半导体物理 第七章
- 格式:ppt
- 大小:822.50 KB
- 文档页数:29
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
第七章 半导体的接触现象半导体的接触现象主要有半导体与金属之间的接触(肖特基结和欧姆接触)、半导体与半导体之间的接触(同质结和异质结)以及半导体与介质材料之间的接触。
这一章主要介绍前两种接触现象。
§7-1 外电场中的半导体无外加电场时,均匀掺杂半导体中的空间电荷处处等于零。
当施加外电场时,在半导体中引起载流子的重新分布,从而产生密度为)(r ρ的空间电荷和强度为)(r ∈的电场。
载流子的重新分布只发生在半导体的表面层附近,空间电荷将对外电场起屏蔽作用。
图7-1a 表示对n 型半导体施加外电场时的电路图。
在图中所示情况下,半导体表面层的电子密度增大而空穴密度减小(见图7-1b 、c ),从而产生负空间电荷。
这些空间电荷随着离开样品表面的距离的增加而减少。
空间电荷形成空间电场s ∈,在半导体表面s ∈达到最大值0s ∈(见图7-1d )。
空间电场的存在将改变表面层电子的电势和势能(见图7-1e 、f ),从而改变样品表面层的能带状况(见图7-1g )。
电子势能的变化量为)()(r eV r U -=,其中)(r V 是空间电场(也称表面层电场)的静电势。
此时样品的能带变化为)()(r U E r E c c += (7-1a ))(r E v =)(r U E v + (7-1b )本征费米能级变化为 )()(r U E r E i i += (7-2a )杂质能级变化为 )()(r U E r E d d += (7-2b )由于半导体处于热平衡状态,费米能级处处相等。
因此费米能级与能带之间的距离在表面层附近发生变化。
无外电场时这个距离为(f c E E -)和(v f E E -) (7-3)而外场存在时则为[]f c E r U E -+)( 和-f E [)(r U E v +] (7-4)比较(7-3)和(7-4)式则知,如果E c 和E f 之间的距离减少)(r U ,E f 与E v 之间的距离则增加)(r U 。
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 (eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处得金-半肖特基势垒接触。
金-半肖特基势垒接触得整流效应就是半导体物理效应得早期发现之一:§7、1金属半导体接触及其能级图一、金属与半导体得功函数1、金属得功函数在绝对零度,金属中得电子填满了费米能级E F 以下得所有能级,而高于E F 得能级则全部就是空着得。
在一定温度下,只有E F 附近得少数电子受到热激发,由低于E F 得能级跃迁到高于E F 得能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够得能量。
所以,金属中得电子就是在一个势阱中运动,如图71所示。
若用E 0表示真空静止电子得能量,金属得功函数定义为E 0与E F 能量之差,用W m 表示:它表示从金属向真空发射一个电子所需要得最小能量。
W M 越大,电子越不容易离开金属。
金属得功函数一般为几个电子伏特,其中,铯得最低,为1、93eV;铂得最高,为5、36 eV 。
图72给出了表面清洁得金属得功函数。
图中可见,功函数随着原子序数得递增而周期性变化。
2、半导体得功函数与金属类似,也把E 0与费米能级之差称为半导体得功函数,用W S 表示,即因为E FS 随杂质浓度变化,所以W S 就是杂质浓度得函数。
与金属不同,半导体中费米能级一般并不就是电子得最高能量状态。
如图73所示,非简并半导体中电子得最高能级就是导带底E C 。
E C 与E 0之间得能量间隔被称为电子亲合能。
它表示要使半导体导带底得电子逸出体外所需要得最小能量。
利用电子亲合能,半导体得功函数又可表示为式中,E n =E C -E FS 就是费米能级与导带底得能量差。
表71 几种半导体得电子亲与能及其不同掺杂浓度下得功函数计算值 材料 (eV) W S (eV)图71 金属中得电子势阱图7-2 一些元素得功函数及其原子序数 图73 半导体功函数与电子亲合能二、有功函数差得金属与半导体得接触把一块金属与一块半导体放在同一个真空环境之中,二者就具有共同得真空静止电子能级,二者得功函数差就就是它们得费米能级之差,即W M-W S =E FS-E FM。