6个单位,向下2个单位,,由此规律和C(-2,0)即可求出C 1的坐标;(2)根据(1)中的平移规律确定点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△AOA 1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】(1)△点P(a ,b)的对应点为P 1(a+6,b -2),△平移规律为向右6个单位,向下2个单位,△C(-2,0)的对应点C 1的坐标为(4,-2);(2)△A 1B 1C 1如图所示;(3)△AOA1的面积=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=18-12=6.考点:图形的平移变换.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(______,_____),B→C(______,_____),D→_____(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.【答案】(1) (3,4);(2,0);A;(2)答案见解析;(3)10.【解析】【分析】(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.(1)规定:向上向右走为正,向下向左走为负△A →C 记为(3,4)B →C 记为(2,0)D →A 记为(﹣4,﹣2);(2)P 点位置如图所示.(3)据已知条件可知:A →B 表示为:(1,4),B →C 记为(2,0)C →D 记为(1,﹣2);该甲虫走过的路线长为1+4+2+1+2=10.故答案为(3,4);(2,0);A ;【点睛】本题主要考查了正数与负数,利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.20.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A ,B 的对应点C ,D .连接AC ,BD .(1)写出点C ,D 的坐标及四边形ABDC 的面积.(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S 三角形PAB =S 四边形ABDC ?若存在,求出点P 的坐标,若不存在,试说明理由;(3)点Q 是线段BD 上的动点,连接QC ,QO ,当点Q 在BD 上移动时(不与B ,D 重合),给出下列结论:①DCQ BOQ CQO +∠∠∠的值不变;②DCQ CQO BOQ+∠∠∠的值不变,其中有且只有一个正确,请你找出这个结论并求值.【答案】(1)C(0,2),D(4,2),S 四边形ABCD =8;(2)存在,点P 的坐标为(0,4)或(0,-4);(3)结论①正确,DCQ BOQ CQO+∠∠∠=1. 【解析】(1)根据点平移的规律:左减右加,上加下减,即可得到点C、D的坐标,利用平行四边形的面积公式计算面积即可;(2)设点P的坐标为(0,y),根据三角形的面积公式底乘以高的一半列式计算即可得到答案;(3)结论①正确.过点Q作QE△AB,交CO于点E,利用平行线的性质:两直线平行内错角相等证得△DCQ+△BOQ =△CQO,由此得到结论①正确【详解】(1)△将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,△C(0,2),D(4,2),AB△CD且AB=CD=4,△四边形ABDC是平行四边形,△S四边形ABCD=4×2=8.(2)存在,设点P的坐标为(0,y),根据题意,得12×4×|y|=8.解得y=4或y=-4.△点P的坐标为(0,4)或(0,-4).(3)结论①正确.过点Q作QE△AB,交CO于点E.△AB△CD,△QE△CD.△△DCQ=△EQC,△BOQ=△EQO.△△EQC+△EQO=△CQO,△△DCQ+△BOQ=△CQO.△DCQ BOQCQO∠∠∠=1.【点睛】此题考查点平移的坐标规律,利用面积求点的坐标,平行线的性质,(2)中利用面积求点坐标时,高度为点纵坐标的绝对值,得到纵坐标为两个值,这是题中易错点。
仙槎桥中心中学“三学四导”导学案主备人:张云审核人:时间: 2016 年下学期课型新授年级八课时1科目数学课题简单图形的坐标表示学习目标1、能根据坐标描出点的位置;2、能建立适当的平面直角坐标系描述物体的位置。
重点难点学习重点:根据点的坐标在直角坐标系中描出点的位置学习难点:建立适当的平面直角坐标系,确定图形的点的坐标导学过程主讲人备课自主预学情趣导入:明确目标,个性导入复习旧知问题1:如图,在平面直角坐标系中写出图中点A,B,C,D,E的坐标.问题2:平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴A(-2,3);B(1,-2);C(-1,-2);D(3,2);E(-3,0);F(0,1).自主预习单:1、建立适当的平面直角坐标系表示图形各顶点的坐标的过程:①建立坐标系,选择一个适当的参照点为,确定x轴、y轴的②根据具体问题确定适当的③在坐标平面内画出这些点,写出各点的2、如图,已知正方形ABCD的边长为6.如果以点C 为原点,BC所在的直线为x轴,建立平面直角坐标系,那么y轴是哪条直线?写出正方形的顶点A,B,C,D的坐标.互助探学探究导研:合作探究,互助研讨例1:如图,矩形ABCD的长和宽分别为4和6,试以点B为原点建立平面直角坐标系表示矩形ABCD各顶点的坐标,并作出矩形ABCD例2:图3-16是一个机器零件的尺寸规格示意图,试建立适当的平面直角坐标系表示其各顶点的坐标,并作出这个示意图.分析:在此题中,以点O(或点A或点B)为坐标原点建立平面直角坐标系,则对应各顶点的坐标分别是什么?(以组为单位分别完成)总结导评:精讲点拨,归纳总结回顾本节课所学的主要内容,回答以下问题:1. 怎样建立适当的平面直角坐标系以确定图形上点的坐标?2.建立不同的平面直角坐标系,图形上同一个点的坐标相同吗?图形的形状和性质改变吗?提高拓学应用导思:学以致用,巩固拓展中考试题1、如图,点P(-3,2)处的一只蚂蚁沿水平方向向右爬行了5个单位长度后的坐标为2、在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为【】A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)3、如图,建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(4,0),写出点A,D,E,F,G的坐标,并指出它们所在的象限.。
3.2 简单图形的坐标表示教学目标知识与技能:1、能根据坐标描出点的位置;2、能建立适当的平面直角坐标系描述物体的位置。
过程与方法:在探究学习过程中,让学生发现问题,提出问题,然后解决问题,体会在解决问题中和他人合作的重要性。
情感态度与价值观:让学生获得成功的体验,锻炼克服困难的意志,建立解题信心;让学生在独立思考的基础上,积极参与对数学问题的讨论,培养学生锲而不舍的精神和实事求是的学习态度。
重点:根据点的坐标在平面直角坐标系中描出点的位置难点:建立适当的平面直角坐标系,确定图形的点的坐标教学过程:一、复习旧知1.了解平面直角坐标系中的各象限及各象限的点的坐标的符号的特点.(坐标轴上的点不属于任何象限)2.根据点的坐标,确定点的位置.3.建立适当的平面直角坐标系,确定图形的点的坐标.二、合作交流、解读探究例矩形ABCD的长和宽分别为8和6,试建立适当的平面直角坐标系表示矩形ABCD各顶点的坐标,并作出矩形ABCD。
三、应用拓展、提升能力1、分别说出下列各点在哪个象限内或在哪条坐标轴上?A(6,-2), B(0,3) , C(3,7),D(-6,-3), E(-2,0) , F(-9,5)2、在直角坐标系中,描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4)(1)E点到原点O的距离是个单位长度.(2)点D到x轴的距离是,到y轴的距离是 .点C呢?思考:设点P的坐标为(a,b), 则点P到x轴的距离为_______,到y轴的距离为。
练习教材:练习 1、2题四、归纳总结、整合提高1.坐标平面被坐标轴分成四个象限,坐标轴上的点不在任何象限内;2.各象限内点的坐标符号特点及坐标轴上点的坐标特点;3.根据点的坐标确定点的位置;4.建立适当的平面直角坐标系,描述点的位置.五、作业教材习题 1、2、3、4题课后反思:。
人教版数学七年级下册7.2.1《用坐标表示地理位置》教案一. 教材分析《用坐标表示地理位置》是人教版数学七年级下册第七章第二节的第一课时,本节课主要让学生了解坐标系的定义,掌握用坐标表示点的位置的方法,以及坐标系在实际生活中的应用。
通过学习,学生能理解坐标系的两个坐标轴,以及原点、正方向和单位长度的概念,能熟练用坐标表示点的位置,并解决一些简单的实际问题。
二. 学情分析学生在七年级上册已经学习了平面图形的知识,对图形的位置有一定的了解。
但是,用坐标表示地理位置是一个新的概念,需要学生理解和接受。
在现实生活中,学生可能对坐标系有一定的接触,如地图上的经纬度,但如何将实际问题转化为坐标问题,还需要教师的引导和学生的实践。
三. 教学目标1.知识与技能:理解坐标系的定义,掌握用坐标表示点的位置的方法,以及坐标系在实际生活中的应用。
2.过程与方法:通过实际问题,培养学生将实际问题转化为坐标问题的能力,提高学生解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的合作意识和解决问题的能力。
四. 教学重难点1.重点:坐标系的定义,用坐标表示点的位置的方法。
2.难点:坐标系在实际生活中的应用,将实际问题转化为坐标问题。
五. 教学方法采用问题驱动法,结合实例引导学生理解坐标系的定义,通过实际问题,让学生感受坐标系在生活中的应用。
同时,采用合作学习法,让学生在小组内讨论如何将实际问题转化为坐标问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教师准备:教材、PPT、黑板、粉笔。
2.学生准备:课本、笔记本、文具。
七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾平面图形的知识,为新课的学习做好铺垫。
例如:“你们还记得平面图形的位置是如何表示的吗?”2.呈现(15分钟)教师通过PPT展示坐标系的定义,以及用坐标表示点的位置的方法。
同时,通过实例,让学生感受坐标系在实际生活中的应用。
了解平面直角坐标系教案:探究不同点的坐标规律:平面直角坐标系作为数学的一个基础知识点,是从初中阶段一直到高中阶段都需要掌握的重点。
在平面直角坐标系中,点是一个不可或缺的组成部分。
因此,了解点的坐标规律是学好平面直角坐标系的基础。
针对这一点,本教案将探究不同点的坐标规律,为学生深入理解平面直角坐标系奠定牢固基础。
一、教学目标:1.能够正确掌握平面直角坐标系的基本概念和表示方法;2.能够正确理解点的坐标规律;3.能够掌握平面直角坐标系中的留白标志及方向确定方法;4.能够应用所学知识正确求出点的坐标。
二、教学重点和难点:1.点的坐标规律的理解与掌握;2.平面直角坐标系中留白标志及方向确定方法的掌握。
三、教学方法:1.集体探究法:让学生自主探究、互相交流,指导学生理解点的坐标规律。
2.案例探究法:通过案例探究,桥接起教师讲解和复习巩固,加深学生对知识点的理解。
3.练习辅导法:通过练习,让学生巩固练习,检验学生掌握程度。
四、教学活动设计:1.自由探究:呈现一个平面直角坐标系,让学生根据坐标系上不同点的位置,总结点的坐标规律。
2.案例探究:通过探究正方形、矩形等图形的坐标规律,将学生对平面直角坐标系中点的坐标规律理解得更加深入。
3.练习辅导:教师带领学生完成一些简单的练习,唤醒学生对平面直角坐标系中点的坐标规律的记忆和掌握。
五、实施方案与策略1.自由探究环节针对这个环节,教师可以在黑板或白板上,准备好一个平面直角坐标系。
让学生根据自己的感性认知,来寻找平面坐标系中不同点的坐标规律。
在学生观察和探究过后,教师再慢慢的引导学生,让他们更清晰地理解点的坐标规律。
同时,教师也可以示范画出一些带有其他标示的图形,以此来拓展学生的思维,提高学生的理解力度。
2.案例探究环节在案例探究环节,教师可以选用简单、具有代表性的图形进行探究。
对于每个图形中不同点的坐标,教师可以带领学生逐个进行分析、解读,并且告诉学生在不同的图形中有不同的绘图方向和留白标识符。
幼儿园坐标教案一、教学目标1.知道坐标系的概念并学会绘制坐标系;2.掌握正方形和长方形的特点;3.知道坐标的概念,能够在坐标系中确定点的位置,并理解坐标的表示方法。
二、教学内容1.坐标系的概念;2.正方形和长方形的特点;3.坐标的概念与表示方法。
三、学习活动1. 引入活动教师向幼儿们展示一个平面图形,并询问幼儿图形的位置。
然后,教师引导幼儿们思考如何表示图像的位置。
2. 呈现活动教师首先介绍坐标系的概念,并简单地演示如何绘制坐标系。
接着,让幼儿们分别绘制一个正方形和一个长方形,并通过询问他们来说明正方形和长方形的特点。
例如,正方形是一个边长相等的图形。
3. 演示活动教师向幼儿们展示坐标系,并通过简单的示例向幼儿们演示如何使用坐标表示图形的位置。
例如,给定一个点的坐标是(2,3),那么这个点应该在坐标系的第二行第三列。
4. 实践活动让幼儿们分组,每组4人,分别给定一组坐标,让他们在坐标系中绘制出所给定的图形。
5. 检查活动教师请幼儿们展示他们自己绘制的图形,并检查他们绘制的图形是否正确。
教师还可以要求幼儿们用正确的坐标表示图形的位置。
6. 总结活动教师引导幼儿们总结本节课所学的知识点,并带领幼儿们用正确的语言回答几个问题。
四、教学反思幼儿园坐标教案的编写需要充分考虑幼儿的认知能力和学习兴趣。
教师需要通过生动的引导和形象的教学,让幼儿们学会坐标系的概念和使用。
同时,教师还需要激发幼儿的学习兴趣,让他们在轻松愉悦的氛围中学习。
本教案中通过分组、实践活动等多种教学形式,提高了幼儿们的参与度,提高了教学效果。
3.2简单图形的坐标表示
1.根据图形特点和问题的需要灵活建立平面直角坐标系确定点的坐标;(重点)
2.简单几何图形中特殊点的坐标的求法;(难点)
3.用平面直角坐标系解决图形问题.(难点)
一、情境导入
如图,长方形ABCD的长与宽分别是6,4,以A点为原点,AD边所在的直线为x轴建立直角坐标系,并写出各个顶点的坐标.你还能以其他的方式建立直角坐标系吗?
二、合作探究
探究点一:简单图形的点的坐标
要修建一个平行四边形的花坛,A(-3,-2),B(-3,-1),C(1,-2)为此花坛的三个顶点,你能根据这三个点的坐标写出第四个顶点D的坐标吗?点D是唯一的吗?
解:如图所示,点D的坐标不是唯一的,符合条件的点D的坐标有(-7,-1),(1,-1)或(1,-3).
方法总结:解决坐标系中的图形问题,应紧密联系常见几何图形的性质,运用数形结合的思想,将几何问题转化为代数问题.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
探究点二:建立合适的平面直角坐标系表示图形中的点的坐标
如图,梯形ABCD的上底为4,下底为6,高为3,建立适当的平面直角坐标系,并写出各个顶点的坐标.
解析:可以以A为原点,以AB所在直线为x轴作平面直角坐标系进行求解.
解:(答案不唯一)如图,以AB的中点O为原点,分别以AB所在直线和过点O的AB 的中垂线为x轴、y轴建立平面直角坐标系.此时点O的坐标为(0,0),OA=OB=3,点A,B的坐标分别为A(-3,0),B(3,0).因为高为3,CD的长为4,则点D,C坐标分别为(-2,3),(2,3).
方法总结:根据已知条件建立适当的直角坐标系是确定点的位置的必经过程.通常以某已知点为原点,以某些特殊线段所在直线(如高、中线、对称轴)为x轴或y轴,使图形中尽量多的点在坐标轴上.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
探究点三:在坐标轴中求图形的面积
如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(9,0),C(7,5),D(2,7).试确定这个四边形的面积.
解析:由于四边形不是规则的四边形,所以可以考虑把它分成三角形或规则的四边形来解决.
解:分别过点D、C向x轴作垂线,垂足分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标可得AE=2,DE=7,EF=5,FB=2,CF=5.∴S四边形ABCD
=S△AED+S梯形CDEF+S△CFB=1
2×2×7+
1
2×(7+5)×5+
1
2×5×2=7+30+5=42.
方法总结:在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,从而求出面积.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
探究点四:简单图形的几何问题
在如图①所示的网格中建立平面直角坐标系,在坐标平面内描出点O(0,0),P(5,5),M(2,-1),N(-1,2),连接OP、OM、ON、PM、PN,并直接回答下列问题:
(1)试判断射线OP 与∠MON 的关系;
(2)试判断OM 与PM 、ON 与PN 的位置关系;
(3)试判断线段OM 、ON 的大小关系.
解析:(1)首先利用勾股定理计算出NO 、MO 、NP 、PM 的长,再利用全等三角形的判定得出△PON ≌△POM ,从而得出OP 是∠MON 的平分线;(2)利用勾股定理的逆定定理得出△PNO 是直角三角形,同理可得出△PMO 也是直角三角形,即可得出答案;(3)由(1)可得OM =ON . 解:如图②所示.(1)∵点O (0,0),P (5,5),M (2,-1),N (-1,2),∴NO =22+12=5,MO =22+12=5,NP =62+32=35,PM =62+32=35,OP =5 2.在△NOP
和△PON 中⎩⎪⎨⎪⎧PO =PO ,PN =PM ,NO =MO ,
∴△PON ≌△POM .∴∠NOP =∠MOP .∴OP 是∠MON 的平分线;
(2)∵NO =5,NP =35,OP =52,∴NO 2+NP 2=OP 2,∴△PNO 是直角三角形,同理可得△PMO 也是直角三角形,∴OM ⊥PM ,ON ⊥PN ;
(3)由(1)可得OM =ON .
方法总结:在平面直角坐标系中要善于运用勾股定理求线段长度或证明相关结论. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题
三、板书设计
简单图形的坐标表示
1.特殊点的坐标
2.建立适当的平面直角坐标系
从学生掌握的情况来看,对于如何建立坐标系表示点的坐标熟练一些,而给出不规则图形点的坐标求图形的面积有一些困难,特别是不懂方法技巧,在今后的教学中有待逐步强化,全面提高。